Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 513-526.doi: 10.3864/j.issn.0578-1752.2020.03.005


Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings

GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang(),GUO PingYi   

  1. College of Agronomy, Shanxi Agricultural University/Laboratory of Crop Chemical Regulation and Chemical Weed Control, Taigu 030801, Shanxi
  • Received:2019-06-06 Accepted:2019-07-23 Online:2020-02-01 Published:2020-02-13
  • Contact: XiangYang YUAN


【Objective】The objective of the experiment was to investigate the effect of MCPA on the senescence characteristics of leaves and contents of endogenous hormones in leaves of foxtail millet, and explore the physiological response of foxtail millet seedlings to MCPA stress, which provided a theoretical basis for the mechanism of herbicide resistance and the safe use of herbicide during cultivation.【Method】A pot-grown experiment was conducted with Jingu 21 and Zhangza10 as materials with four dosages (0.75, 1.50, 3.00, 6.00 kg·hm -2) of MCPA. After treatment for the 5 d and 15 d, the plant height, leaf area, chlorophyll content, photosynthetic parameters, chlorophyll fluorescence parameters, malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activity and endogenous hormone content of foxtail millet were determined. In addition, the correlation between endogenous hormone content and photosynthetic characteristics and antioxidant enzyme activity under MCPA stress were analyzed.【Result】Compared with the control, the chlorophyll content, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), PSⅡ maximum photochemical efficiency (Fv/Fm), and electron transfer rate (ETR) in foxtail millet leaves were decreased with different MCPA dosages treatment; however, the change tendency of non - photochemical quenching (NPQ) is opposite. In addition, the effect of MCPA on the photosynthetic characteristics of foxtail millet gradually decreased with the extension of application time, which showed that most indexes could be restored to the control level after MCPA treatment 15 d. At the same time, SOD, POD, CAT activity and MDA content of foxtail millet leaves were increased with MCPA treatment at different dosages, which showed the trend of increasing first and then decreasing with the extension of application time. MCPA treatment increased abscisic acid (ABA) and auxin (IAA) content in foxtail millet leaves and decreased gibberellin (GA) and zeatin (Zt) content in foxtail millet leaves. ABA content was significantly negatively correlated with chlorophyll content, Pn, Fo and ETR, and significantly negatively correlated with Gs. Except NPQ, Zt content was significantly positively correlated with chlorophyll content and ETR, and significantly positively correlated with Fo. Correlation analysis showed that ABA content was significantly correlated with the activity of SOD and POD. IAA content was positively correlated with CAT. GA content was significantly correlated with POD activity.【Conclusion】 After MCPA treatment, Zt content was increased and ABA content was decreased in foxtail millet leaves. On the one hand, MCPA affected photosynthetic rate, photoelectron transfer and other photosynthetic physiological processes; while, MCPA regulated endogenous hormone contents including IAA, GA and ABA, which further influence the activity of SOD, POD and CAT and eventually leaded to enhance the tolerance to herbicide stress.

Key words: foxtail millet (Setaria italica L.), MCPA, antioxidant enzyme, photosynthetic characteristics, endogenous hormone

Table 1

Effect of MCPA on agronomic characters of foxtail millet"

Effective dosage (kg·hm-2)
株高 Plant height (cm) 叶面积 Leaf area (cm2)
5 DAT 15 DAT 5 DAT 15 DAT
Jingu 21
0 29.25±0.84a 30.95±0.14a 8.56±0.21a 12.39±0.10a
0.75 26.65±0.26b 28.55±0.09b 7.51±0.12b 8.27±0.20b
1.50 24.45±0.32c 26.30±0.06c 7.25±0.06b 8.19±0.06b
3.00 24.25±0.09c 25.70±0.58c 6.44±0.03c 7.72±0.18c
6.00 22.15±0.49d 25.25±0.66c 4.44±0.05d 6.90±0.41d
Zhangza 10
0 31.00±0.58a 32.87±0.37a 14.91±0.51a 15.41±1.30a
0.75 30.43±0.34a 31.97±0.73a 12.86±0.38b 14.24±0.21a
1.50 25.93±0.86b 28.50±1.04b 11.05±0.43c 11.50±0.33b
3.00 25.73±0.37b 27.20±0.20b 9.41±0.34d 10.07±0.07b
6.00 23.00±0.29c 24.33±0.17c 8.39±0.09d 9.43±0.62b

Table 2

Comparison of the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and malonaldehyde (MDA) contents of foxtail millet leaves among treatments"

Effective dosage (kg·hm-2)
SOD activity
(U·min-1·g-1 FW)
POD activity
(μmol·min-1·g-1 FW)
CAT activity
(U·min-1·g-1 FW)
MDA content
(nmol·g-1 FW)
Jingu 21
5 DAT 0 71.67±2.79d 223.96±7.24c 54.62±0.81d 10.73±0.33e
0.75 189.42±8.34c 225.08±11.27c 66.71±0.80c 16.94±0.13d
1.50 247.32±7.30b 226.14±0.23c 68.43±0.42bc 18.52±0.00c
3.00 319.68±3.09a 284.43±1.29b 70.27±0.64b 29.02±0.19b
6.00 317.72±5.03a 367.47±3.76a 80.29±1.48a 34.32±0.26a
15 DAT 0 95.80±1.69c 25.13±0.81e 52.51±1.00b 10.16±0.39c
0.75 95.80±1.69c 61.75±1.73d 53.05±0.26b 10.16±0.39c
1.50 104.06±1.75c 76.52±1.54c 64.31±2.38a 11.97±0.39b
3.00 171.43±6.60b 121.20±0.64a 64.65±0.54a 16.26±0.04a
6.00 292.85±6.58a 112.09±1.77b 66.44±0.43a 16.94±0.48a
Zhangza 10
5 DAT 0 94.01±0.61d 71.43±5.37d 45.77±1.77d 15.71±0.01c
0.75 123.96±0.01c 74.20±2.48d 48.12±1.15cd 21.99±0.77b
1.50 125.38±7.72c 113.24±0.20c 53.29±0.95bc 22.21±1.25b
3.00 143.19±0.77b 141.06±0.61b 56.13±1.19ab 25.39±0.36a
6.00 156.78±2.05a 218.56±0.05a 61.26±3.15a 25.66±0.49a
15 DAT 0 83.56±2.71d 28.71±0.13e 41.78±0.53d 14.90±0.33b
0.75 88.43±0.27d 83.56±0.95d 43.33±0.73cd 15.70±1.02ab
1.50 102.22±0.98c 88.98±0.52c 44.76±0.37c 16.40±0.34ab
3.00 124.70±0.94b 103.26±1.52b 48.29±0.11b 17.21±1.18ab
6.00 159.30±0.04a 167.78±0.42a 53.02±0.20a 18.70±0.83a

Fig. 1

Effect of MCPA application on foxtail millet seedling A, B: Jingu 21; C, D: Zhangza 10"

Table 3

Effects of MCPA on chlorophyll content and photosynthetic parameters in foxtail millet leaves"

Effective dosage (kg·hm-2)
Chlorophyll content (mg·g-1FM)
Net photosynthetic rate (μmol·(CO2) m-2·g-1)
Transpiration rate (μmol·(H2O) m-2·g-1)
Stomatal conductance (mmol·(H2O) m-2·g-1)
Jingu 21
5 DAT 0 1.31±0.01a 16.56±0.23a 2.96±0.09a 83.45±2.06a
0.75 0.82±0.06b 14.32±0.04b 2.91±0.24ab 82.74±4.53a
1.50 0.63±0.01c 14.07±0.42b 2.38±0.18bc 74.31±4.04ab
3.00 0.60±0.05c 12.86±0.71bc 2.31±0.10c 72.04±5.10ab
6.00 0.29±0.01d 12.00±0.43c 2.20±0.07c 62.43±1.19b
15 DAT 0 1.42±0.03a 28.19±1.54a 4.49±0.17a 110.39±4.01a
0.75 1.04±0.03b 25.07±0.24ab 4.29±0.07a 107.36±3.10ab
1.50 0.66±0.00c 24.85±0.49ab 4.07±0.52a 99.74±3.79b
3.00 0.60±0.01d 22.94±1.33bc 3.97±0.37a 97.90±4.21b
6.00 0.26±0.00e 20.58±1.16c 3.64±0.38a 87.23±2.21c
Zhangza 10
5 DAT 0 1.24±0.02a 16.47±0.32a 5.11±0.09a 92.12±2.80a
0.75 1.05±0.01b 15.86±0.29ab 5.11±0.43a 84.92±2.93ab
1.50 0.99±0.03c 14.29±1.09bc 4.95±0.23a 75.58±2.63bc
3.00 0.83±0.01d 12.92±0.25c 4.44±0.31a 73.98±4.67c
6.00 0.69±0.01e 12.60±0.49c 4.42±0.35a 71.41±1.91c
15 DAT 0 1.70±0.01a 30.02±1.22a 5.34±0.12a 133.62±3.85a
0.75 1.16±0.02b 23.71±1.43b 5.31±0.31a 130.18±0.68a
1.50 0.95±0.01c 23.21±0.60b 4.84±0.40ab 126.09±1.84a
3.00 0.72±0.01d 21.11±0.45bc 4.50±0.34bc 107.07±0.77b
6.00 0.63±0.02e 19.70±0.51c 3.92±0.18c 100.56±0.90b

Fig. 2

Effects of MCPA on chlorophyll fluorescence in ‘Jingu 21’ foxtail millet leaves"

Fig. 3

Effects of MCPA on chlorophyll fluorescence in ‘Zhangza 10’ foxtail millet leaves"

Table 4

Effects of MCPA on endogenous hormone content in foxtail millet leaves"

Effective dosage (kg·hm-2)
Auxin (ng·g-1 FM)
Gibberellin (ng·g-1 FM)
Zeatin (ng·g-1 FM)
Abscisic acid (ng·g-1 FM)
Jingu 21
5 DAT 0 45.77±1.37b 8.14±0.08a 9.60±0.23a 55.28±0.73d
0.75 48.44±0.49ab 8.35±0.10a 8.82±0.09b 55.88±1.11d
1.50 49.00±1.46ab 8.38±0.15a 7.80±0.09c 66.73±0.87c
3.00 50.16±1.07a 7.84±0.24b 7.88±0.08c 73.62±1.08b
6.00 48.89±0.45ab 7.10±0.10c 7.49±0.11c 78.19±1.20a
15 DAT 0 38.25±0.61d 6.99±0.14b 9.57±0.15a 45.41±0.51c
0.75 38.28±0.58d 6.28±0.05c 8.79±0.14b 54.39±0.37b
1.50 52.99±0.57b 5.68±0.06d 8.62±0.08b 60.27±1.43a
3.00 75.32±1.05a 7.67±0.17a 8.08±0.07c 61.05±1.21a
6.00 43.84±0.40c 5.64±0.14d 7.14±0.10d 63.57±1.34a
Zhangza 10
5 DAT 0 40.79±0.17c 7.54±0.20a 9.63±0.09a 60.04±1.43e
0.75 47.93±0.47b 7.33±0.15ab 8.19±0.12b 64.88±1.09d
1.50 48.91±0.95b 6.90±0.15bc 7.45±0.14c 73.23±0.97c
3.00 53.36±0.67a 6.81±0.07bc 7.22±0.10c 76.95±1.19b
6.00 49.80±0.49b 6.57±0.14c 5.81±5.18d 81.53±1.01a
15 DAT 0 31.72±0.43d 6.41±0.17a 9.57±0.10a 49.42±0.72e
0.75 35.58±0.26c 6.39±0.12a 9.07±0.10b 61.56±1.27d
1.50 47.53±0.70b 6.14±0.13ab 8.02±0.11c 69.84±0.60c
3.00 50.95±0.28a 5.81±0.10bc 8.34±0.15c 74.07±1.03b
6.00 48.66±0.33b 5.49±0.04c 4.46±0.10d 80.56±1.36a

Table 5

Relationship between hormone contents and photosynthetic parameters in foxtail millet"

生长素IAA -0.58** -0.32 -0.3 -0.41 -0.34 -0.31 -0.42 0.22
赤霉素GA 0.12 -0.49* -0.48* -0.50* 0.05 0 0.16 0.04
玉米素Zt 0.64** 0.41 0.17 0.33 0.52* 0.42 0.61** -0.61**
脱落酸ABA -0.64** -0.65** -0.19 -0.46* -0.71** -0.35 -0.74** 0.87**

Fig. 4

Relationship between the activity of SOD and the hormone concentrations in foxtail millet leaves"

Fig. 5

Relationship between the activity of POD and the hormone concentrations in foxtail millet leaves"

Fig. 6

Relationship between the activity of CAT and the hormone concentrations in foxtail millet leaves"

[1] SCENCZUK W, POGORZELSKA H . Chemical structure and toxicodynamic properties of derivatives of phenoxy carboxylic acid. Roczniki Panstwowego Zakladu Higieny, 1981,31(4):373-377.
[2] 宋喜娥, 王宏富, 郭平毅, 姚满生, 来改英 . 几种不同茎叶处理除草剂对谷子的安全性研究. 山西农业科学, 2010,38(4):65-67, 96.
SONG X E, WANG H F, GUO P Y, YAO M S, LAI G Y . Safety to millet by herbicide treatments during seedling stage. Journal of Shanxi Agricultural Science, 2010,38(4):65-67, 96. (in Chinese)
[3] 刘瑞芳, 刘金荣, 王素英, 宋中强, 路志国, 闫宏山, 刘海萍 . 苯磺隆、2甲4氯防除谷田杂草的药害与增产效果. 杂草科学, 2010,1:59-60.
LIU R F, LIU J R, WANG S Y, SONG Z Q, LU Z G, YAN H S, LIU H P . Effects of Tribenuron-methly and MCPA on weed control and yield in foxtail millet. Journal of Weed Science, 2010,1:59-60. (in Chinese)
[4] 曹晓宁, 王君杰, 刘思辰, 陈凌, 王海岗, 田翔, 乔治军 . 二甲四氯钠不同用量对谷子田间杂草的防除效果. 山西农业科学, 2016,44(8):1172-1174, 1191.
CAO X N, WANG J J, LIU S C, CHEN L, WANG H G, TIAN X, QIAO Z J . Control effect of different dosage of MCPA-Na on field weeds of foxtail millet. Journal of Shanxi Agricultural Sciences, 2016,44(8):1172-1174, 1191. (in Chinese)
[5] 刘阳, 郭平毅, 原向阳, 高贞攀, 王斌强, 宋惠洁, 黄蕾, 余凯凯 . 叶面喷施二甲四氯对‘张杂谷10号’光合特性及产量构成的影响. 西北农业学报, 2016,25(9):1311-1318.
LIU Y, GUO P Y, YUAN X Y, GAO Z P, WANG B Q, SONG H J, HUANG L, YU K K . Effects of foliar application of MCPA on photosynthetic characteristics and yield of ‘Zhangzagu 10’. Acta Agriculturae Boreali-occidentalis Sinica, 2016,25(9):1311-1318. (in Chinese)
[6] 王正贵, 周立云, 郭文善, 朱新开, 李春燕, 彭永欣, 封超年 . 除草剂对小麦光合特性及叶绿素荧光参数的影响. 农业环境科学学报, 2011,30(6):1037-1043.
WANG Z G, ZHOU L Y, GUO W S, ZHU X K, LI C Y, PENG Y X, FENG C N . Effects of herbicides on photosynthesis and chlorophyll fluroxypyr parameters in wheat leaves. Journal of Agro-Environment Science, 2011,30(6):1037-1043. (in Chinese)
[7] 薛思嘉, 杨再强, 朱丽云, 李军 . 黄瓜花期高温胁迫对叶片衰老特性和内源激素的影响. 生态学杂志, 2018,37(2):409-416.
XUE S J, YANG Z Q, ZHU L Y, LI J . Effects of high temperature stress on senescence and endogenous hormone of cucumber during flowering period. Chinese Journal of Ecology, 2018,37(2):409-416. (in Chinese)
[8] PELEG Z, BLUMWALD E . Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 2011,14(3):290-295.
[9] 杨东清, 董文华, 骆永丽, 宋文挺, 蔡铁, 李勇, 尹燕枰, 王振林 . 外源6-BA对两种氮素水平下小麦幼苗叶片光合性能及内源激素含量的影响. 中国农业科学, 2017,50(20):3871-3884.
YANG D Q, DONG W H, LUO Y L, SONG W T, CAI T, LI Y, YIN Y P, WANG Z L . Effects of exogenous 6-BA on photosynthetic characteristics and endogenous hormone content in wheat leaves under two nitrogen application levels at seedling stage. Scientia Agricultura Sinica, 2017,50(20):3871-3884. (in Chinese)
[10] KLAUS G . Auxin herbicides: Current status of mechanism and mode of action. Pest Management Science, 2010,66(2):113-120.
[11] MANSOUR F A, BADAWAY A M, NEMAT A M . Comparative effects of alachlor-metolachlor-atrazine-fluometuron and trifluralin on the endogenous phytohormones in maize and soybean. Agrochimica, 1994,38(2):118-131.
[12] LOCHER R, PILET P E . Trifluralin uptake and its effect on ABA content in growing maize and pea roots. Journal of Plant Physiology, 1995,146(4):569-571.
[13] LI X Y, TONG W, HUANG H L . Atrazine accumulation and toxic responses in maize (Zea mays). Journal of Environmental Sciences, 2012,24(2):203-208.
[14] 陶波, 向文胜, 王萍, 苏少泉 . 作保灵(TNA)对水稻的保护作用及作用机理研究. 农药学学报, 2000,2(1):53-57.
TAO B, XIANG W S, WANG P, SU S Q . Protective action and mechanism of TNA on rice. Chinese Journal of Pesticide Science, 2000,2(1):53-57. (in Chinese)
[15] 周宇飞, 王德权, 陆樟镳, 王娜, 王艺陶, 李丰先, 许文娟, 黄瑞冬 . 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响. 中国农业科学, 2014,47(4):655-663.
ZHOU Y F, WANG D Q, LU Z B, WANG N, WANG Y T, LI F X, XU W J, HUANG R D . Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum. Scientia Agricultura Sinica, 2014,47(4):655-663. (in Chinese)
[16] BEAUCHAMP C, FRIDOVICH I . Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971,44(1):276-287.
[17] CASTILLO F I, PENEL I, GREPPIN H . Peroxidase release induced by ozone in Sedum album leaves: Involvement of Ca 2+ . Plant Physiology, 1984,74(4):846-851.
[18] AEOBI H. CATALASE//BERGMEYER H U. Methods of Enzymatic Analysis. Weinheim, Germany: Verlag Chemie/Academic Press, 1974: 673-680.
[19] GUO M J, WANG Y G, YUAN X Y, DONG S Q, WEN Y Y, SONG X E, GUO P Y . Responses of the antioxidant system to fluroxypyr in foxtail millet (Setaria italic L.) at the seedling stage. Journal of Integrative Agriculture, 2018,17(3):554-565.
[20] ZHAO J, LI G, YI G X, WANG B M, DENG A X, NAN T G, LI Z H, LI Q X . Comparison between conventional in direct competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Analytica Chimica Acta, 2006,571(1):79-85.
[21] 晁雷, 周启星, 陈苏, 崔爽 . 乙草胺对小麦生理机能的影响与生物标记物识别. 环境科学, 2007,28(4):4866-4871.
CHAO L, ZHOU Q X, CHEN S, CUI S . Effects of herbicide acetochlor on physiological mechanisms in wheat and biomarkers identification. Environmental Science, 2007,28(4):4866-4871. (in Chinese)
[22] 温银元, 郭平毅, 尹美强, 闫晗, 王玉国 . 扑草净对远志幼苗根系活力及氧化胁迫的影响. 生态学报, 2012,32(8):2506-2514.
WEN Y Y, GUO P Y, YIN M Q, YAN H, WANG Y G . Effect of prometryne on root activity and oxidative stress of Polygala tenuifolia Willd. seedling roots. Acta Ecologica Sinica, 2012,32(8):2506-2514. (in Chinese)
[23] 王国骄, 王嘉宇, 马殿荣, 苗微, 赵明辉, 陈温福 . 不同耐冷性杂草稻和栽培稻抗氧化系统对冷水胁迫的响应. 中国农业科学, 2015,48(8):1660-1668.
WANG G J, WANG J Y, MA D R, MIAO W, ZHAO M H, CHEN W F . Responses of antioxidant system to cold water stress in weedy and cultivated rice with different chilling sensitivity. Scientis Agricultura Sinica, 2015,48(8):1660-1668. (in Chinese)
[24] ELDEEN D M R . Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pesticide Biochemistry and Physiology, 2012,102(2):182-188.
[25] KARUPPANAPANDIAN T, WANG H W, PRABAKARAN N . 2, 4- dichlorophen-oxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with Sliver nanoparticles. Plant Physiology and Biochemistry, 2011,49(2):168-177.
[26] GUO M J, WANG Y G, DONG S Q, WEN Y Y, SONG X E, GUO P Y . Photochemical changes and oxidative damage in four foxtail millet varieties following exposure to sethoxydim. Photosynthetica, 2018,56(3):820-831.
[27] 卢从明, 张其德, 匡廷云 . 水分胁迫对小麦光系统Ⅱ的影响. 植物学报, 1994,36(2):93-98.
LU C M, ZHANG Q D, KUANG T Y . The effects of water stress on photosystem II in wheat. Acta Botanica Sincia, 1994,36(2):93-98. (in Chinese)
[28] 葛江丽, 石雷, 谷卫彬, 唐宇丹, 张金政, 姜闯道, 任大明 . 盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节. 作物学报, 2007,33(8):1272-1278.
GE J L, SHI L, GU W B, TANG Y D, ZHANG J Z, JIANG C D, REN D M . Photosynthetic characteristics and the regulation of photosystem II function in salt-stressed sweet sorghum seedlings. Acta Agronomica Sinica, 2007,33(8):1272-1278. (in Chinese)
[29] DODD I C . Hormonal interactions and stomatal responses. Journal of Plant Growth Regulation, 2003,22(1):32-46.
[30] YUAN S Z, YUAN S, ZHOU W Y . Effects of ethametsulfuron on protective enzymes and endogenous hormones of rice seedling. Agricultural Science & Technology, 2012,13(1):173-176.
[31] 梁建生, 张建华 . 根系逆境信号ABA的产生和运输及其生理作用. 植物生理学通讯, 1998,5:329-338.
LIANG J S, ZHANG J H . Production, transport and physiological functions of stress signal abscisic acid in roots. Plant Physiology Communications, 1998,5:329-338. (in Chinese)
[32] 魏道智, 宁书菊 . 玉米素、脱落酸处理对小麦叶片光合性能的影响. 华北农学报, 2002,17(S1):23-28.
WEI D Z, NING S J . Effects of hormone treatment on photosynthetic function of wheat leaf. Acta Agriculturae Boreali-Sinica, 2002,17(S1):23-28. (in Chinese)
[33] 杨建昌, 乔纳圣·威尔斯, 朱庆森, 彭智勇. 水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响. 作物学报, 1995,21(5):533-539.
YANG J C, JONATHAN WEYERS, ZHU Q S, PENG Z Y . Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves. Acta Agronomica Sinica, 1995,21(5):533-539. (in Chinese)
[34] 刘瑞显, 郭文琦, 陈兵林, 周治国 . 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响. 作物学报, 2008,34(9):1598-1607.
LIU R X, GUO W Q, CHEN B L, ZHOU Z G . Effects of nitrogen on the antioxidant enzyme activities and endogenous hormone contents of cotton leaf under drought stress and after soil re-watering during the flowering and boll-forming stage. Acta Agronomica Sinica, 2008,34(9):1598-1607. (in Chinese)
[35] WANG Y Y, ZHOU R, ZHOU X . Endogenous levels of ABA and cytokinins and their relation to stomatal behavior in dayflower (Commelina communis L.). Journal of Plant Physiology, 1994,144(1):45-48.
[36] 魏道智, 江力, 张荣铣, 宁书菊 . ABA和ZT对小麦叶细胞质膜某些生理特性的影响. 西北植物学报, 2002,22(6):80-84.
WEI D Z, JIANG L, ZHANG R X, NING S J . Effects of ABA and ZT on some physiological characteristics of cell membrane in wheat leaf. Acta Botanica Boreali-Occidentalia Sinica, 2002,22(6):80-84. (in Chinese)
[37] WARD J M, PEI Z M, SCHROEDER J I . Role of ion channels in initiation of signal transduction in high plants. The Plant Cell, 1995,7(7):833-844.
[38] ZHANG X H, LIU Y H, LIU Q, ZONG B, YUAN X P, SUN H E, WANG J, ZANG L, MA Z Z, LIU H M, HE S B, CHU X T, XU Y F . Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress. Environmental and Experimental Botany, 2018,155:226-238.
[1] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[2] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[3] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[4] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[5] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[6] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[7] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[10] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[11] CHENG Bin,LIU WeiGuo,WANG Li,XU Mei,QIN SiSi,LU JunJi,GAO Yang,LI ShuXian,Ali RAZA,ZHANG Yi,Irshan AHMAD,JING ShuZhong,LIU RanJin,YANG WenYu. Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096.
[12] YU WeiZhen,ZHANG XiaoChi,HU Juan,SHAO JingYi,LIU Peng,ZHAO Bin,REN BaiZhao. Combined Effects of Shade and Waterlogging on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846.
[13] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[14] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[15] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
Full text



No Suggested Reading articles found!