Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3520-3528.doi: 10.3864/j.issn.0578-1752.2011.17.004
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
CAO Hong-Xin, ZHAO Suo-Lao, GE Dao-Kuo, LIU Yong-Xia, LIU Yan, SUN Jin-Ying, YUE Yan-Bin, ZHANG Zhi-You, CHEN Yu-Li
[1]高亮之. 数字农业与我国农业发展. 计算机与农业, 2001(9):1-3. Gao L Z. Digital agriculture and agricultural development in China. Computer and Agriculture, 2001 (9):1-3. (in Chinese) [2]高亮之. 农业模型学基础. 香港: 天马图书有限公司, 2004. Gao L Z. Foundation of Agricultural Model Sciences. Hongkong: Tianma Books Co. Ltd. 2004. (in Chinese) [3]de Wit C T. Photosynthesis of leaf canopies//Agricultural Reseach Report. Wageningen: Pudocuer, 1965. [4]Duncan W G, Loomis R S, Williams W A, Hanau R. A model for simulating photosynthesis in plant communities. Hilgardia, 1967, 38:181-205. [5]Jones J W, Keating B A, Porter C H. Approaches to modular model development. Agricultural Systems, 2001,70 : 421-443. [6]Prusinkiewicz P. A look at the visual modeling of plant using L-systems. Agronomie, 1990, 19: 21l-224. [7]Guo Y, Ma Y T, Zhan Z G, Li B G, Dingkuhn M, Luquet D, de Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany, 2006, 97:217-230. [8]Gao L Z. ALFAMOD: An agroclimatological computer model of alfalfa production. Jiangsu Journal of Agricultural Sciences, 1985 (2): 1-6. [9]Gao L Z, Jin Z Q, Li L. Photo-thermal models of rice growth duration for various varietal types in China. Agricultural Forestry Meteorology, 1987,39: 205-213. [10]诸叶平, 张建兵, 孙开梦, 鄂 越, 雪 燕. 小麦-玉米连作环境模拟与智能决策系统. 计算机与农业, 2001 (专刊): 41-44. Zhu Y P, Zhang J B, Sun K M, Xue Y. Environmental simulation and intelligent decision making system in wheat-corn succession cropping. Computer and Agriculture, 2001 (Specia1):41-44. (in Chinese) [11]宋有洪, 郭 焱, 李保国, de Refrye P. 基于器官生物量构建植株形态的玉米虚拟模型. 生态学报, 2003, 23: 2579-2586. Song Y H, Guo Y, Li B G, de Refrye P. Virtual maize model of plant morphological constructing based on organ biomass accumulation. Acta Ecological Sinica,2003, 23: 2579-2586. (in Chinese) [12]曹卫星, 朱 艳, 田永超, 姚 霞, 刘小军. 数字农作技术研究的若干进展与发展方向. 中国农业科学, 2006, 39(2): 281-288. Cao W X, Zhu Y, Tian Y C, Yao X, Liu X J. Research progress and prospect of digital farming techniques. Scientia Agricultura Sinica, 2006, 39(2): 281-288. (in Chinese) [13]曹宏鑫, 金之庆, 石春林, 葛道阔, 高亮之. 中国作物模型系列的研究与应用. 农业网络信息, 2006(5):45-48. Cao H X, Jin Z Q, Shi C L, Ge D K, Gao L Z. Researches and application of crop model series in China. Agricultural Network Information, 2006(5):45-48. (in Chinese) [14]曹宏鑫, 石春林, 金之庆. 植物形态结构模拟与可视化研究进展. 中国农业科学, 2008, 41(3): 669-677. Cao H X, Shi C L, Jin Z Q. Advances in researches on plant morphological structure simulation and visualization. Scientia Agricultura Sinica, 2008, 41(3): 669-677. (in Chinese) [15]赵春江, 陆声链, 郭新宇, 肖伯祥, 温维亮. 数字植物及其技术体系探讨. 中国农业科学, 2010, 43(10): 2023-2030. Zhao C J, Lu S L, Guo X Y, Xiao B X, Wen W J. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. (in Chinese) [16]Fisher R A. Farming systems of Australia: exploiting the synergy between genetic improvement and agronomy//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston : Academic Press, 2009:23-54. [17]曹宏鑫, 葛道阔, 赵锁劳, 刘永霞, 刘 岩, 王渭龙. 对计算机模拟在作物生长发育研究中应用的评价. 麦类作物学报, 2010(1): 183-187. Ccao H X, Ge D K, Zhao S L, Liu Y X, Liu Y, Wang W L. Evaluation for applying computer simulation in crop growth and development research. Journal of Triticeae Crops, 2010(1):183-187. (in Chinese) [18]Colbach N, Clermont-Dauphin C, Meynard J M. GeneSys: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers I. Temporal evolution of a population of rapeseed volunteers in a field. Agricultural Ecosystem and Environment, 2001, 83: 235-253 [19]Asseng S, Cao W, Zhang W, Ludwig F. Crop physiology, modeling and climate change: impact and adaptation strategies//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston: Academic Press, 2009:511-543. [20]刘铁梅, 张 琼, 邱 枫, 刘铁芳, 谢国生, 曹凑贵. 油菜器官间干物质分配动态的定量模拟. 中国油料作物学报, 2005, 27(1):55-59. Liu T M, Zhang Q, Qiu F, Liu T F, Xie G S, Cao C G. Quantitative simulation on matter partitioning dynamics of Brassica napus L. Chinese Journal of Oil Crop Sciences, 2005, 27(1):55-59. (in Chinese) [21]刘 岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42(11): 4093-4099. Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Scientia Agricultura Sinica, 2009, 42: 4093-4099. (in Chinese) [22]江 敏, 金之庆. CERES-Rice模型区域应用中遗传参数升尺度的一种方法. 中国水稻科学, 2009(2): 172-178. Jiang M, Jin Z Q. A method to upscale the genetic parameters of CERES-Rice in regional applications. Chinese Journal of Rice Science, 2009(2): 172-178. (in Chinese) [23]Hall A, Sadras V. Whither crop physiology//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston: Academic Press, 2009:545-570. [24]王纪华, 赵春江, 黄文江, 杨宝祝, 王北洪, 杨信廷. 定量遥感参数与作物肥水模型链接初探. 华北农学报, 2001,16(4):52-58. Wang J H, Zhao C J, Huang W J, Yang B Z, Wang B H, Yang X T. Preliminary studies on the interlinkage between the remote sensing parameters and the crop fertilizer and moisture models. Acta Agriculturae Boreali-Sinica, 2001, 16(4):52-58. (in Chinese) [25]Basso B, Ritchie J T, Chou T Y. SALUS: A system approach for land use sustainability. Net of digital agriculture & agricultural modeling, 2005. http://www. jaaslib.ac.cn: 88/daamnet/DAAM-5/SALU% 20A% 20system% 20approach%2 0for%20 land%20 use%20 sustainability. htm. [26]周天颖, 简致远. 空间信息技术与土地永续使用系统模型(SALUS Model)之整合. 数字农业与农业模型通讯, 2008. http://www.jaaslib. ac.cn:88/daamnet/DAAM-8/空间信息技术与土地永续使用系统模型(SALUS%20Model)之整合.htm. Zhou T Y, Jian Z Y. Integrating of space information and system approach to land use sustainability. Net of Digital Agriculture & Agricultural Modeling, 2008. http://www.jaaslib.ac.cn:88/daamnet/ DAAM-8/空间信息技术与土地永续使用系统模型(SALUS% 20Model)之整合.htm. (in Chinese) [27]International consortium for agricultural systems applications. Introduction of DSSAT Software, 2010. http://www.icasa.net/ about_us/index.html. [28]International consortium for agricultural systems applications. ORYZA2000: Modeling Lowland Rice, 2010. http://www.icasa.net/ oryza/index.html. [29]APSIM Google Group. APSIM introduction,2010. http://www.apsim. info/Wiki/Introduction.ashx. [30]Tsuji G Y, Uehara G, Balas S. DSSAT v3: Vols. 1, 2, and 3. IBSNAT Project. Honolulu, Hawaii: University of Hawaii, 1994. [31]Bouman B A M, van Keulen H, van Laar H H, Rabbinge R. The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agricultural Systems, 1996, 52: 171-198. [32]McCown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M. APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems, 1996, 50, 255-271. [33]曹宏鑫, 杨余旺, 金之庆, 石春林, 葛道阔, 魏秀芳. 基于Web与模拟模型的水稻栽培数字化设计. 农业工程学报, 2008, 24(12): 137-139. Cao H X, Yang Y W, Jin Z Q, Shi C L, Ge D K, Wei X F. Digital design of rice cultivation based on Web and simulation model. Transactions of the CSAE, 2008, 24(12):137-139. (in Chinese) [34]Boote K J, Pickering N B. Modelling photosynthesis of row crop canopies. HortScience, 1994, 29:1423-1434. [35]Martre P, Porter J R, Jamieson P D, Eugène Triboï E. Modelling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiology, 2003, 133: 1959-1967. [36]Kirkegaard J, Christen O, Krupinsky J, Layzell D. Break crop benefits in temperate wheat production. Field Crops Research, 2008, 107:185-195. [37]Ryan J, Singh M, Pala M, Donald L S. Long-term cereal-based rotation trials in the Mediterranean region: implications for cropping sustainability. Advances in Agronomy, 2008, 97: 273-319. [38]Wolf S, Rudich J. Predicting harvesting data of processing tomato by a simulation model. Journal of American Society Horticulture Science, 1984, 111(1):11-16. [39]Heuelink E. Evaluation of a dynamic simulation model for tomato crop growth and development. Annals of Botany, 1999, 4(83): 413-422. [40]谢祝捷, 陈春宏, 赵京音. 自控温室黄瓜生长发育动态及基于有效积温的发育模型研究. 上海农业学报,2007,23(2):46-49. Xie Z J, Chen C H, Zhao J Y. Study on cucumber growth and development in automatic control glasshouse and its development model based on effective accumulated temperature. Acta Agriculturae Shanghai, 2007,23(2):46-49. (in Chinese) [41]徐 刚, 张昌伟. 温室长季节栽培番茄发育动态模拟模型的研究. 农业工程学报,2005,12(21):243-246. Xu G, Zhang C W. Developmental stage simulation model for long term tomato growing in greenhouse. Transactions of the CSAE, 2005, 12(21):243-246. (in Chinese) [42]李立昆, 李玉红, 程智慧. 基于有效积温早春设施厚皮甜瓜果实发育模拟模型. 北方园艺,2010(6):97-100. Li L K, Li Y H, Cheng Z H. Simulation model of muskmelon fruit development in early spring protected cultivation based on effected accumulated temperature. Northern Gardening, 2010(6):97-100. (in Chinese) [43]张培新, 贺超兴. 基于生理发育时间的日光温室番茄发育模拟模型. 中国农业气象,2006,27(4):314-317. Zhang P X, He C X .A simulation model for tomato plant growth and development in solar greenhouse based on physiological development time. Chinese Journal of Agro Meteorology, 2006,27(4):314-317. (in Chinese) [44]冯胜利, 陈远良. 基于生理发育时间的加工番茄生育期模拟模型. 应用生态学报, 2008,19(7):1544-1550. Feng S L, Chen Y L. Simulation model for the development stages of processing tomato based on physiological development time. Chinese Journal of Applied Ecology, 2008, 19(7):1544-1550. (in Chinese) [45]袁昌梅, 罗卫红. 温室网纹甜瓜发育模拟模型研究. 园艺学报,2005,32(2):262-267. Yuan C M, Luo W H. Simulation of the development of greenhouse muskmelon. Acta Horticulturae Sinica, 2005, 32(2): 262-267. (in Chinese) [46]Wang J K, van Ginkel M, Podlich D, Ye G Y, Trethowan R, Pfeiffer W, Delacy I H, Cooper M, Rajaram S. Comparison of two breeding strategies by computer simulation. Crop Science, 2003, 43: 1764-1773. [47]Chenu K, Chapman S C, Tardieu F, McLean G, Welcker C, Hammer G L. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: A “gene-to-phenotype” modelling approach. Genetics, 2009, 183: 1507-1523. [48]Messina C, Hammer G, Dong Z, Podlich D, Cooper M. Modelling crop improvement in a G×E×M framework via gene-trait-phenotype relationships//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston: Academic Press, 2009: 235-265. [49]Wang J, Chapman S C, Bonnett D G, Rebetzke G J, Crouch J. Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Science, 2007, 47(2): 582-588. [50]Hammer G L, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S C, Podlich, D. Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science, 2006, 11: 587-593. [51]Cieslak M, Lemieux C, Hanan J, Prusinkiewicz P. Quasi-Monte Carlo simulation of the light environment of plants. Functional Plant Biology, 2008, 35, 837-849. [52]Yang Z, Midmore D J. Self-organized resource allocation and growth partitioning at the whole plant level: a modeling study, 2007, http://algorithmicbotany.org /FSPM07/ proceedings.html. [53]刘永霞, 岳延滨, 刘 岩, 曹宏鑫, 葛道阔, 魏秀芳. 不同品种和氮肥条件下水稻根系主要几何参数动态的量化研究. 中国农业科学, 2010, 43(9): 1782-1790. Liu Y X, Yue Y B, Liu Y, Cao H X, Ge D K, Wei X F. Quantitative research of dynamic models of the main geometric parameters of rice root system of different varieties under different nitrogen conditions. Scientia Agricultura Sinica, 2010, 43(9): 1782-1790. (in Chinese) [54]Risto S. Looking back: ten years of FSPM, 2007. http:// algorithmicbotany.org /FSPM07/ proceedings.html. [55]Evers J B, Vos J, Romero P, Yin X, van der Putten P E L, Kang M Z, Struik P C. Extending a functional-structural plant model of spring wheat with sub-models for photosynthesis and carbon distribution, 2007. http://algorithmicbotany.org/FSPM07/Individual/16.pdf. [56]Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Vakev A J. Lignum: A tree model based oil simple structural units. Annals of Botany, 1996, 77: 87-98. [57]Perttunen J, Sievänen R, Nikinmaa E. Lignum: a model combining the structure and the functioning of trees. Ecological Modelling, 1998, 108: 189-198. [58]Perttunen J, Nikinmaa E, Martin J, Lechowicz, Sievänen R, Messier C. Application of the functional-structural tree model Lignum to sugarmaple saplings (Acer saccharum Marsh) vowing in forest gaps. Annals of Botany, 2001, 88: 471-481. [59]Cieslak M, Seleznyova A N, Hanan J. A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. Annals of Botany, 2010, 107(5): 747-764. [60]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agricultural Systems, 2003, 75: 47-77. [61]Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural Modelling. Annals of Botany, 2005, 95: 1131-1143. [62]Yan H P, Kang M Z, de Reffye P, Dingkuhn M. A dynamic architectural plant model simulating resource-dependent growth. Annals of Botany, 2004, 93: 59 1-602. [63]常丽英, 顾东祥, 张文宇, 杨 杰, 曹卫星, 朱 艳. 水稻叶片伸长过程的模拟模型. 作物学报, 2008, 34(2): 311-317. Chang L Y, Gu D X, Zhang W Y, Yang J, Cao W X, Zhu Y. A simulation model of leaf elongation process in rice. Acta Agronomica Sinica, 2008, 34(2): 311-317. (in Chinese) [64]Pradal C, Dufour-Kowalski S, Boudon F, Dones N. The architecture of OpenAlea: A visual programming and component based software for plant modeling, 2007. http://algorithmicbotany.org/FSPM07/ Individual/25.pdf. [65]Han L Q, Hanan J, Gresshoff P M. Computational complementation: a modelling approach to study signalling mechanisms during legume autoregulation of nodulation. PLoS Computational Biology, 2010, 6(2):1-8. [66]White J W. From genome to wheat: emerging opportunities for modelling wheat growth and development. European Journal Agronomy, 2006,25:79-88. |
[1] | WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666. |
[2] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[3] | JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665. |
[4] | YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911. |
[5] | ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382. |
[6] | MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224. |
[7] | MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389. |
[8] | LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483. |
[9] | FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091. |
[10] | ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903. |
[11] | LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980. |
[12] | CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683. |
[13] | ZHANG HongCheng,HU YaJie,YANG JianChang,DAI QiGen,HUO ZhongYang,XU Ke,WEI HaiYan,GAO Hui,GUO BaoWei,XING ZhiPeng,HU Qun. Development and Prospect of Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. |
[14] | TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126. |
[15] | XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217. |
|