Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 12-25.doi: 10.3864/j.issn.0578-1752.2022.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time

MA ShuanHong1(),WAN Jiong1,LIANG RuiQing2,ZHANG XueHai1,QIU XiaoQian1,MENG ShuJun1,XU NingKun1,LIN Yuan1,DANG KunTai1,WANG QiYue1,ZHAO JiaWen1,DING Dong1(),TANG JiHua1()   

  1. 1College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
    2College of Agronomy, South China Agricultural University, Guangzhou 510642
  • Received:2021-07-07 Accepted:2021-09-03 Online:2022-01-01 Published:2022-01-07
  • Contact: Dong DING,JiHua TANG E-mail:18838916904@163.com;dingdong0216@hotmail.com;tangjihua1@163.com

Abstract:

【Objective】 Maize growth period traits, including flowering time, are the ones of most important in maize breeding. The advancement of heading date, silking time, and the pollen shed can ensure maize kernels fully dehydrated and thus suited to machinery harvesting. Moreover, the saved time can also leave for wheat sowing under the Maize-Wheat farming mode in Huang-Huai-Hai area. Transcription factors are important up-stream trans-action factors of gene expression regulation, which play roles in transcriptional activation or inhibition on target genes by binding to and driving their promoters. It is of great significance to analyze the regulatory effects of transcription factors on maize flowering time at the whole genome scale, it is also emergence to obtain the maize transcription factor haplotypes which associated with earlier flowering and higher yield. The haplotypes, or the haplotype combinations, will be served as excellent germplasm resources for maize breeding. 【Method】 In this study, candidate gene association analysis was performed to analyze maize flowering time related transcription factors and significant SNPs. DAP-seq was carried out to obtain the binding sites and down-stream genes of the key transcription factors. Followed by GO analysis on the down-stream genes to explore the transcription factor dependent gene expression regulatory network. 【Result】 There are 75, 75, and 128 significant SNPs detected in combinations of the traits Silking time and Heading date, the traits Silking time and Pollen shed, and the traits Heading date and Pollen shed, respectively. Altogether, there are 58 significant SNPs associated with all three flowering time traits. These results suggest that the three traits of flowering time may be regulated by the same transcription factors. Flowering time associated transcription factor genes that containing 3 or more significant SNPs were selected for DAP-seq to capture the key motifs and down-stream genes. Down-stream genes bound by flowering time associated transcription factors are significantly enriched in transcription factor activity, DNA binding, RNA binding, organonitrogen compound metabolic process, reproduction-related developmental processes, etc. Different transcription factors have co-regulated downstream genes related to flowering time. The key regulatory transcription factors for flowering time traits are ARF, MYB and NAC. Through haplotype analysis, the optimal TF haplotype combination that shows earlier flowering and no negative impact on yield was selected. 【Conclusion】 In this research, through candidate gene association and DAP-seq, the regulatory network of transcription factors on the flowering time related agronomic traits were established at the whole genome scale. The optimal haplotype combination of transcription factors that not only advances the flowering time, but also has no negative impact on yield was selected for further use in maize breeding.

Key words: maize, transcription factor, flowering time, DAP-seq, haplotype

Table 1

Statistics of significant SNPs and transcription factors with different phenotypes in flowering time"

表型
Trait
SNP数量
Number
转录因子家族
TF families
抽穗期
Heading date
206 AP2-EREBP、ARF、ARID、AUX/IAA、bHLH、bZIP、C2C2-DOF、C2C2-GATA、C2C2-YABBY、C3H、CCAAT-HAP2、coactivator-p15、DDT、G2-like、GNAT、GRAS、GRF、HB、HSF、LOB、MADS、MYB、MYB-related、NAC、NLP、OFP、Orphans、PHD、PLATZ、Rcd1-like、TCP、TRAF、Trihelix、WRKY
吐丝期
Silking time
168 ABI3VP1、AP2-EREBP、ARF、AUX/IAA、bHLH、bZIP、C2C2-GATA、C2H2、C3H、coactivator-p15、DDT、G2-like、GRAS、GRF、HB、IWS1、MADS、mTERF、MYB、MYB-related、NAC、NLP、Orphans、PHD、Rcd1-like、SNF2、TAZ、WRKY
散粉期
Pollen shed
177 AP2-EREBP、ARF、AUX/IAA、bHLH、bZIP、C2C2-DOF、C2C2-GATA、C2H2、C3H、CCAAT-HAP2、DDT、G2-like、GNAT、GRAS、HB、IWS1、MADS、MYB、MYB-related、NAC、NLP、Orphans、PHD、Rcd1-like、Trihelix、WRKY
抽穗/吐丝
Heading date/Silking time
75 AP2-EREBP、ARF、AUX/IAA、bHLH、bZIP、C2C2-GATA、coactivator-p15、DDT、G2-like、MADS、MYB、NAC、NLP、Orphans、PHD、Rcd1-like、WRKY
抽穗/散粉
Heading date/Pollen shed
125 AP2-EREBP、ARF、bHLH、bZIP、C2C2-DOF、C2C2-GATA、C3H、CCAAT-HAP2、DDT、G2-like、GNAT、HB、MYB、MYB-related、NAC、NLP、Orphans、PHD、Rcd1-like、Trihelix、WRKY
吐丝/散粉
Silking time/Pollen shed
75 AP2-EREBP、ARF、bHLH、bZIP、C2C2-GATA、C2H2、DDT、G2-like、GRAS、IWS1、MYB、NAC、NLP、Orphans、PHD、Rcd1-like、WRKY
抽穗/吐丝/散粉
Heading date/Silking time/Pollen shed
58 AP2-EREBP、ARF、bHLH、bZIP、C2C2-GATA、DDT、G2-like、MYB、NAC、NLP、Orphans、PHD、Rcd1-like、WRKY

Fig. 1

The distribution of transcription factor binding peaks in the whole genome A: Distribution of all peaks in the whole genome; B: Distribution of peaks within 2 000 bp upstream of transcription start site (TSS)"

Fig. 2

Different TFs binding motifs obtained by DAP-seq"

Fig. 3

Gene ontology (GO) analysis of DAP-seq combined with downstream genes"

Table 2

The downstream genes transcription factor binding"

基因 Gene ID 功能描述 Description 上游结合转录因子家族 Upstream binding TF families
Zm00001d017660 光周期非依赖性早花蛋白 1
Protein PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1
NAC/MYB/ARF/HB/C2C2-GATA/C2H2/WRKY/GRF/PLATZ
Zm00001d034036 多梳家族EMBRYONIC FLOWER 2蛋白
Polycomb group protein EMBRYONIC FLOWER 2
NAC/MYB/ARF
Zm00001d020364 早花蛋白4 Protein EARLY FLOWERING 4 NAC/MYB/ARF
Zm00001d047269 早花蛋白4 Protein EARLY FLOWERING 4 NAC/MYB/ARF
Zm00001d042066 糖苷水解酶家族2蛋白 Glycoside hydrolase family 2 protein bZIP/HB/MYB/ARF
Zm00001d029378 LNK1蛋白Protein LNK1 AP2-EREBP/C2C2-GATA/C2H2/G2-like/MYB/NAC
Zm00001d035112 扩张蛋白A11 Expansin-A11 AP2-EREBP/C2C2-GATA/C2H2/G2-like/
Zm00001d037315 含NAC结构域的蛋白质8 NAC domain-containing protein 8 AP2-EREBP/C2C2-GATA/C2H2/G2-like/
Zm00001d048066 Sec14p样磷脂酰肌醇转移家族蛋白
Sec14p-like phosphatidylinositol transfer family protein
AP2-EREBP/C2C2-GATA/C2H2/G2-like/ARF/NAC
Zm00001d015082 转导家族蛋白/WD-40重复序列家族蛋白
Transducing family protein/WD-40 repeat family protein
WRKY/GRF/PLATZ/NLP/MYB/NAC
Zm00001d021147 蛋白酶体亚单位β-4型 Proteasome subunit beta type-4 WRKY/GRF/PLATZ/NLP/MYB/NAC/HB
Zm00001d034832 可能的叶绿体酰基激活酶16
Probable acyl-activating enzyme 16 chloroplastic
WRKY/GRF/PLATZ/NLP/MYB
Zm00001d037377 姐妹染色单体结合蛋白PDS5同源物A
Sister chromatid cohesion protein PDS5 homolog A
WRKY/GRF/PLATZ/NLP/MYB/NAC
Zm00001d039518 真核起始因子3 Eukaryotic initiation factor3 WRKY/GRF/PLATZ/NLP/NAC/bZIP/HB/ARF
Zm00001d014895 推测的跨膜蛋白保守区(DUF2404)
Putative integral membrane protein conserved region (DUF2404)
C2H2/G2-like/WRKY/GRFARF/NAC/MYB/HB
Zm00001d029329 多嘧啶结合束蛋白同源物1
Polypyrimidine tract-binding protein homolog 1
C2H2/G2-like/WRKY/GRFNAC/MYB
Zm00001d043093 MOR1蛋白 Protein MOR1 C2H2/G2-like/WRKY/GRFARF/NAC/MYB/HB
Zm00001d044566 胼胝质合酶7 Callose synthase 7 C2H2/G2-like/WRKY/GRFNAC/MYB

Fig. 4

Haplotype analysis"

Table 3

Yield and flowering time phenotypes of different haplotype combinations of key transcription factors"

单倍型组合
Haplotype combination
表型值 Phenotypic value 份数
Number
表型值 Phenotypic value 份数
Number
表型值 Phenotypic value 份数
Number
单穗产量
Yield per ear
抽穗期
Heading date
单穗产量
Yield per ear
吐丝期
Silking time
单穗产量
Yield per ear
散粉期
Pollen shed
A1 41.66 62.29 28 40.27 67.40 22 41.66 65.30 28
B1 41.45 63.97 27 - 69.11 - 41.45 66.79 27
C1 42.76 63.35 27 44.29 68.58 10 42.43 66.29 27
A2 45.21 67.55 424 45.21 72.43 414 45.14 70.41 424
B2 45.22 67.48 425 - 72.34 - 45.22 70.34 425
C2 45.17 67.54 424 45.16 72.38 424 45.20 70.39 424
A2B2 45.30 67.64 410 - - - 45.23 70.51 409
A2C2 45.30 67.73 402 45.29 72.47 414 45.23 70.58 401
B2C2 45.37 67.74 398 - - - 45.37 70.59 398
A2B2C2 45.12 67.81 389 - - - 45.30 70.67 388
A1B1 40.20 62.77 13 - - - 40.20 65.56 13
A1C1 39.89 61.92 9 41.85 66.49 4 40.44 64.22 9
A1B2 42.93 63.29 15 - - - 44.30 67.05 11
A1C2 42.50 63.58 19 39.28 67.24 15 43.74 67.05 14
A2B1 42.61 65.09 14 - - - 42.61 67.93 14
A2C1 44.28 64.06 18 45.69 69.70 5 44.23 67.12 17
B1C1 39.88 63.38 4 38.68 65.65 5
B1C2 41.72 64.07 23 42.08 67.05 22
B2C1 43.28 63.34 23 43.28 66.25 23
A1B1C1 40.20 63.76 3 - - - 38.62 65.24 4
A1B2C1 39.73 60.99 6 - - - 39.73 63.53 6
A1B2C2 45.06 64.82 9 - - - 45.06 67.79 9
A1B1C2 40.20 62.47 10 - - - 40.90 65.71 9
A2B1C2 - - - - - - 42.90 67.98 13
A2B2C1 - - - - - - 44.61 67.20 17

Fig. 5

Different TFs binding motifs in Arabidopsis thaliana and maize"

Fig. 6

Expression regulation network of fertility traits In the figure, the solid line indicates that there has been a literature report, and the dashed line indicates that it is speculated based on the existing literature report. The black and red lines indicate different specific regulatory pathways"

[1] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52(9): 1501-1517.
ZHOU B Y, MA W, SUN X F, GAO Z H, DING Z S, LI C F, ZHAO M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Scientia Agricultura Sinica, 2019, 52(9): 1501-1517. (in Chinese)
[2] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[3] MENG C A, FAZAL F M, BLOCK S M. Real-time observation of polymerase-promoter contact remodeling during transcription initiation. Nature Communications, 2017, 8(1): 1-9.
doi: 10.1038/s41467-016-0009-6
[4] YANAGISAWA S. Transcription factors in plants: Physiological functions and regulation of expression. Journal of Plant Research, 1998, 111(3): 363-371.
doi: 10.1007/BF02507800
[5] GUO L, WANG X, ZHAO M, HUANG C, LI C, LI D, YANG C J, YORK A M, XUE W, XU G H, LIANG Y M, CHEN Q Y, DOEBLEY J F, TIAN F. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Current Biology, 2018, 28(18): 3005-3015.
doi: 10.1016/j.cub.2018.07.029
[6] HUANG C, SUN H, XU D, CHEN Q, LIANG Y M, WANG X F, XU G H, TIAN J G, WANG C L, LI D, WU L S, YANG X H, JIN W W, DOEBLEY J F, TIAN F. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the USA, 2018, 115(2): E334-E341.
[7] STEPHENSON E, ESTRADA S, MENG X, OURADA J, MUSZYNSKI M G, HABBEN J E, DANILEVSKAYAET O N. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS ONE, 2019, 14(2): e0203728.
doi: 10.1371/journal.pone.0203728
[8] LI Y, JIANG J, DU M L, LI L, WANG X L, LI X B. A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Plant and Cell Physiology, 2013, 54(6): 893-906.
doi: 10.1093/pcp/pct038
[9] SHEN X P, HU Z W, XIANG X, XU L A, CAO J S. Overexpression of a stamen-specific R2R3-MYB gene BcMF28 causes aberrant stamen development in transgenic Arabidopsis. Biochemical and Biophysical Research Communications, 2019, 518(4): 726-731.
doi: 10.1016/j.bbrc.2019.08.119
[10] AYA K, UEGUCHI-TANAKA M, KONDO M, HAMADA K, YANO K, NISHIMURA M, MATSUOKA M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell, 2009, 21(5): 1453-1472.
doi: 10.1105/tpc.108.062935
[11] RAHIM M A, RESENTINI F, DALLA VECCHIA F, TRAINOTTI L. Effects on plant growth and reproduction of a peach R2R3-MYB transcription factor overexpressed in tobacco. Frontiers in Plant Science, 2019, 10: 1143.
doi: 10.3389/fpls.2019.01143
[12] SUN B M, ZHU Z S, CHEN C J, CHEN G J, CAO B H, CHEN C M, LEI J J. Jasmonate-inducible R2R3-MYB transcription factor regulates capsaicinoid biosynthesis and stamen development in Capsicum. Journal of Agricultural and Food Chemistry, 2019, 67(39): 10891-10903.
doi: 10.1021/acs.jafc.9b04978
[13] HU R, YUAN C, NIU Y, TANG Q, WEI D, WANG Z. Regulation of plant MYB transcription factors in anther development. Chinese Journal of Biotechnology, 2020, 36(11): 2277-2286.
[14] LI S J, ZHOU X, CHEN L G, HUANG W D, YU D Q. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules and Cells, 2010, 29(5): 475-483.
doi: 10.1007/s10059-010-0059-2
[15] ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics, 1994, 244(6): 563-571.
doi: 10.1007/BF00282746
[16] ÜLKER B, SOMSSICH I E. WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7(5): 491-498.
doi: 10.1016/j.pbi.2004.07.012
[17] PANDEY S P, SOMSSICH I E. The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009, 150(4): 1648-1655.
doi: 10.1104/pp.109.138990
[18] WEI K F, CHEN J, CHEN Y F, WU L J, XIE D X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research, 2012, 19(2): 153-164.
doi: 10.1093/dnares/dsr048
[19] RUSHTON D L, TRIPATHI P, RABARA R C, LIN J, RINGLER P, BOKEN A K, LANGUM T J, SMIDT L, BOOMSMA D D, EMME N J, CHEN X F, FINER J J, SHEN Q J, RUSHTON P J. WRKY transcription factors: Key components in abscisic acid signalling. Plant Biotechnology Journal, 2012, 10(1): 2-11.
doi: 10.1111/pbi.2011.10.issue-1
[20] MA Z, LI W, WANG H, YU D Q. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age‐mediated flowering. Journal of Integrative Plant Biology, 2020, 62(11): 1659-1673.
doi: 10.1111/jipb.v62.11
[21] LI W, WANG H, YU D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular Plant, 2016, 9(11): 1492-1503.
doi: 10.1016/j.molp.2016.08.003
[22] KUMAR S V, LUCYSHYN D, JAEGER K E, ALÓS E, ALVEY E, HARBERD N P, WIGGEM P A. Transcription factor PIF4 controls the chemosensory activation of flowering. Nature, 2012, 484(7393): 242-245.
doi: 10.1038/nature10928
[23] CELESNIK H, ALI G S, ROBISON F M, REDDY A S N. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biology Open, 2013, 2(4): 424-431.
doi: 10.1242/bio.20133764
[24] PENG L T, SHI Z Y, LI L, SHENC G Z, ZHANG J L. Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. Journal of Plant Physiology, 2008, 165(8): 876-885.
doi: 10.1016/j.jplph.2007.07.010
[25] ALTER P, BIRCHENEDER S, ZHOU L Z, SCHLÜTER U, GAHRTZ M, SONNEWALD U, DRESSELHAUS T. Flowering time-regulated genes in maize include the transcription factor ZmMADS1. Plant Physiology, 2016, 172(1): 389-404.
doi: 10.1104/pp.16.00285
[26] WENG L, BAI X D, ZHAO F F, LI R, XIAO H. Manipulation of flowering time and branching by overexpression of the tomato transcription factor Sl ZFP 2. Plant Biotechnology Journal, 2016, 14(12): 2310-2321.
doi: 10.1111/pbi.2016.14.issue-12
[27] ASLAM M, JAKADA B H, FAKHER B, GREAVES J G, NIU X P, SU Z X, CHENG Y, CAO SJ, WANG X M, QIN Y. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (Ac CIB2) participates in flowering time regulation and abiotic stress response. BMC Genomics, 2020, 21(1): 1-13.
doi: 10.1186/s12864-019-6419-1
[28] O’MALLEY R C, HUANG S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER G R. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016, 165(5): 1280-1292.
doi: 10.1016/j.cell.2016.04.038
[29] BARTLETT A, O'MALLEY R C, HUANG S C, GALLI M, NERY J R, GALLAVOTTI A, ECKER J R. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols, 2017, 12(8): 1659.
doi: 10.1038/nprot.2017.055
[30] STIGLIANI A, MARTIN-AREVALILLO R, LUCAS J, BESSY A, VINOS-POYO T, MIRONOVA V, VERNOUX T, DUMAS R, PARCY F. Capturing auxin response factors syntax using DNA binding models. Molecular Plant, 2019, 12(6): 822-832.
doi: 10.1016/j.molp.2018.09.010
[31] GALLI M, KHAKHAR A, LU Z, SEN S, JOSHI T, NEMHAUSER J L, SCHMITZ R J, GALLAVOTTI A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nature Communications, 2018, 9(1): 1-14.
doi: 10.1038/s41467-017-02088-w
[32] LIANG S, GAO X X, WANG Y J, ZHANG H L, YIN K X, CHEN S L, ZHANG M, ZHAO R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochemical and Biophysical Research Communications, 2020, 526(4): 1100-1105.
doi: 10.1016/j.bbrc.2020.04.011
[33] 丁冬, 马拴红, 林源, 邱小倩, 万炯, 孟淑君, 王琪月, 张雪海, 汤继华. 玉米转录因子候选基因关联分析. 分子植物育种, 2021, 19(13): 4206-4215.
DING D, MA S H, LI Y, QIU X Q, WAN J, MENG S J, WANG Q Y, ZHANG X H, TANG J H. Candidate genes association analysis of transcription factors in maize. Molecular Plant Breeding, 2021, 19(13): 4206-4215. (in Chinese)
[34] O’ MALLEY R C, HUANG S-S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER J R, Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016. 165(5): 1280-1292.
doi: 10.1016/j.cell.2016.04.038
[35] YANG N, LIU J, GAO Q, GUI S T, CHEN L, YANG L F, HUANG J, DENG T Q, LUO J Y, HE L J, WANG Y B, XU P W, PENG Y, SHI Z X, LAN L, MA Z Y, YANG X, ZHANG Q Q, BAI M Z, LI S, LI W Q, LIU L, JACKSON D, YAN J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 2019, 51(6): 1052-1059.
doi: 10.1038/s41588-019-0427-6
[36] XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome‐wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095-1106.
doi: 10.1111/nph.2016.210.issue-3
[37] YANG N, LU Y L, YANG X H, HUANG J, ZHOU Y, ALI F, WEN W W, LIU J, LI J S, YAN J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573.
doi: 10.1371/journal.pgen.1004573
[38] HENDELMAN A, ZEBELL S, RODRIGUEZ-LEAL D, DUKLER N, ROBITAILLE G, WU X L, KOSTYUN J, TAL L, WANG P P, BARTLETT M E, ESHED Y, EFRONI I, LIPPMAN Z B. Conserved pleiotropy of an ancient planthomeobox gene uncovered by cis-regulatory dissection. Cell, 2021, 184(7): 1724-1739.
doi: 10.1016/j.cell.2021.02.001
[39] NOH Y S, AMASINO R M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. The Plant Cell, 2003, 15(7): 1671-1682.
doi: 10.1105/tpc.012161
[40] BAI S, SUNG Z R. The role of EMF1 in regulating the vegetative and reproductive transition in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 1995, 82(9): 1095-1103.
doi: 10.1002/ajb2.1995.82.issue-9
[41] YAN D W, ZHANG X M, ZHANG L, YE S H, ZENG L J, LIU J Y, LI Q, HE Z H. CURVED CHIMERIC PALEA 1 encoding an EMF 1‐like protein maintains epigenetic repression of O s MADS 58 in rice palea development. The Plant Journal, 2015, 82(1): 12-24.
doi: 10.1111/tpj.2015.82.issue-1
[42] KIM W Y, HICKS K A, SOMERS D E. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiology, 2005, 139(3): 1557-1569.
doi: 10.1104/pp.105.067173
[43] DIXON L E, KNOX K, KOZMA-BOGNAR L, SOUTHERN M M, POKHILKO A, MILLAR A J. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Current Biology, 2011, 21(2): 120-125.
doi: 10.1016/j.cub.2010.12.013
[44] KIM Y, YEOM M, KIM H, LIM J, KOO H J, HWANG D, SOMERS D, NAM H J. GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. Molecular Plant, 2012, 5(3): 678-687.
doi: 10.1093/mp/sss005
[45] ZHAO J M, HUANG X, OUYANG X H, CHEN W L, DU A P, ZHU L, WANG S G, DENG X W, LI S G. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE, 2012, 7(8): e43705.
doi: 10.1371/journal.pone.0043705
[46] ADEYEMO O S, KOLMOS E, TOHME J, CHAVARIAGA P, FREGENE M, DAVIS S J. Identification and characterization of the cassava core-clock gene EARLY FLOWERING 4. Tropical Plant Biology, 2011, 4(2): 117-125.
doi: 10.1007/s12042-011-9065-6
[47] HUANG H, GEHAN M A, HUSS S E, ALVAREZ S, LIZARRAGA C, GRUEBBLING E L, GIERER J, NALDRETT M J, BINDBEUTEL R K, EVANS B S, MOCKLER T C, NUSINOW D A. Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant Direct, 2017, 1(4): e00018.
[48] XIE Q G, WANG P, LIU X, YUAN L, WANG L B, ZHANG C G, LI Y L, XING H Y, ZHI L Y, YUE Z L, ZHAO C S, MCCLUNG C R, XU X D. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. The Plant Cell, 2014, 26(7): 2843-2857.
doi: 10.1105/tpc.114.126573
[49] 张庆雯, 祁静静, 谢宇, 谢竹, 彭蕴, 李强, 彭爱红, 邹修平, 何永睿, 陈善春, 姚利晓. 黄龙病菌胁迫下‘锦橙’CsCalS 表达和胼胝质沉积的初步分析. 园艺学报, 2021, 48(2): 276-288.
ZHANG Q W, QI J J, XIE Y, XIE Z, PENG Y, LI Q, PENG A H, ZOU X P, HE Y R, CHEN S C, YAO L X. Preliminary analysis of CsCalS5 and callose deposition in citrus sinensis infected with candidatus liberibacter asiaticus. Acta Horticulturae Sinica, 2021, 48(2): 276-288. (in Chinese)
[50] 崔海芳, 张凡, 尹俊龙, 郭瑛琪, 岳艳玲. 胼胝质沉积与花粉发育. 云南农业大学学报: 自然科学版, 2017, 32(3): 551-557.
CUI H F, ZHANG F, YIN J L, GUO Y Q, YUE Y L. Callose deposition and pollen development. Journal of Yunnan Agricultural University, 2017, 32(3): 551-557. (in Chinese)
[51] 杨俊. 拟南芥生长素响应因子ARF17调控花粉壁模式形成[D]. 上海: 上海师范大学, 2013.
YANG J. Arabidopsis auxin response factor ARF17 regulates pollen wall pattern formation[D]. Shanghai: Shanghai Normal University, 2013. (in Chinese)
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!