Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 2952-2964.doi: 10.3864/j.issn.0578-1752.2021.14.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet

ZHANG Shuo1,2(),ZHI Hui1,TANG ChanJuan1,LUO MingZhao1,TANG Sha1,JIA GuanQing1,JIA YanChao1,DIAO XianMin1()   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081
    2Food Crop Research Institute, Hubei Academy of Agricultural Science, Wuhan 430064
  • Received:2020-12-11 Accepted:2021-02-01 Online:2021-07-16 Published:2021-07-26
  • Contact: XianMin DIAO E-mail:zhangshuo0728@126.com;diaoxianmin@caas.cn

Abstract:

【Objective】 Foxtail millet is a C4 model plant, and its leaf color mutants are good materials for C4 photosynthetic pathway research. Through the cytological characters analysis and gene initial mapping of the stripe-leaf mutant A36-S in foxtail millet, it laid the foundation for cloning the mutant gene, analyzing the chloroplast biogenesis and development, and further understanding the C4 photosynthetic regulation mechanism in foxtail millet. 【Method】 The stripe-leaf mutant of foxtail millet A36-S was naturally mutated from intermediate material A36 created by breeding. Comparing the phenotypic characteristics of A36-S and its isogenic line A36-N, which showed normal phenotypes, and investigating the agronomic traits, such as plant height, leaf width, leaf length, panicle weight, thousand-grain weight, and seed setting rate. To analyze the photosynthetic characters of A36-S, the chlorophyll content, net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate of A36-S and A36-Nwere determined. By observing the leaf transverse section and ultrathin section of A36-S and the control variety Yugu1, the leaf anatomical structure characters were analyzed, by counting the numbers and areas of the chloroplasts in mesophyll cells and bundle sheath cells respectively, the chloroplast biogenesis and development were assessed. An F2 segregation population of A36-S×SSR41 were created, and genetic analysis was conducted by counting the number of normal phenotype single plant and stripe-leaf single plant in the population. The DNA mixed pools of normal single plants and stripe-leaf single plants of the F2 segregation population were constructed separately, and the method of Bulked Segregation Analysis (BSA) was used to locate the mutant gene. By screening the stripe-leaf plants in the F2 generation using SSR and In-Del markers, the mutant gene were furtherly located.【Result】The stripe-leaf mutant of foxtail millet A36-S showed the phenotype of irregular white stripe-leaf in the whole growth period. Agronomic traits analysis showed that compared with its isogenic line A36-N, A36-S decreased significantly in plant height, leaf width, panicle weight, thousand-grain weight, and setting percentage. Photosynthetic index measurement showed that the chlorophyll contents of A36-S were also reduced significantly, especially the chlorophyll b content declined more severely, additionally, the net photosynthetic rate was also decreased significantly. Observation of the leaf anatomical structure showed that the chloroplasts number and area were significantly lower than that of the contrast Yugu1, while the changes in Kranz structure were not obvious. Furtherly, the ultrastructure of chloroplast was observed and showed that the chloroplast development situation in different cells was quite different. And the leaf cells ofA36-S could be classified into three types: type Ⅰ cells had normal chloroplasts, type Ⅱ cells had chloroplasts with reduced grana and lamellar structures, while type Ⅲ cells had severely abnormal chloroplasts or even had no chloroplast. Genetic analysis suggested that the stripe-leaf trait of A36-S was controlled by a single recessive gene, and the mutant gene was located to the region from 7.66 Mb to 27.90 Mb of chromosome 4 by F2 population. 【Conclusion】 Stripe-leaf mutant of foxtail millet A36-S represented decreased agronomic traits and photosynthetic capacity, and the number, size, and ultrastructure of leaf cell chloroplast were significantly abnormal. The stripe-leaf trait of A36-S was controlled by a single recessive gene, which was mapped to a region from 7.66 Mb to 27.90 Mb of chromosome 4.

Key words: Setaria italica (L.) P. Beauv., stripe-leaf mutant, chloroplast, gene mapping

Fig. 1

Phenotypes of A36-S and its isogenic line A36-N A: Plants of heading stage; B: Leaves of heading stage; C: The detail of leaves in heading stage; D: Matured panicles"

Table 1

Comparation of main agronomic traits between A36-S and A36-N "

农艺性状 Agronomic traits A36-N A36-S PP-value 相比A36-N Compared to A36-N (%)
株高Plant height (cm) 94.58±3.00 80.32±6.42 0.001001 -15.08**
叶长Leaf length (cm) 28.42±0.86 28.48±1.39 0.468343 0.21
叶宽Leaf width (cm) 2.52±0.16 1.88±0.19 0.000239 -25.40**
茎节数Stem nodes number 11.00±0.71 10.40±0.55 0.086002 -5.45
穗长Panicle length (cm) 19.80±1.30 18.52±0.69 0.044184 -6.46*
穗粗Panicle diameter (cm) 2.98±0.13 2.84±0.19 0.109332 -4.70
单株穗数Panicle number per plant 2.20±0.84 2.20±0.84 0.500000 0.00
主穗重Weight of main panicle (g) 13.53±1.86 10.31±2.20 0.018266 -23.82*
码数Branch number 20.00±2.55 21.60±1.14 0.118035 8.00
千粒重Thousand-grain weight (g) 2.78±0.08 2.55±0.11 0.011091 -8.27*
结实率Seed setting rate (%) 68.54±3.60 42.46±10.05 0.000285 -38.34**

Fig. 2

Chlorophyll contents and photosynthetic parameters of A36-S and A36-N "

Fig. 3

Leaf transverse sections of Yugu1 and A36-S A: Leaf transverse section of Yugu1 (Bar = 50 μm); B: Leaf transverse section of A36-S (Bar=50 μm); Red arrows showed normal chloroplasts of mesophyll cells; Blue arrows showed normal chloroplasts of bundle sheath cells; Red stars showed the mesophyll cells containing no chloroplast; Blue stars show the bundle sheath cells containing no chloroplast "

Fig. 4

Chloroplast number and area of Yugu1 and A36-S "

Fig. 5

Ultrastructure of Yugu1 and A36-S chloroplast A: Chloroplast of Yugu1 bundle sheath cell; B: Chloroplast of Yugu1 mesophyll cell; C: Type Ⅰ bundle sheath cells of A36-S; D: Type Ⅰ mesophyll cells of A36-S; E: Chloroplast in type Ⅱ bundle sheath cells of A36-S; F: Chloroplast in type Ⅱ mesophyll cells of A36-S; G: Type Ⅲ cell of A36-S; H: Chloroplast in type Ⅲ cell of A36-S, white arrows showed the foam-like structure; SG: Starch granules; SL: Stroma lamella; GR: Grana; CLP: Chloroplast "

Table 2

Segregation of F2 population from the cross between A36-Sand SSR41 "

父母本
Parents
总株数
Population number
正常植株
Number of normal plants
条纹叶植株
Number of stripe-leaf plants
χ2 χ20.05
A36-S×SSR41 585 455 130 2.41 3.84

Fig. 6

SSR markers linked with the mutant gene ♀: A36-Smutant; ♂: SSR41; F1: A36-S×SSR41; P: DNA pool of stripe-leaf individuals from F2 population "

Table 3

Detection results of 40 F2 stripe-leaf plants "

单株号
Code
In4-3
(2 485 441 bp)
InDel 14[25]
(4 232 606 bp)
SiCAAS4019[31]
(9 999 146 bp)
SiCAAS4033[31]
(23 483 301 bp)
SiCAAS4034[31]
(30 398 635 bp)
3 H S S S S
7 H H S S S
9 S S S S H
11 H S S S S
12 H S S S S
14 H S S S S
18 H S S S S
22 H S S S S
27 H H S S S
29 H S S S S
30 H H S S S
31 H H S S S
32 H S S S S
36 H H S S S

Table 4

Markers used in gene mapping and number of recombinant individuals"

标记名称
Marker name
位置
Location (bp)
引物序列
Primer sequence (5’-3’)
交换株数量
Number of recombinant individuals
In4-3 2485441 F:GTATTCCCATGTTCGACGCGC
R:GTCGGTTATTAGTTGACTTGTTGTG
167
InDel 14[25] 4232606 F:TACTCATTGCATCCCCTTCAGCAGC
R:CACTGGATAACGCATGGACTGACTA
105
In4-17 6847221 F:TGATGCCTTACTCCAGATTTCCAGC
R:GATGCATACTCAATACTCTCTAGCA
26
In4-20 7661828 F:GACTGTGAGGAGCCGCGTGTAC
R:GGCTCTCTCCCCTAACCGGC
1
In4-21 7873802 F:TGCTTCCCCAAATCAGTCTTTTAGT
R:GGGACACCTTAGAAACAAAACCAGA
0
In4-29 23538740 F:AGAAGGACTGCTTTGATCTGGC
R:GCCGCACACCATTTTGCATTACCT
0
In4-32 27896330 F:GCAATCGTCGTACACTACTCCA
R:GTAGCCAAGTGGTCATTGTTTT
4
In4-33 30243701 F:GGTTGTCTTGTGTGTTCT
R:GACAGGCTTCAAGATAAG
15
SiCAAS4034[31] 30398635 F:CGGTGGGGTACATCGATCCTGCGACAT
R:TTTTCCCTTGAATGGCACGCTGCCGGG
18
[1] 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29(3):292-301.
JIA G Q, DIAO X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): A potential model of plant functional genomics studies . Chinese Bulletin of Life Science, 2017, 29(3):292-301. (in Chinese)
[2] BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENKINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X W, WU X M, MITROS T, TRIPLETT J, YANG X H, YE C Y, MAURO-HERRERA M, WANG L, LI P H, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30:556-561.
[3] ZHANG G Y, LIU X, QUAN Z W, CHENG S F, XU X, PAN S K, XIE M, ZENG P, YUE Z, WANG W L. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30:549-554.
doi: 10.1038/nbt.2195
[4] JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L F, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E H, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B J, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45:957-961.
doi: 10.1038/ng.2673
[5] YANG Z Y, ZHANG H S, LI X K, SHEN H M, GAO J H, HOU S Y, ZHANG B, MAYES S, BENNETT M, MA J X, WU C Y, SUI Y, HAN Y H, WANG X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 system. Nature Plants, 2020, 6(9):1167-1178.
doi: 10.1038/s41477-020-0747-7
[6] LI P H, BRUTNELL T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experiment Botany, 2011, 62:3031-3037.
doi: 10.1093/jxb/err096
[7] DIAO X M, SCHNABLE J, BENNETZEN J L, LI J Y. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering, 2014, 1:16-20.
doi: 10.15302/J-FASE-2014011
[8] CAEMMERER S VON, QUICK W P, FURBANK R T. The development of C4 rice: Current progress and future challenges. Science, 2012, 336:1671-1672.
doi: 10.1126/science.1220177
[9] LUO M Z, ZHANG S, TANG C J, JIA G Q, TANG S, ZHI H, DIAO X M. Screening of mutants related to the C4 photosynthetic Kranz structure in foxtail millet. Frontiers in Plant Science, 2018, 9:1650.
doi: 10.3389/fpls.2018.01650
[10] 罗明昭, 唐婵娟, 张硕, 智慧, 汤沙, 贾冠清, 刁现民. 利用低CO2浓度培养箱筛选谷子(Setaria italica) C4光合作用相关突变体. 植物遗传资源学报, 2018, 19(3):554-560.
LUO M Z, TANG C J, ZHANG S, ZHI H, TANG S, JIA G Q, DIAO X M. Screening of C4 photosynthesis-related mutants in foxtail millet (Setaria italica) by employmeny of low CO2 concentration incubator . Journal of Plant Genetic Resources, 2018, 19(3):554-560. (in Chinese)
[11] ZHANG H T, LI J J, YOO J H, YOO H C, CHO S H, KOH H J, SEO H S, PAEK N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006, 62(3):325-337.
doi: 10.1007/s11103-006-9024-z
[12] ZHOU S X, SAWICKI A, WILLOWS R D, LUO M Z. C-terminal residues of oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Letters, 2012, 586:205-210.
doi: 10.1016/j.febslet.2011.12.026
[13] YANG Y L, XU. J, HUANG L C, LENG Y J, DAI L P, RAO Y C, CHEN L, TU Z J, HU J, REN D Y, ZHANG G H, ZHU L, GUO L B, QIAN Q, ZENG D L. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 5:1297-1310.
[14] KUSABA M, ITO H, MORITA R, IIDA S, SATO Y, FUJIMOTO M, KAWASAKI S, TANAKA R, HIROCHIKA H, NISHIMURA M, TANAKA A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. The Plant Cell, 2017, 19:1362-1375.
doi: 10.1105/tpc.106.042911
[15] DONG H, FEI G L, WU C Y, WU F Q, SUN Y Y, CHEN M J, REN Y L, ZHOU K N, CHENG Z Y, WANG J L, JIANG L, ZHANG X, GUO X P, LEI C L, SU N, WANG H Y, WAN J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013, 162:1867-1880.
doi: 10.1104/pp.113.217604
[16] LI J J, PANDEYA D, NATH K, ZULFUGAROV I S, YOO S C, ZHANG H T, YOO J H, CHO S H, KOH H J, KIM D S, SEO H S, KANG B C, LEE Z H, PAEK N C. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. The Plant Journal, 2010, 62:713-725.
doi: 10.1111/tpj.2010.62.issue-4
[17] SONG J, WEI X J, SHAO G N, SHENG Z H, CHEN D B, LIU C L, JIAO G A, XIE L H, TANG S Q, HU P S. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Molecular Biology, 2014, 84:301-314.
doi: 10.1007/s11103-013-0134-0
[18] LV Y S, SHAO G N, QIU J H, JIAO G A, SHENG Z H, XIE L H, WU Y W, TANG S Q, WEI X J, HU P S. White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. Journal of Experiment Botany, 2017, 68:5147-5160.
doi: 10.1093/jxb/erx332
[19] TANG J P, ZHANG W W, WEN K, CHEN G M, SUN J, TIAN Y L, TANG W J, YU J, AN H Z, WU T T, KONG F, TERZAGHI W, WANG C M, WAN J M. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Molecular Biology, 2017, 95:345-357.
doi: 10.1007/s11103-017-0654-0
[20] LEE S, CHIECKO C J, KIM S A, WALKER E L, LEE Y, GUERINOT M L, ANN G G. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 2009, 150:786-800.
doi: 10.1104/pp.109.135418
[21] SHENG P K, TAN J J, JIN M N, WU F Q, ZHOU K N, MA W W, HENG Y Q, WANG J L, GUO X P, ZHANG X, CHENG Z J, LIU L L, WANG C M, LIU X M, WAN J M. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 2014, 33:1581-1594.
doi: 10.1007/s00299-014-1639-y
[22] ZHU X Y, GUO S, WANG Z W, XING Y D, ZHANG T Q, SHEN W Q, SANG X C, LING Y H, HE G H. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biology, 2016, 16:134-148.
doi: 10.1186/s12870-016-0821-5
[23] QIN R, ZENG D D, LIANG R, YANG C C, AKHTER D, ALAMIN M, JIN X L, SHI C H. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development. Gene, 2017, 627:351-362.
doi: 10.1016/j.gene.2017.05.059
[24] LI W, TANG S, ZHANG S, SHAN J G, TANG C J, CHEN Q N, JIA G Q, HAN Y H, ZHI H, DIAO X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv.]. Physiologia Plantarum, 2015, 157:24-37.
doi: 10.1111/ppl.2016.157.issue-1
[25] TANG C J, TANG S, ZHANG S, LUO M Z, JIA G Q, ZHI H, DIAO X M. SiSTL1, encoding a large subunit of ribonucleotide reductase, is crucial for plant growth, chloroplast biogenesis, and cell cycle progression in Setaria italica. Journal of Experimental Botany, 2019, 70(4):1167-1182.
doi: 10.1093/jxb/ery429
[26] ZHANG S, TANG S, TANG C J, LUO M Z, JIA G Q, ZHI H, DIAO X M. SiSTL2 is required for cell cycle leaf organ development, chloroplast biogenesis and influences C4 photosynthesis in Setaria italica (L.) P. Beauv. Frontiers in Plant Science, 2018, 9:1308.
doi: 10.3389/fpls.2018.01308
[27] ZHANG S, ZHI H, LI W, SHAN J G, TANG C J, JIA G Q, TANG S, DIAO X M. SiYGL2 is involved in the regulation of leaf senescence and photosystem II efficiency in Setaria italica (L.) P. Beauv. Frontiers in Plant Science, 2018, 9:1103.
doi: 10.3389/fpls.2018.01103
[28] 王秋兰, 王智兰, 韩芳, 杜晓芬, 连世超, 韩康妮, 周雪, 李慧娟, 张林义, 王军, 郭二虎. 谷子条纹叶突变体wsl2的鉴定及候选基因分析. 华北农学报, 2020, 35(1):214-221.
WANG Q L, WANG Z L, HAN F, DU X F, LIAN S C, HAN K N, ZHOU X, LI H J, ZHANG L Y, WANG J, GUO E H. Identified and candidate gene analysis of a white stripe leaf mutant wsl2 in foxtail millet . Acta Agriculturae Boreali-Sinica, 2020, 35(1):214-221. (in Chinese)
[29] LICHTENTHALER H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148:350-382.
[30] XIANG J S, TANG S, ZHI H, JIA G Q, WANG H J, DIAO X M. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.]. PLoS ONE, 2017, 12(6):e0178730.
doi: 10.1371/journal.pone.0178730
[31] ZHANG S, TANG C J, ZHAO Q, LI J, YANG L F, QIE L F, FAN X K, LI L, ZHANG N, ZHAO M C, LIU X T, CHAI Y, ZHANG X, WANG H L, LI Y T, LI W, ZHI H, JIA G Q, DIAO X M. Development of highly polymorphic simple sequence repeat markers using genome- wide microsatellite variant analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2014, 15:78.
doi: 10.1186/1471-2164-15-78
[32] 李传宗, 智慧, 汤沙, 贾冠清, 唐婵娟, 贾彦超, 刁现民. 黄金苗谷子苗期黄色的生理基础和黄苗基因初定位. 植物遗传资源学报, 2020, 21(5):1068-1077.
LI C Z, ZHI H, TANG S, JIA G Q, TANG C J, JIA Y C, DIAO X M. Physiological basis and and linkage analysis of elite foxtail millet variety Huangjinmiao that shows yellow seedling leaves. Journal of Plant Genetic Resources, 2020, 21(5):1068-1077. (in Chinese)
[33] 周黄磊, 黄升谋. 库源关系对水稻叶绿素含量及叶绿素a/b值的影响. 绿色科技, 2017, 24:147-149.
ZHOU H L, HUANG S M. Effects of sink source relationship on chlorophyll content and photosynthetic characteristics of rice. Journal of Green Science and Technology, 2017, 24:147-149. (in Chinese)
[34] 战吉成, 王利军, 黄卫东. 弱光环境下葡萄叶片的生长及其在强光下的光合特性. 中国农业大学学报, 2002, 7(3):75-78.
ZHAN J C, WANG L J, HUANG W D. Effects of low light environment on the growth and photosynthetic characteristics of grape leaves. Journal of China Agricultural University, 2002, 7(3):75-78. (in Chinese)
[35] 张明生, 谈锋. 水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系. 种子, 2001, 4:23-25.
ZHANG M S, TAN F. Relationship between ratio of chlorophyll a and b under water stress and drought resistance of different sweet potato varieties. Seed, 2001, 4:23-25. (in Chinese)
[36] 王建华, 徐同. 模拟酸雨对棉花子叶叶绿素a、b含量及其比值的影响. 湖北农学院学报, 1991, 11(2):1-10.
WANG J H, XU T. Effects of simulated acid rain on content of chlorophyll a, b and their ratio in cotton cotyledon. Journal of Hubei Agricultural College, 1991, 11(2):1-10. (in Chinese)
[37] GE C L, WANG L, YE W J, WU L W, CUI Y T, CHEN P, PAN J J, ZHANG D, HU J, ZENG D L, DONG G J, QIAN Q, GUO L B, XUE D W. Single-point mutation of an histidine-aspartic domain containing gene involving in chloroplast ribosome biogenesis leads to white fine stripe leaf in rice. Scientific Reports, 2017, 7:2398.
doi: 10.1038/s41598-017-02724-x
[38] WANG Y, REN Y L, ZHOU K N, LIU L L, WANG J L, XU Y, ZHANG H, ZHANG L, FENG Z M, WANG L W, MA W W, WANG Y L, GUO X P, ZHANG X, LEI C L, WAN J M. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science, 2017, 8:1116.
doi: 10.3389/fpls.2017.01116
[39] NIU M, WANG Y H, WANG C M, LYU J, WANG Y L, DONG H, LONG W H, WANG D, KONG W Y, WANG L W, GUO X P, SUN L T, HU T T, ZHAI H Q, WANG H Y, WAN J M. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. Journal of Experimental Botany, 2017, 68:5773-5786.
doi: 10.1093/jxb/erx380
[40] LIU L L, YOU J, ZHU Z, CHEN K Y, ·HU M M, GU H, LIU Z W, WANG Z Y, WANG Y H, LIU S J, CHEN L M, LIU X, TIAN Y L, ZHOU S R, JIANG L, WAN J M. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. Plant Cell Reports, 2020, 39:19-33.
doi: 10.1007/s00299-019-02470-6
[41] YE W J, HU S K, WU L W, GE C W, CUI Y T, CHEN P, WANG X, XU J, REN D Y, DONG G J, QIAN Q, GUO L B. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Molecular Breeding, 2016, 36:57.
doi: 10.1007/s11032-016-0479-6
[42] WANG P, KHOSHRAVESH R, KARKI S, TAPIA R, BALAHADIA C P, BANDYOPADHYAY A, QUICK W P, FURBANK R, SAGE T L, LANGDALE J A. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Current Biology, 2017, 27(21):3278-3287.
doi: 10.1016/j.cub.2017.09.040
[43] SLEWINSKI T L, ANDERSON A A, ZHANG C K. Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiology, 2012, 53(12):2030-2037.
doi: 10.1093/pcp/pcs147
[1] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[2] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[3] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[4] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[5] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[6] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[7] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[8] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[9] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[10] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[11] LIANG HuiZhen,XU LanJie,DONG Wei,YU YongLiang,YANG HongQi,TAN ZhengWei,LI Lei,LIU XinMei. Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(11): 2149-2160.
[12] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[13] BAI TuanHui,LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui. Screening and Expression Analysis of Co Candidate Genes in Columnar Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4350-4363.
[14] XIE Jia, ZHANG XiaoBo, TAO YiRan, XIONG YuZhen, ZHOU Qian, SUN Ying, YANG ZhengLin, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Shorten Panicle and Seed Mutant sps1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1617-1626.
[15] XUE HongLi, YANG JunJun, TANG Sha, ZHI Hui, WANG Rui, JIA GuanQing, QIAO ZhiJun, DIAO XianMin. Morphological Characterization and Gene Mapping of a Panicle Apical Abortion Mutant (sipaa1) in Foxtail Millet [J]. Scientia Agricultura Sinica, 2018, 51(9): 1627-1640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!