Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3473-3483.doi: 10.3864/j.issn.0578-1752.2022.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis

LinHan ZOU1(),XinYing ZHOU1,ZeYuan ZHANG1,Rui YU1,Meng YUAN1,XiaoPeng SONG2,JunTao JIAN3,ChuanLiang ZHANG1,DeJun HAN1(),QuanHao SONG2()   

  1. 1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
    2Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, Henan
    3Nanyang Academy of Agricultural Sciences, Nanyang 473000, Henan
  • Received:2022-03-09 Accepted:2022-06-06 Online:2022-09-16 Published:2022-09-22
  • Contact: ZOU LinHan,HAN DeJun,SONG QuanHao E-mail:zorke1995@126.com;handj@nwafu.edu.cn;songmanl.2005@163.com

Abstract:

【Objective】Zhou 8425B is one of the most important founder parents in China and Xiaoyan 81 is an elite cultivar with high yield and good quality. Thousand-grain weight (TGW) is an important factor that affects wheat yield. Identification of QTL associated with grain related traits from Zhou 8425B and Xiaoyan 81, and haplotype analysis of these QTL in wheat cultivars from different ecological regions would be beneficial for yield improvement by molecular marker-assisted selection.【Method】In this study, a RIL population (F8) derived from Zhou 8425B × Xiaoyan 81 was planted in Yangling during 2015 and 2016 cropping seasons to evaluate grain related traits. Using a high-density genetic map constructed by 90K SNP markers, QTL mapping of thousand-grain weight, grain length, grain width and thickness was performed under three environments. Simultaneously, the KASP markers linked to the identified QTL were developed and molecular detection was carried out among 479 wheat accessions worldwide. Moreover, haplotype analysis of target QTL was performed in 106 current wheat commercial cultivars from Yellow and Huai River Valley Winter Wheat Region selected from 479 wheat accessions.【Result】A total of 22 QTL on 8 chromosomes were detected, and the phenotypic variation explanation (PVE) ranged from 4.77% to 19.95%. Among them, 12 QTL are major QTL (PVE>10%) and Qkgw.nwafu-6B is a new QTL. QTL on chromosomes 4A, 6A, 6B, and 7D were detected in multiple environments, of which, the QTL on chromosomes 4A and 7D are same as previously reported ones. Compared to TaGW2-6A using molecular detection, both Zhou 8425B and Xiaoyan 81 carried the same allele of TaGW2. Based on haplotype result of Qkgw.nwafu-6A, Zhou 8425B and Xiaoyan 81 were placed in different groups. Therefore, Qkgw.nwafu-6A tends to be a new one. Haplotype analysis showed that there were five haplotypes for Qkgw.nwafu-6A and there were eight haplotypes for Qkgw.nwafu-6B. 6A_h1 and 6B_h6 accounted for over 20% in different ecological regions. In addition, a co-segregated KASP marker was developed for Qkgw.nwafu-6B and was significantly associated with the grain weight in the 479 wheat accessions.【Conclusion】Qkgw.nwafu-6A and Qkgw.nwafu-6B are possible new QTL associated with thousand-grain-weight, and 6A_h1 and 6B_h6 are likely favorable haplotypes. A molecular marker KASP_IWA349 co-segregated with Qkgw.nwafu-6B was developed and will be useful for marker assisted selection.

Key words: wheat, thousand-grain-weight, 90K gene chip, QTL mapping, haplotype analysis, development of molecular markers

Table 1

KASP primers used in this study"

引物 Primer 引物序列 Primer sequence (5′-3′)
TaGW2-6A-KASP F:GAAGGTGACCAAGTTCATGCTTCCCGCTCCAGCTATCTGGTGAAC
H:GAAGGTCGGAGTCAACGGATTTCCCGCTCCAGCTATCTGGTGAAA
C:TTCCCAGTCTTTGACATGTTCCGCC
1B/1R-KASP F:GAAGGTGACCAAGTTCATGCTGGAGCAGGTCCAGATCGCG
H:GAAGGTCGGAGTCAACGGATTCGGAGCAGGTCCAGATCGCA
C:GAAGCTCCGGTAGATGGAGGCTA
Qkgw.nwafu-6B (KASP_IWA349) F:GAAGGTGACCAAGTTCATGCTGGGCACAAAAATTAACTGGCCTA
H:GAAGGTCGGAGTCAACGGATTGGGCACAAAAATTAACTGGCCTG
C:GTCCCCCACCACACAGCTATCCT

Table 2

Phenotypic analysis of TGW in Z8425B/XY81RIL population"

环境
Environment
亲本Parent 最小值
Min
最大值
Max
均值
Mean
标准差
SE
偏度
Skewness
峰度
Kurtosis
遗传力
Heritability
Z8425B XY81
E1 54.55 40.75 19.95 61.25 40.63 9.84 -0.12 -0.69 0.74
E2 61.36 42.66 30.81 61.36 49.33 6.01 -0.32 0.30
E3 60.67 43.43 25.66 63.64 49.00 6.64 -0.42 0.31

Fig. 1

Distribution of QTLs related to grain weight, grain length, grain width and grain thickness on chromosomes QTLs on different chromosomes are represented by different colors"

Table 3

Mapping results of grain-related traits"

QTL 环境
Environment
染色体
Chromosome
位置
Position
(cM)
物理位置
Physical position (Mb)
标记区间Marker interval LOD 表型
贡献率
PVE (%)
加性效应
Add
置信区间<BOLD>C</BOLD>onfidence interval
左侧Left 右侧Right LeftCI RightCI
Qgt.nwafu-1B E2 1B 93.00 564.91—566.60 RAC875_c55891_659 RAC875_c55891_712 2.94 5.52 -0.04 92.50 94.50
Qgw.nwafu-1D E1 1D 5.50 7.83—7.94 Kukri_c2464_560 CAP7_c3533_280 2.66 11.78 0.13 0.00 11.32
Qgt.nwafu-2B E1 2B 0.00 1.60—10.17 RAC875_c40246_71 BobWhite_c39433_450 2.84 7.20 0.09 0.00 0.50
Qgt.nwafu-2D E2 2D 175.00 592.62—641.96 wsnp_JD_c19101_17343310 RAC875_c23815_716 4.02 7.36 0.05 174.50 175.00
Qkgw.nwafu-3A E3 3A 269.00 700.69—700.74 Kukri_rep_c89509_83 IAAV1134 2.52 4.77 -2.59 268.53 270.78
Qgt.nwafu-3B.1 E2 3B 13.00 6.39—8.97 tplb0043c20_1046 Tdurum_contig34149_219 6.13 11.85 -0.06 12.50 14.50
Qgt.nwafu-3B.2 E2 3B 371.00 759.17—766.64 BS00057988_51 wsnp_CAP7_c5097_2266314 4.04 8.46 0.05 361.54 380.55
Qkgw.nwafu-4A E3 4A 156.00 625.86—626.02 Kukri_c77040_87 RAC875_c56535_256 2.67 5.08 2.40 153.50 156.50
Qgt.nwafu-4A E2 4A 156.00 625.86—626.02 Kukri_c77040_87 RAC875_c56535_256 4.56 8.73 0.05 153.50 156.50
Qgw.nwafu-5B E1 5B 274.00 663.52—667.68 Kukri_c32825_95 RAC875_c29488_56 3.20 12.34 0.12 273.14 275.31
Qkgw.nwafu-6A.1 E3 6A 45.00 100.26—103.15 Ku_c1021_1642 RAC875_c64560_111 3.89 7.81 2.98 44.50 46.50
Qkgw.nwafu-6A.2 E1 6A 47.00 105.17—107.11 BS00044311_51 Kukri_c10611_632 4.73 17.24 3.45 46.50 47.50
Qgt.nwafu-6A E2 6A 46.00 100.26—127.19 RAC875_c64560_111 Excalibur_c49419_202 8.14 16.98 0.07 45.50 46.50
Qkgw.nwafu-6B E2 6B 240.00 688.20—690.73 wsnp_BE518379B_Ta_2_2 TA005327-0480 3.30 13.92 3.29 239.87 240.50
Qgl.nwafu-6B E1 6B 239.00 686.80—690.73 RFL_Contig2206_1694 D_F5XZDLF01B7ECX_54 2.75 12.70 0.11 238.61 240.40
Qgt.nwafu-7A E1 7A 333.00 679.90—680.34 Excalibur_c17899_352 wsnp_Ku_rep_c103889_90513365 3.13 8.08 0.09 332.87 333.91
Qkgw.nwafu-7B E3 7B 36.00 GENE-3775_392 RAC875_c43810_265 8.60 14.55 -20.54 35.50 38.50
Qgw.nwafu-7B E2 7B 175.00 684.42—710.11 Excalibur_c6330_1158 Kukri_rep_c68594_530 33.04 10.57 -2.47 173.60 178.90
Qgl.nwafu-7B.1 E2 7B 175.00 684.42—710.11 Excalibur_c6330_1158 Kukri_rep_c68594_530 40.38 12.34 -4.40 173.60 178.90
Qgl.nwafu-7B.2 E1 7B 0.00 1.25—1.26 Excalibur_c53111_144 Kukri_rep_c71778_644 3.96 17.26 -0.12 0.00 2.50
Qgt.nwafu-7D.1 E2 7D 174.00 548.80—553.22 Ku_c32426_324 RAC875_rep_c106588_205 4.88 9.19 -0.05 172.99 174.56
Qgt.nwafu-7D.2 E1 7D 173.00 548.80—553.22 Ku_c32426_324 RAC875_rep_c106588_205 7.08 19.95 -0.14 172.99 174.56

Fig. 2

Cluster analysis of 6A chromosome location interval of 106 wheat varieties (lines)"

Fig. 3

Cluster analysis of 6B chromosome location interval of 106 wheat varieties (lines)"

Fig. 4

Significance test chart of 479 wheat varieties (KASP_IWA34)20LY: 20Luoyang; 20YL: 20Yangling; 20XC: 20Xuchang"

Fig. 5

SNP clustering of dominant wheat varieties in Shaanxi, Henan and Shandong wheat regions"

[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 107-114.
doi: 10.3923/ja.2009.107.112
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. China's wheat industry development and technological progress. Journal of Agronomy, 2018, 8(1): 107-114. (in Chinese)
doi: 10.3923/ja.2009.107.112
[2] BAILEY-SERRES J, PARKER J E, AINSWORTH E A, OLDROYD G, SCHROEDER J I. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109-118.
doi: 10.1038/s41586-019-1679-0
[3] 贾继增, 高丽锋, 赵光耀, 周文斌, 张卫健. 作物基因组学与作物科学革命. 中国农业科学, 2015, 48(17): 3316-3332.
JIA J Z, GAO L F, ZHAO G Y, ZHOU W B, ZHANG W J. Crop genomics and crop science revolution. Chinese Agricultural Sciences, 2015, 48(17): 3316-3332. (in Chinese)
[4] BROCKLEHURST P. Factors controlling grain weight in wheat. Nature, 1977, 24(5600): 348-349.
[5] CUI F, ZHAO C H, DING A M, LI J, WANG L, LI X F, BAO Y G, LI J M, WANG H G. Wheat kernel dimensions: How do they contribute to kernel weight at an individual qtl level? Journal of Genetics, 2011, 90(3): 409-425.
doi: 10.1007/s12041-011-0103-9
[6] CUI F, DING A M, LI J, ZHAO C H, LI X F, FENG D, WANG X, WANG L, GAO J, WANG H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 2014, 127(3): 659-675.
doi: 10.1007/s00122-013-2249-8
[7] ZANKE C D, JIE L, JÖRG P, SONJA K, ERHARD E, VIKTOR K, ODILE A, GUNTHER S, MAIKE H, FELIX N. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Frontiers in Plant Science, 2015, 6: 644.
[8] MIR R R, KUMAR N, JAISWAL V, GIRDHARWAL N, PRASAD M, BALYAN H S, GUPTA P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 2012, 29(4): 963-972.
doi: 10.1007/s11032-011-9693-4
[9] WANG L F, GE H M, HAO C Y, DONG Y S, ZHANG X Y, HUDSON M E. Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE, 2012, 7(2): e29432.
doi: 10.1371/journal.pone.0029432
[10] LI F J, WEN W E, HE Z H, LIU J D, JIN H, CAO S H, GENG H W, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018, 131(9): 1903-1924.
doi: 10.1007/s00122-018-3122-6
[11] HOU J, JIANG Q, HAO C, WANG Y, ZHANG H, ZHANG X. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology, 2014, 164(4): 1918-1929.
doi: 10.1104/pp.113.232454
[12] ZHANG Y, LIU J, XIA X, HE Z. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014, 34(3): 1097-1106.
doi: 10.1007/s11032-014-0102-7
[13] MA D, YAN J, HE Z, LING W, XIA X. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2010, 29(1): 43-52.
doi: 10.1007/s11032-010-9524-z
[14] ZHANG L, ZHAO Y L, GAO L F, ZHAO G Y, ZHOU R H, ZHANG B S, JIA J Z. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytologist, 2012, 195(3): 574-584.
doi: 10.1111/j.1469-8137.2012.04194.x
[15] SU Z, HAO C, WANG L, DONG Y, ZHANG X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122(1): 211-223.
doi: 10.1007/s00122-010-1437-z
[16] YANG Z, BAI Z, LI X, WANG P, WU Q, YANG L, LI L, LI X. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theoretical and Applied Genetics, 2012, 125(5): 1057-1068.
doi: 10.1007/s00122-012-1895-6
[17] 寇程, 高欣, 李立群, 李扬, 王中华, 李学军. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择. 作物学报, 2015, 41(11): 1640-1647.
doi: 10.3724/SP.J.1006.2015.01640
KOU C, GAO X, LI L Q, LI Y, WANG Z H, LI X J. Composition and selection of TaGW2-6A alleles for wheat kernel weight. Acta Agronomica Sinica, 2015, 41(11): 1640-1647. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01640
[18] 王瑞, 张改生, 王宏, ZELLER F J, HSAM S L K. 一些小麦1b/1r易位系品质基因多样性分析. 西北农业学报, 2007, 16(1): 103-106.
WANG R, ZHANG G S, WANG H, ZELLER F J, HSAM S L K. Analysis of quality gene diversity of some wheat 1b/1r translocation lines. Northwest Agricultural Journal, 2007, 16(1): 103-106. (in Chinese)
[19] 唐建卫, 殷贵鸿, 高艳, 王丽娜, 韩玉林, 黄峰, 于海飞, 杨光宇, 李新平. 小麦骨干亲本周8425B及其衍生品种(系)的农艺性状和加工品质综合分析. 麦类作物学报, 2015, 35(6): 777-784.
TANG J W, YIN G H, GAO Y, WANG L N, HAN Y L, HUANG F, YU H F, YANG G Y, LI X P. Comprehensive analysis on agronomic traits and processing quality of core parent Zhou 8425 band its derivatives. Journal of Triticeae Crops, 2015, 35(6): 777-784. (in Chinese)
[20] 武炳瑾, 简俊涛, 张德强, 马文洁, 冯洁, 崔紫霞, 张传量, 孙道杰. 利用90K芯片技术进行小麦穗部性状QTL定位. 作物学报, 2017, 43(7): 1087-1095.
doi: 10.3724/SP.J.1006.2017.01087
WU B J, JIAN J T, ZHANG D Q, MA W J, FENG J, CUI Z X, ZHANG C L, SUN D J. QTL Mapping for spike traits of wheat using 90K chip technology. Acta Agronomica Sinica, 2017, 43(7): 1087-1095. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01087
[21] 简俊涛, 王清华, 杨辉. 周8425B与小偃81的RIL品质, 物候型及农艺性状分析. 中国种业, 2020, 11: 76-80.
JIAN J T, WANG Q H, YANG H. Analysis of RIL quality, phenological type and agronomic traits of Zhou8425B and Xiaoyan81. China Seed Industry, 2020, 11: 76-80. (in Chinese)
[22] 武炳瑾. 小麦骨干亲本周8425B穗部性状及株高的QTL定位[D]. 杨凌: 西北农林科技大学, 2017.
WU B J. QTL mapping of panicle and plant height of wheat backbone parent Zhou 8425B[D]. Yangling: Northwestern Agriculture and Forestry University, 2017. (in Chinese)
[23] 李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LI L H, LI X Q. Description Specification and Data Standard of Wheat Germplasm Resources. Beijing: China Agriculture Press, 2006. (in Chinese)
[24] WANG S. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12(6): 787-796.
doi: 10.1111/pbi.12183
[25] MA J, DING P, LIU J, LI T, LAN X. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theoretical and Applied Genetics, 2019, 132(11): 3155-3167.
doi: 10.1007/s00122-019-03415-z
[26] 王志伟, 王志龙, 乔祥梅, 杨金华, 程加省, 程耿. 云南小麦品种(系)株高和千粒重相关功能基因的KASP标记检测. 种子, 2020, 39(3): 1-6.
WANG Z W, WANG Z L, QIAO X M, YANG J H, CHENG J S, CHENG G. KASP marker detection of functional genes related to plant height and grain weight in Yunnan wheat varieties (lines). Seed, 2020, 39(3):1-6. (in Chinese)
[27] 王建康, 盖钧镒. 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997. 24(5): 432-440.
WANG J K, GAI J Y. Identification of a major gene-polygene mixed genetic model for quantitative traits and estimation of its genetic effects using hybrid F2 generations. Acta Genetics Sinica, 1997, 24(5): 432-440. (in Chinese)
[28] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35(2): 239-245.
doi: 10.3724/SP.J.1006.2009.00239
WANG J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica, 2009, 35(2): 239-245. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00239
[29] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931.
doi: 10.3724/SP.J.1006.2010.00918
LI H H, ZHANG L Y, WANG J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010, 36(6): 918-931. (In Chinese)
doi: 10.3724/SP.J.1006.2010.00918
[30] LIU S J, HUANG S, ZENG Q D, WANG X T, HAN D J. Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A. Theoretical and Applied Genetics, 2021, 134(7): 2005-2021.
doi: 10.1007/s00122-021-03801-6
[31] WU Q H, CHEN Y X, ZHOU S H, FU L, CHEN J J, XIAO Y, ZHANG D, OUYANG S H, ZHAO X J, CUI Y, ZHANG D Y, LIANG Y, WANG Z Z, XIE J Z, QIN J X, WANG G X, LI D L, HUANG Y L, YU M H, LU P. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817×Beinong6. PLoS ONE, 2015, 10(2): e0118144.
doi: 10.1371/journal.pone.0118144
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!