Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1874-1889.doi: 10.3864/j.issn.0578-1752.2020.09.014

• HORTICULTURE • Previous Articles     Next Articles

Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh

YaFei ZHANG1,Jie PENG1,YanSong ZHU1,ShengNan YANG1,Xu WANG1,WanTong ZHAO1,2,Dong JIANG1,2()   

  1. 1 Citrus Research Institute, Southwest University, Chongqing 400712;
    2 Citrus Research Institute of Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2019-01-10 Accepted:2020-03-03 Online:2020-05-01 Published:2020-05-13
  • Contact: Dong JIANG E-mail:jiangdong@cric.cn

Abstract:

【Objective】To reveal the distribution, structure and evolution of carotenoid cleavage dioxygenas gene family in the citrus genome (CcCCD), this study were performed to develope marker-assisted selection of flesh color in citrus breeding program, bioinformatics predication, expression analysis and genotype of CcCCD4a in flesh color development and different germplasm accessions. 【Method】The CCD gene family of Citrus clementina genome were identified by homologous search according to previously reported CCD in other plant species. Phylogenetic analysis, subcellular localization prediction, relative molecular weight, theoretical isoelectric point (PI), conserved motif prediction, and scaffold location were studied by bioinformatics methods. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study the expression of CcCCD4a in 10 citrus accessions during the flesh color development period. Haplotype analysis was performed by Tassel software after sequencing of CcCCD4a in 30 citrus varieties. 【Result】Fourteen CCD family genes were found in the Citrus clementina genome, and these genes could be divided into five subfamily, namely, CcCCD1, CcCCD4, CcCCD7, CcCCD8 and CcNCED. Its theoretical isoelectric point were 6.05 to 8.53 and these CCD family genes encoded 412-611 amino acids. The subcellular localization prediction indicated that CcCCD genes mainly were located in chloroplast and cytoplasm. Phylogenetic analysis showed that CCD genes in citrus were also found in other plant species. Obviously, CCD8 subfamily had farther genetic distance with other CCD. Scaffold localization analysis showed that 14 CcCCD members were unevenly distributed in all scaffolds except scaffold 5. The phenotyping of flesh color in 10 citrus varieties demonstrated that the hue angle of flesh color was decreased along with fruit maturing. The relative expression of CcCCD4a in different citrus varieties was significantly different. The expression of CcCCD4a in the flesh color of orange red was significantly lower than that in the flesh color of orange or light orange yellow (P<0.05). There was a significant positive correlation between the relative expression of CcCCD4a and the hue angle during fruit ripening. Genotyping of CcCCD4a in 30 citrus varieties revealed that hap-1, hap-4 and hap-5 were dominant haplotype at orange red flesh varieties. 【Conclusion】The whole genome of Citrus clementina contained 14 members of CCD gene family. All these CCD gene family members contained RPE65 conserved domain, but they were located in different cell components and unevenly distributed at different scaffolds. CcCCD4a was involved in the development of citrus flesh color, and there was a significant positive correlation between its relative expression and the hue angle. Therefore, CcCCD4a could be used as potential marker for citrus fruit color breeding. Especially, hap-1, hap-4 and hap-5 had a high correlation with the phenotypes of orange red flesh, which might be helpful for selecting candidate hybrids in early stage of citrus breeding program.

Key words: citrus, CCD gene family, CcCCD4a, flesh color, gene expression, haplotype

Table 1

30 accessions of mandarin germplasms used in this study"

编号
Code
材料名称
Name
种名
Specific name
果实成熟期
Ripen time
果皮颜色
Peel color
果肉颜色
Flesh color
1 丽红
Reikou
Citrus reticulata Blanco 11月下旬
Late Nov.
橙红色
Orange red
橙红色
Orange red
2 红橘
Hong ju
Citrus reticulata Blanco 11月中旬
Middle Nov.
红色
Red
橙红色
Orange red
3 美国糖橘
America tang ju
Citrus reticulata Blanco 11月上旬
Early Nov.
深红色
Deep red
橙红色
Orange red
4 椪柑
Ponkan
Citrus reticulata Blanco 11月下旬
Late Nov.
橙黄色
Orange yellow
橙红色
Orange red
5 茂谷柑
Murcott
Citrus reticulate Blanco × Citrus sinensis (L.) Osbeck 1月上旬
Early Jan.
橙红色
Orange red
橙红色
Orange red
6 沃柑
Orah
Citrus reticulata Blanco 1月上旬
Early Jan.
橙红色
Orange red
橙色
Orange
7 青橘
Qing Ju
Citrus reticulata Blanco 12月上旬
Early Dec.
橙黄色
Orange yellow
橙色
Orange
8 春见
Harumi
Citrus reticulata Blanco 12月上旬
Early Dec.
橙色
Orange
橙色
Orange
9 猴橙
Monkey Orange
Citrus sinensis (L.) Osbeck 11月下旬
Late Nov.
橙色
Orange
橙色
Orange
10 春香
Haruka
Citrus tamurana hort.ex Tanaka Spp. 12月中旬
Middle Dec.
浅橙黄色
Light orange yellow
浅橙黄色
Light orange yellow
11 朱红
Zhu hong ju
Citrus erythrosa Hort.ex Tan. 11月下旬
Late Nov.
红色
Red
橙红色
Orange red
12 汕头酸橘
Shan tou suan ju
Citrus sunki (Hayata) hort.ex Tanaka 12月上旬
Early Dec.
橙色
Orange
橙色
Orange
13 满头红
Man tou hong ju
Citrus reticulata Blanco 12月中旬
Middle Dec.
红色
Red
橙红色
Orange red
14 大红袍
Da hong pao ju
Citrus reticulata Blanco 11月中旬
Middle Nov.
红色
Red
橙红色
Orange red
15 宫本温州蜜柑
Miyamoto wase unshiu
Citrus unshiu Macf. 9月下旬
Late Sep.
橙黄色
Orange yellow
橙红色
Orange red
16 无核红橘
Seedless hong ju
Citrus reticulata Blanco 12月下旬
Late Dec
红色
Red
橙红色
Orange red
17 永春芦柑
Yong chun lu gan
Citrus reticulata Blanco 11月下旬
Late Nov.
橙黄色
Orange yellow
橙红色
Orange red
18 濑户佳实生
Seedling setoka
Citrus tangor 3月上旬
Early Mar.
橙黄色
Orange yellow
橙色
Orange
19 辉优
Hybrid fagllo 4-3
Citrus reticulata Blanco 11月中旬
Middle Nov.
红色
Red
橙红色
Orange red
20 立山椪柑
Li shan ponkan
Citrus reticulata Blanco 11月下旬
Late Nov.
橙色
Orange
橙红色
Orange red
21 肥之曙
Hinoakebono wase
Citrus unshiu Macf. 9月中旬
Middle Sep
橙色
Orange
橙红色
Orange red
22 红晕香柑
Hong yun xiang gan
Citrus tangor 3月上旬
Early Mar.
红色
Red
橙红色
Orange red
23 橘湘早
Ju xiang zao
Citrus unshiu Macf. 10月上旬
Early Oct.
橙黄色
Orange yellow
橙色
Orange
24 爱媛30号杂种3
Ehime No.30 new line
Citrus reticulata Blanco 11月下旬
Late Nov.
橙红色
Orange red
橙红色
Orange red
25 爱妃
Princess fairy
Citrus reticulata Blanco 10月中旬
Middle Oct.
橙红色
Orange red
橙红色
Orange red
26 牛肉红橘
Niu rou hong ju
Citrus reticulata Blanco 11月下旬
Late Nov.
深红色
Orange red
橙红色
Orange red
27 金秋砂糖橘
Gold autum sha tang ju
Citrus reticulata Blanco 10月下旬
Late Oct.
橙红色
Orange red
橙色
Orange
28 华美20号
Hua mei No.20
Citrus reticulata Blanco 10月中旬
Middle Oct.
红色
Red
橙色
Orange
29 华美4号
Hua mei No.4
Citrus reticulata Blanco 10月下旬
Late Oct.
红色
Red
橙红色
Orange red
30 华美41号
Hua mei No.41
Citrus reticulata Blanco 11月中旬
Middle Oct.
橙色
Orange
橙红色
Orange red

Table 2

Primers information"

引物名称
Primer name
用途
Usage
引物序列
Primer sequence
片段大小
Length (bp)
循环数/退火温度
Cycles/Annealing temperature (℃)
CcCCD4a 扩增CcCCD4a
Amplify CcCCD4a
F:ACTTGCCAGCCTTAAGCCGT 2465 35/56℃
R:CAATATTGTGTGTGGTGGCC
CcCCD4aq CcCCD4a荧光定量
qRT-PCR primers of CcCCD4a
F:TCTCTCAGCCTCAACCCAAG 220 40/60℃
R:ACTACCTCACACTCCGTTGG
β-Actin 内参基因
Reference gene
F:CCCCATCGTTACCGTCCAG 150 40/60℃
F:CGCCTTGCCAGTTGAATATCC

Table 3

The CCD genes identified in citrus"

基因名称
Gene name
基因组登录号
Gene accession No.
蛋白质大小
Protein length (aa)
RPE65位置
RPE65 domain location
分子量
Molecular mass (KD)
等电点
Isoelectric point (pI)
亚细胞定位
Subcellular localization
CcCCD1a CICLEv10031014m 597 106—587 67.2 6.33 细胞质 Cytoplasm
CcCCD1b CICLEv10031039m 589 100—579 66.67 6.05 细胞质 Cytoplasm
CcCCD4a CICLEv10031003m 603 124—595 66.45 6.87 叶绿体 Chloroplast
CcCCD4b1 CICLEv10028113m 563 87—553 63.06 8.34 叶绿体 Chloroplast
CcCCD4b2 CICLE_v10030384m 508 38—504 56.91 6.56 细胞质 Cytoplasm
CcCCD4c CICLEv10011335m 597 115—590 66.35 8.53 叶绿体 Chloroplast
CcCCD4d CICLEv10013726m 412 93—403 45.86 7.25 叶绿体 Chloroplast
CcCCD7 CICLEv10027500m 590 43—580 66.51 6.07 叶绿体 Chloroplast
CcCCD8a CICLEv10008050m 510 29—508 56.8 5.93 细胞质 Cytoplasm
CcCCD8b CICLEv10010609m 556 76—554 61.965 5.98 叶绿体 Chloroplast
CcCCD_like CICLEv10010551m 611 89—598 69.18 6.53 细胞质 Cytoplasm
CcNCED3 CICLEv10019364m 606 134—598 67.01 6.37 叶绿体 Chloroplast
CcNCED5 CICLEv10014639m 609 136—601 67.79 6.3 叶绿体 Chloroplast
CcNCED6 CICLEv10006710m 592 113—583 65.29 7.32 细胞质 Cytoplasm

Fig. 1

The phylogenetic tree of CCD proteins"

Fig. 2

Motif analysis of CCD proteins in citrus"

Fig. 3

Gene structure of citrus CCD genes"

Fig. 4

Scafflod locations of citrus CCD genes"

Fig. 5

Flesh color of 10 citrus varieties in 4 periods"

Fig. 6

Changes in hue angle of 10 citrus varieties in 4 periods Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 7

Relative expression of CcCCD4a in 4 periods of 10 citrus varieties"

Table 4

The haplotype sequences of 30 citrus varieties"

单倍型
Haplotype
序列
Sequence
材料份数
Number of accession
涉及材料
Related variety
hap-1 ATCGGTTACTCTCTATGTAGTCCGGTGTCTA 12 华美41号 Hua mei No.41、红橘 Hong ju、无核红橘Seedless hong ju、大红袍 Da hong pao、爱媛30杂种3 Ehime No.30 new line、牛肉红橘 Niu rou hong ju、永春芦柑 Yong chun lu gan、立山椪柑 Li shan ponkan、华美4号 Hua mei No.4、朱红 Zhu hong ju、满头红Man tou hong ju、美国糖橘 America tang ju
hap-2 ACCGGTTCCTCTCCAAGTATTCCGGCGTCTA 9 丽红 Reikou、春见 Harumi、爱妃 Princess fairy、红晕香柑 Hong yun xiang gan、华美20号 Hua mei No.20、金秋砂糖橘 Jin qiu sha tang ju、橘湘早Ju xiang zao、肥之曙 Hinoakebono wase、宫本温州Miyamoto wase unshiu
hap-3 ATCGGTTACTCTCCAAGTAGTCCGGCGTCTA 1 华美41号 Hua mei No.41
hap-4 ATCGGTTACTCTCCATGTAGTCCGGTGTCTA 6 红橘 Hong ju、无核红橘 Seedless hong、辉优 Hybrid fagllo 4-3、汕头酸橘 Shan tou suan ju、大红袍 Da hong pao ju、爱媛30杂种3 Ehime No.30 new line
hap-5 ATCGGTTCCTCTCCATGTAGTCCGGTGTCTA 1 牛肉红橘 Niu rou hong ju
hap-6 TTTACTTCCTCTCCATGTAGTCCGCCGCGAG 5 美国糖橘 America tang ju、椪柑 Ponkan、沃柑Orah、濑户佳实生 Seedling setoka、克里曼丁 Clementina
hap-7 TTCACACCCCATACGTGCAGCTAACCGCCTA 1 春香 Haruka、猴橙 Monkey orange
hap-8 ATCGGTTCCTCTCCATGTAGTCCGGCGTCTA 1 青橘 Qing ju
hap-9 TTCACACCTCAAACGTACGGCTAACCATCTA 1 茂谷柑 Murcott
[1] VALLABHANENI R, BRADBURY L M, WURTZEL E T . The carotenoid dioxygenase gene family in maize, sorghum, and rice. Archives of Biochemistry and Biophysics, 2010,504(1):104-111.
doi: 10.1016/j.abb.2010.07.019 pmid: 20670614
[2] WOITSCH S, RÖMER S . Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiology, 2003,132(3):1508-1517.
doi: 10.1104/pp.102.019364 pmid: 12857831
[3] WANG C N, QIAO A H, FANG X F, SUN L, GAO P, DAVIS A R, LIU S, LUAN F S . Fine mapping of lycopene content and flesh color related gene and development of molecular marker-assisted selection for flesh color in watermelon (Citrullus lanatus). Frontiers in Plant Science, 2019,10:1240.
doi: 10.3389/fpls.2019.01240 pmid: 31649702
[4] ILAHY R, SIDDIQUI M W, TLILI I, MONTEFUSCO A, PIRO G, HDIDER C, LENUCCI M S . When color really matters: horticultural performance and functional quality of high-lycopene tomatoes. Critical Reviews in Plant Sciences, 2018,37(1):15-53.
[5] MESSING S A J, GABELLI S B, ECHEVERRIA I, VOGEL J T, GUAN J C, TAN B C, KLEE H J, MCCARTY D R, AMZEL L M . Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. The Plant Cell, 2010,22(9):2970-2980.
doi: 10.1105/tpc.110.074815 pmid: 20884803
[6] AULDRIDGE M E, BLOCK A, VOGEL J T, DABNEY-SMITH C, MILA I, BOUZAYEN M, MAGALLANES-LUNDBACK M, DELLAPENNA D, MCCARTY D R, KLEE H J . Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. The Plant Journal, 2006,45(6):982-993.
doi: 10.1111/j.1365-313X.2006.02666.x pmid: 16507088
[7] TAN B C, JOSEPH L M, DENG W T, LIU L J, LI Q B, CLINE K, MCCARTY D R . Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. The Plant Journal, 2003,35(1):44-56.
doi: 10.1046/j.1365-313x.2003.01786.x pmid: 12834401
[8] YAHYAA M, BAR E, DUBEY N K, MEIR A, DAVIDOVICH R R, HIRSCHBERG J, ALY R, THOLL D, SIMON P W, TADMOR Y, LEWINSOHN E, IBDAH M . Formation of norisoprenoid flavor compounds in carrot (Daucus carota L.) roots: Characterization of a cyclic-specific carotenoid cleavage dioxygenase 1 gene. Journal of Agricultural & Food Chemistry, 2013,61(50):12244-12252.
doi: 10.1021/jf404085k pmid: 24289159
[9] BALDERMANN S, KATO M, KUROSAWA M, KUROBAYASHI Y, FUJITA A, FLEISCHMANN P, WATANABE N . Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. Journal of Experimental Botany, 2010,61(11):2967-2977.
doi: 10.1093/jxb/erq123 pmid: 20478967
[10] SUN Z K, HANS J, WALTER M H, MATUSOVA R, BEEKWILDER J, VERSTAPPEN F W A, ZHAO M, VAN ECHTELT E, STRACK D, BISSELING T, BOUWMEESTER H J . Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta, 2008,228(5):789-807.
doi: 10.1007/s00425-008-0781-6 pmid: 18716794
[11] ALDER A, JAMIL M, MARZORATI M, BRUNO M, VERMATHEN M, BIGLER P, GHISLA S, BOUWMEESTER H, BEYER P, AL-BABILI S . The path from β-carotene to carlactone, a strigolactone- like plant hormone. Science, 2012,335(6074):1348-1351.
doi: 10.1126/science.1218094 pmid: 22422982
[12] BOOKER J, AULDRIDGE M, WILLS S, MCCARTY D, KLEE H, LEYSER O . MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology, 2004,14(14):1232-1238.
doi: 10.1016/j.cub.2004.06.061 pmid: 15268852
[13] SCHWARTZ S H, TAN B C, MCCARTY D R, WELCH W , ZEEVAART J A D. Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochimica et Biophysica Acta (BBA)-General Subjects, 2003,1619(1):9-14.
doi: 10.1016/j.bbagen.2017.02.015 pmid: 28216027
[14] 陈唯, 曾晓贤, 谢楚萍, 田长恩, 周玉萍 . 植物内源ABA水平的动态调控机制. 植物学报, 2019,54(6):677-687.
CHEN W, ZENG X X, XIE C P, TIAN C E, ZHOU Y P . The dynamic regulation mechanism of the Endo-genous ABA in Plant. Chinese Bulletin of Botany, 2019,54(6):677-687. (in Chinese)
[15] VALLABHANENI R, BRADBURY L M T, WURTZEL E T . The carotenoid dioxygenase gene family in maize, sorghum, and rice. Archives of Biochemistry and Biophysics, 2010,504(1):104-111.
doi: 10.1016/j.abb.2010.07.019 pmid: 20670614
[16] WEI Y P, WAN H J, WU Z M, WANG R Q, RUAN M Y, YE Q J, LI Z M, ZHOU G Z, YAO Z P, YANG Y J . A comprehensive analysis of carotenoid cleavage dioxygenases genes in Solanum lycopersicum. Plant Molecular Biology Reporter, 2016,34(2):512-523.
[17] LASHBROOKE J G, YOUNG P R, DOCKRALL S J, VASANTH K, VIVIER M A . Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biology, 2013,13(1):156.
doi: 10.1186/1471-2229-13-156 pmid: 24106789
[18] RUBIO-MORAGA A, AHRAZEM O, PÉREZ-CLEMENTE R M, GÓMEZ-CADENAS A, YONEYAMA K, LÓPEZ-RÁEZ J A, MOLINA R V, GÓMEZ-GÓMEZ L . Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biology, 2014,14(1):171.
doi: 10.1186/1471-2229-14-171 pmid: 24947472
[19] OHMIYA A, KISHIMOTO S, AIDA R, YOSHIOKA S, SUMITOMO K . Carotenoid cleavage dioxygenase ( CmCCD4a) contributes to white color formation in Chrysanthemum petals. Plant Physiology, 2006,142(3):1193-1201.
doi: 10.1104/pp.106.087130 pmid: 16980560
[20] RODRIGO M J, ALQUÉZAR B, ALÓS E, MEDINA V, CARMONA L, BRUNO M, AL-BABILI S, ZACARÍAS L . A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany, 2013,64(14):4461-4478.
doi: 10.1093/jxb/ert260 pmid: 24006419
[21] 王莎莎, 栾雨婷, 徐昌杰 . 柑橘β-柠乌素积累及其调控研究进展. 果树学报, 2018,35(6):760-768.
WANG S S, LUAN Y T, XU C J . Research progress in the regulation of β-citraurin accumulation in citrus fruits. Journal of Fruit Science, 2018,35(6):760-768. (in Chinese)
[22] ZHENG X J, ZHU K J, SUN Q, ZHANG W Y, WANG X, CAO H B, TAN M L, XIE Z Z, ZENG Y L, YE J L, CHAI L J, XU Q, PAN Z Y, XIAO S Y, FRASER P D, DENG X X . Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Molecular Plant, 2019,12(9):1294-1307.
doi: 10.1016/j.molp.2019.04.014 pmid: 31102783
[23] MINAMIKAWA M F, NONAKA K, KAMINUMA E, KAJIYA- KANEGAE H, ONOGI A, GOTO S, YOSHIOKA T, IMAI A, HAMADA H, HAYASHI T, MATSUMOTO S, KATAYOSE Y, TOYODA A, FUJIYAMA A, NAKAMURA Y, SHIMIZU T, IWATA H . Genome wide association study and genomic prediction in citrus: Potential of genomics-assisted breeding for fruit quality traits. Scientific Reports, 2017,7(1):4721.
doi: 10.1038/s41598-017-05100-x pmid: 28680114
[24] GMITTER F G, CHEN C X, MACHADO M A, SOUZA A A, OLLITRAULT P, FROEHLICHER Y, SHIMIZU T . Citrus genomics. Tree Genetics & Genomes, 2012,8(3):611-626.
[25] BRUNO M, VERMATHEN M, ALDER A, WÜST F, SCHAUB P, VAN DER STEEN R, BEYER P, GHISLA S, AL-BABILI S . Insights into the formation of carlactone from in-depth analysis of the CCD8 catalyzed reactions. FEBS Letters, 2017,591(5):792-800.
doi: 10.1002/1873-3468.12593 pmid: 28186640
[26] LEDGER S E, JANSSEN B J, KARUNAIRETNAM S, WANG T, SNOWDEN K C . Modified CAROTENOID CLEAVAGE DIOXYGENASE 8 expression correlates with altered branching in kiwifruit ( Actinidia chinensis). The New Phytologist, 2010,188(3):803-813.
doi: 10.1111/j.1469-8137.2010.03394.x pmid: 20659299
[27] VOGEL J T, WALTER M H, GIAVALISCO P, LYTOVCHENKO A, KOHLEN W, CHARNIKHOVA T, SIMKIN A J, GOULET C, STRACK D, BOUWMEESTER H J, FERNIE A R, KLEE H J . SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal, 2010,61(2):300-311.
doi: 10.1111/j.1365-313X.2009.04056.x pmid: 19845881
[28] KULKARNI K P, VISHWAKARMA C, SAHOO S P, LIMA J M, NATH M, DOKKU P, GACCHE R N, MOHAPATRA T, ROBIN S, SARLA N, SESHASHAYEE M, SINGH A K, SINGH K, SINGH N K, SHARMA R P . A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. Journal of Genetics, 2014,93(2):389-401.
doi: 10.1007/s12041-014-0389-5 pmid: 25189234
[29] 王小龙, 刘凤之, 史祥宾, 王孝娣, 冀晓昊, 王志强, 王宝亮, 郑晓翠, 王海波 . 葡萄NCED基因家族进化及表达分析. 植物学报, 2019,54(4):474-485.
WANG X L, LIU F Z, SHI X B, WANG X D, JI X H, WANG Z Q, WANG B L, ZHENG X C, WANG H B . Evolution and expression of NCED family genes in Vitis vinifera. Chinese Bulletin of Botany, 2019,54(4):474-485. (in Chinese)
[30] 巩檑, 宋继玲, 甘晓燕, 刘璇, 陈虞超, 郭志乾, 宋玉霞 . 模拟干旱胁迫下马铃薯StNCED1表达量及与ABA含量的相关性分析. 植物遗传资源学报, 2018,19(3):561-567.
GONG L, SONG J L, GAN X Y, LIU X, CHEN Y C, GUO Z Q, SONG Y X . Correlation analysis of StNCED1 expression level and ABA content of potato under simulated drought stress. Journal of Plant Genetic Resources, 2018,19(3):561-567. (in Chinese)
[31] KATO M, MATSUMOTO H, IKOMA Y, OKUDA H, YANO M . The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. Journal of Experimental Botany, 2006,57(10):2153-2164.
doi: 10.1093/jxb/erj172 pmid: 16714310
[32] SONG M H, LIM S H, KIM J K, JUNG E S, JOHN K M M, YOU M K, AHN S N, LEE C H, HA S H . In planta cleavage of carotenoids by Arabidopsis carotenoid cleavage dioxygenase 4 in transgenic rice plants. Plant Biotechnology Reports, 2016,10(5):291-300.
doi: 10.1007/s11816-016-0405-8
[33] URESHINO K, NAKAYAMA M, MIYAJIMA I . Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in azalea petals. Euphytica, 2016,207(2):401-417.
[34] LIU H, KISHIMOTO S, YAMAMIZO C, FUKUTA N, OHMIYA A . Carotenoid accumulations and carotenogenic gene expressions in the petals of Eustoma grandiflorum. Plant Breeding, 2013,132(4):417-422.
[35] HAI N T L, MASUDA J I, MIYAJIMA I, THIEN N Q, MOJTAHEDI N, HIRAMATSU M, KIM J H, OKUBO H . Involvement of carotenoid cleavage dioxygenase 4 gene in tepal color change in Lilium brownii var. colchesteri. Journal of the Japanese Society for Horticultural Science, 2012,81(4):366-373.
[36] MA G, ZHANG L C, IIDA K, MADONO Y, YUNGYUEN W, YAHATA M, YAMAWAKI K, KATO M . Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process. Food Chemistry, 2017,234(9):356-364.
doi: 10.1016/j.foodchem.2017.05.015
[37] AGÓCS A, NAGY V, SZABÓ Z, MÁRK L, OHMACHT R, DELI J . Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science and Emerging Technologies, 2007,8(3):390-394.
doi: 10.1016/j.ifset.2007.03.012
[38] GONZÁLEZ-VERDEJO C I, OBRERO Á, ROMÁN B, GÓMEZ P . Expression profile of carotenoid cleavage dioxygenase genes in summer squash ( Cucurbita pepo. L). Plant Foods for Human Nutrition, 2015,70(2):200-206.
doi: 10.1007/s11130-015-0482-9 pmid: 25861766
[39] BAI S L, PHAM A T, MIHO T, HIDEAKI Y, AKEMI O, CHIHIRO Y, TAKAYA M . Knockdown of carotenoid cleavage dioxygenase 4 (CCD4) via virus-induced gene silencing confers yellow coloration in peach fruit: Evaluation of gene function related to fruit traits. Plant Molecular Biology Reporter, 2016,34(1):257-264.
doi: 10.1007/s11105-015-0920-8
[40] PHADUNGSAWAT B, WATANABE K, MIZUNO S, KANEKATSU M, SUZUKI S . Expression of CCD4 gene involved in carotenoid degradation in yellow-flowered Petunia×hybrida. Scientia Horticulturae, 2019:108916.
[41] ZHANG B, HAN F Q, CUI H L, LI X, REN W J, FANG Z Y, YANG Z Y, ZHUANG M, LU H H, LIU Y M . Insertion of a CACTA-like transposable element disrupts the function of the BoCCD4 gene in yellow-petal Chinese kale. Molecular Breeding, 2019,39(9):130.
doi: 10.1007/s11032-019-1008-1
[42] 陶俊 . 柑橘果实类胡萝卜素形成及调控的生理机制研究[D]. 杭州: 浙江大学, 2002.
TAO J . Physiological studies on carotenoid formation and regulation in citrus fruit[D]. Hangzhou: Zhejiang University, 2002. (in Chinese)
[43] 谭萍, 谭奋勇, 王祖泽, 杨再英, 谭功亮 . 惠水独特优良品种─牛肉红金桔. 江西柑桔科技, 1994(2):26-27.
TAN P, TAN F Y, WANG Z Z, YANG Z Y, TAN G L . Unique and excellent variety of Hui Shui-Niu rou hong ju. Jiangxi Citrus Technology, 1994(2):26-27. (in Chinese)
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[8] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[9] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[10] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[11] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[12] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[13] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[14] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[15] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!