Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 378-389.doi: 10.3864/j.issn.0578-1752.2022.02.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index

MA YuFeng1(),ZHOU ZhongXiong3,LI YuTong1,GAO XueQin1,QIAO YaLi1,ZHANG WenBin1,XIE JianMing1,HU LinLi1,2(),YU JiHua1,2()   

  1. 1College of Horticulture, Gansu Agricultural University, Lanzhou Gansu,730070
    2Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070
    3Hubei Kailong Chuxing Chemical Group Co., Ltd, Zhongxiang 431900, Hubei
  • Received:2020-03-17 Accepted:2021-05-31 Online:2022-01-16 Published:2022-01-26
  • Contact: LinLi HU,JiHua YU E-mail:mayf@st.gsau.edu.cn;hull@gsau.edu.cn;yujihua@gsau.edu.cn

Abstract:

【Objective】 All higher plants regulate their root morphology to obtain sufficient nutrients and moisture from the soil environment, of which nitrogen is a critical factor in regulating root morphology. The purpose of this study was to explore the effects of nitrogen levels and forms on root morphology of mini Chinese cabbage and its physiological mechanism and to identify the key factors involved in root morphology shaping, which laid a foundation for further research on the molecular mechanism of nitrogen regulation on plant root morphology. 【Method】 Mini Chinese cabbage (variety ‘Hui nong jin wawa’) were used as test material, four combinations including two nitrogen concentrations (0.1 mmol∙L -1 and 1 mmol∙L-1) and two nitrogen forms (NO3- and NH4+) were set up. The root morphological parameters, including total root length, root volume, root surface area and root tip number, and root physiological indicators, including NO3- content, NH4+ content, sugar, nitric oxide (NO), hydrogen peroxide (H2O2), as well as the activities of rooting related enzymes such as peroxidase (POD), polyphenol oxidase (PPO) and indole acetic acid oxidase (IAAO), were evaluated by root scanner and physiological experiment methods. The contents of endogenous hormones, including cytokinins (CTK), jasmonic acids (JA), auxin (IAA), salicylic acid (SA), 1-aminocyclopropyl-1-carboxylic acid (ACC) and abscisic acid (ABA), were determined by LC-MS/SM absolute quantitative analysis using isotope internal standard method. The correlation between root morphology and physiological indexes were also analyzed. 【Result】Under the same nitrogen form, the different nitrogen levels had different effects on the root morphology and physiology of mini Chinese cabbage. Compared with higher concentration (1.0 mmol∙L-1) NO3- (HN), low concentration (0.1 mmol∙L-1) NO3- (LN) significantly increased the total root length, surface area and number of root tips by 43%, 24% and 50%, respectivley. Compared with HN treatment, the content of reducing sugar increased by 55.81%, the content of NO increased by 18.3%, while the content of H2O2 decreased by 20.44% in LN-treated plants. Compared with higher concentration (1.0 mmol∙L-1) of NH4+ (HA), the low concentration (0.1 mmol∙L-1) of NH4+ (LA) increased the total root length, total root volume, total root surface area and root tips by 96%, 73%, 85%, and 45%, respectively. Compared with HA treatment, LA treatment increased the reducing sugar content by 200%, and both NO and H2O2 decreased to 74.59% and 13.58%, respectively. Under the same nitrogen level, the different nitrogen forms affected the root morphology and physiological indexes of mini Chinese cabbage. Compared with LA treatment, LN treatment increased the total root length and total root surface area, decreased the total root volume and total root tip number, and increased the content of reducing sugars. The contents of NO and H2O2 under LA treatment were 73.68% and 40.98% lower than that under LN treatment, respectively. Compared with HA treatment, HN treatment increased total root length, total root volume and total root surface area, and decreased the total number of root tips. Compared with HN treatment, HA treatment reduced NO and H2O2 content by 82.16%, and 58.66%, respectively. The content of 12-oxo- phytodienoic acid (12-OPDA) in root hormones was the highest under LA treatment, which was 55.18% higher than that under HA treatment. Under each treatment, the content of 12-OPDA was LA>LN>HA>HN; the content of indole acetic acid (IAA) was the largest in HN, which was 44.10% higher than LN, and the IAA content of LA was 93.79% higher than that of HA. The content of IAA under each treatment was HN> LA>LN>HA. The results of correlation analysis between root morphology and physiological indexes showed that root length was significantly positively correlated with reducing sugar (P<0.01), and the number of root tips was positively correlated with 12-OPDA (P<0.05). 【Conclusion】The low concentration of nitrate nitrogen affected root reducing sugar and promotesd the elongation of the main root and lateral roots of mini Chinese cabbage. The low concentration of ammonium nitrogen regulated the 12-OPDA content, which could increase the number of lateral roots of mini Chinese cabbage root system.

Key words: mini Chinese cabbage, nitrogen nutrient, root development, endogenous hormone

Table 1

Effects of nitrogen form and concentration on root morphology in mini Chinese cabbage seedlings"

处理
Treatment
总根长
Total root length (cm)
总根体积
Total root volume (cm3)
总根表面积
Total surface area (cm2)
总根尖数
Total root tip number
LN (0.1 mmol∙L-1 NO3-) 78.592±6.390a 0.032±0.002a 5.606±0.223a 71.976±10.539ab
HN (1.0 mmol∙L-1 NO3-) 54.984±3.140b 0.031±0.003a 4.530±0.192b 48.000±2.459c
LA (0.1 mmol∙L-1 NH4+) 69.341±5.290ab 0.033±0.002a 5.317±0.287ab 78.125±3.449a
HA (1.0 mmol∙L-1 NH4+) 35.350±1.004c 0.019±0.001b 2.866±0.058c 53.880±6.997bc

Fig. 1

Root morphology of mini Chinese cabbage seedlings under different treatments"

Table 2

Effects of nitrogen form and concentration on the content of ammonium nitrogen, nitrate nitrogen, reducing sugar and soluble sugar in root of mini Chinese cabbage seedlings"

处理
Treatment
硝态氮含量
NO3- content (μg∙g-1 FW)
铵态氮含量
NH4+ content (μg∙g-1 FW)
还原糖含量
Reducing sugar content (%)
可溶性糖含量
Soluble sugar content (%)
LN (0.1 mmol∙L-1 NO3-) 378.083±35.695a 655.320±20.607c 0.067±0.007a 0.783±0.0467b
HN (1.0 mmol∙L-1 NO3-) 328.787±29.394a 2361.460±99.972b 0.043±0.003b 0.703±0.103b
LA (0.1 mmol∙L-1 NH4+) 124.377±4.100b 675.360±43.822c 0.060±0.006ab 1.173±0.118a
HA (1.0 mmol∙L-1 NH4+) 387.205±0.295a 2595.957±86.429a 0.020±0.006c 0.660±0.036b

Table 3

Effects of nitrogen form and concentration on NO and H2O2 content in root of mini Chinese cabbage seedlings"

处理
Treatment
NO含量
Nitric oxide content (μmol∙g-1 FW)
H2O2含量
Hydrogen peroxide content (μmol∙g-1 FW)
LN (0.1 mmol∙L-1 NO3-) 52.462±3.590a 0.510±0.023b
HN (1.0 mmol∙L-1 NO3-) 44.341±4.495a 0.641±0.040a
LA (0.1 mmol∙L-1 NH4+) 13.809±5.506b 0.301±0.012c
HA (1.0 mmol∙L-1 NH4+) 7.915±0.873b 0.265±0.013c

Table 4

Effects of nitrogen form and concentration on the activities of root-related enzymes in root of mini Chinese cabbage seedlings"

处理
Treatment
POD活性
POD Activity (U∙min-1∙g-1 FW)
PPO活性
PPO Activity (U∙min-1∙g-1 FW)
IAAO活性
IAAO Activity (U∙g-1 FW)
LN (0.1 mmol∙L-1 NO3-) 710.409±126.831b 323.223±41.980b 8.425±0.771c
HN (1.0 mmol∙L-1 NO3-) 1580.277±92.126a 487.847±34.197a 10.070±0.463c
LA (0.1 mmol∙L-1 NH4+) 1717.460±63.977a 125.969±8.734c 18.977±0.388b
HA (1.0 mmol∙L-1 NH4+) 1759.095±10.864a 288.979±37.418b 25.624±0.586a

Table 5

Effects of nitrogen form and concentration on the content of cytokinin in root of mini Chinese cabbage seedlings"

处理
Treatment
CTK
cZR含量
cZR content (ng∙g-1)
IPR含量
IPR content (ng∙g-1)
IP含量
IP content (ng∙g-1)
tZR含量
tZR content (ng∙g-1)
cZ含量
cZ content (ng∙g-1)
tZ含量
tZ content (ng∙g-1)
LN (0.1 mmol∙L-1 NO3-) 46.986±4.348a 1.741±0.307b 0.405±0.004a 0.444±0.052b 1.129±0.077a 3.469±0.147b
HN (1.0 mmol∙L-1 NO3-) 47.440±4.432a 2.574±0.224a 0.437±0.022a 0.741±0.080a 1.359±0.194a 3.551±0.257b
LA (0.1 mmol∙L-1 NH4+) 52.372±2.106a 3.083±0.187a 0.422±0.006a 0.608±0.029ab 1.185±0.120a 6.334±0.505a
HA (1.0 mmol∙L-1 NH4+) 41.828±1.405a 1.731±0.212b 0.397±0.012a 0.443±0.017b 1.074±0.125a 4.510±0.608b

Table 6

Effects of nitrogen form and concentration on JA, IAA, SA, ACC and ABA content in root of mini Chinese cabbage seedlings"

处理
Treatment
JA IAA含量
IAA content
(ng∙g-1)
SA含量
SA content
(ng∙g-1)
ACC含量
ACC content
(ng∙g-1)
ABA含量
ABA content
(ng∙g-1)
12-OPDA含量
12-OPDA content (ng∙g-1)
JA-ILE含量
JA-ILE content
(ng∙g-1)
JA含量
JA content
(ng∙g-1)
LN (0.1 mmol∙L-1 NO3-) 25.393±3.337ab 0.472±0.036b 10.804±1.209b 93.119±11.348b 202.601±12.412bc 24.754±1.260c 2.371±0.193a
HN (1.0 mmol∙L-1 NO3-) 16.966±2.090b 0.728±0.208ab 16.305±3.735b 134.180±38.582ab 277.059±48.162ab 51.121±3.751a 2.603±0.348a
LA (0.1 mmol∙L-1 NH4+) 32.344±1.749a 1.623±0.481a 30.803±5.087a 120.352±14.078a 331.004±13.680a 31.948±0.816b 2.741±0.116a
HA (1.0 mmol∙L-1 NH4+) 20.844±2.659b 1.618±0.368a 22.741±4.163ab 62.133±3.745b 151.964±3.687c 31.819±2.344b 2.405±0.133a

Fig. 2

Correlation between root physiological indexes and root morphological parameters The value above ± 0.95 indicates a significant correlation (P<0.05), and The value above ± 0.99 indicates a very significant correlation (P<0.01)"

[1] KIBA T, KUDO T, KOJIMA M, SAKAKIBARA H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 2010, 62(4):1399-1409.
doi: 10.1093/jxb/erq410
[2] LEGHARI S J, WAHOCHO N A, LAGHARI G M, LAGHARI A H, LASHARI A A. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 2016, 10(9):209-218.
[3] OSMONT K S, SIBOUT R, HARDTKE C S. Hidden branches: Developments in root system architecture. Annual Review of Plant Biology, 2007, 58:93-113.
doi: 10.1146/arplant.2007.58.issue-1
[4] MOCHIZUKI S, JIKUMARU Y, NAKAMURA H, KOIWAI H, SASAKI K, KAMIYA Y, ICHIKAWA H, MINAMI E, NISHIZAWA Y. Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. Journal of Experimental Botany, 2014, 65(9):2307-2318.
doi: 10.1093/jxb/eru110
[5] KONG X P, ZHANG C L, ZHENG H H, SUN M, ZHANG F, ZHANG M Y, CUI F H, LV D P, LIU L J, GUO S Y, ZHANG Y M, YUAN X Z, ZHAO S, TIAN H Y, DING Z J. Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in Arabidopsis. Cell Reports, 2020, 32(8):108060.
doi: 10.1016/j.celrep.2020.108060
[6] MEIER M, LIU Y, LAY-PRUITT K S, TAKAHASHI H, VON WIRÉN N. Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, 2020, 6(9):1136-1145.
doi: 10.1038/s41477-020-00756-2
[7] MOTTE H, BEECKMAN T. A pHantastic ammonium response. Nature Plants, 2020, 6(9):1080-1081.
doi: 10.1038/s41477-020-00765-1
[8] LE J, VANDENBUSSCHE F, VAN DER STRAETEN D, VERBELEN J P. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiology, 2001, 125(2):519-522.
doi: 10.1104/pp.125.2.519
[9] KAWA D. Hormonal solution for (root) hair extension. The Plant Cell, 2020, 32(4):799-800.
doi: 10.1105/tpc.20.00038
[10] HAN X, ZHANG M H, YANG M L, HU Y R. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development. The Plant Cell, 2020, 32(4):1049-1062.
doi: 10.1105/tpc.19.00617
[11] SCHERES B, BENFEY P, DOLAN L. Root development. The Arabidopsis Book, 2002, 40:1-18. doi: 10.1199/tab.0101.
[12] STASWICK P E, SU W, HOWELL S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. PNAS, 1992, 89(15):6837-6840.
doi: 10.1073/pnas.89.15.6837
[13] 刘莉. 盐胁迫下植物激素对水稻种子萌发及幼苗根系生长的调控机理研究[D]. 武汉: 华中农业大学, 2018.
LIU L. The regulation and mechanism of phytohormone on rice seed germination and seedling root growth under salinity[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[14] MENG Q, ZHANG W Q, HU X, SHI X Y, CHEN L L, DAI X L, QU H Y, XIA Y W, LIU W, GU M, XU G H. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice. The Plant Journal, 2020, 104(5):1269-1284.
doi: 10.1111/tpj.v104.5
[15] PIGNOCCHI C, IVAKOV A, FEIL R, TRICK M, PIKE M, WANG T L, LUNN J E, SMITH A M. Restriction of cytosolic sucrose hydrolysis profoundly alters development, metabolism, and gene expression in Arabidopsis roots. Journal of Experimental Botany, 2020, 72(5):1850-1863.
doi: 10.1093/jxb/eraa581
[16] MISHRA B S, SINGH M, AGGRAWAL P, LAXMI A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE, 2009, 4(2):e4502.
doi: 10.1371/journal.pone.0004502
[17] STÖHR C, ULLRICH W R. Generation and possible roles of NO in plant roots and their apoplastic space. Journal of Experimental Botany, 2002, 53(379):2293-2303.
doi: 10.1093/jxb/erf110
[18] LIAO W B, HUANG G B, YU J H, ZHANG M L, SHI X L. Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. The Journal of Horticultural Science and Biotechnology, 2011, 86(2):159-165.
doi: 10.1080/14620316.2011.11512742
[19] DUNAND C, CRÈVECOEUR M, PENEL C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. The New Phytologist, 2007, 174(2):332-341.
doi: 10.1111/nph.2007.174.issue-2
[20] JOO J H, BAE Y S, LEE J S. Role of auxin-induced reactive oxygen species in root gravitropism1. Plant Physiology (Bethesda), 2001, 126(3):1055-1060.
doi: 10.1104/pp.126.3.1055
[21] MOLINA-FAVERO C, CREUS C, LANTERI M L, CORREA- ARAGUNDE N, LOMBARDO M, BARASSI C, LAMATTINA L. Nitric oxide and plant growth promoting Rhizobacteria: Common features influencing root growth and development. Advances in Botanical Research, 2007, 46:1-33. doi: 10.1016/S0065-2296(07)46001-3.
[22] LIAO W B, XIAO H L, ZHANG M L. Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover Chrysanthemum and associated biochemical changes. Journal of Plant Growth Regulation, 2010, 29(3):338-348.
doi: 10.1007/s00344-010-9140-5
[23] YAN Y H, LI J L, ZHANG X Q, YANG W Y, WAN Y, MA Y M, ZHU Y Q, PENG Y, HUANG L K. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS ONE, 2014, 9(3):e90700. doi: 10.1371/journal.pone.0090700.
doi: 10.1371/journal.pone.0090700
[24] BAQUE M A, HAHN E J, PAEK K Y. Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin. Plant Biotechnology Reports, 2010, 4(2):109-116.
doi: 10.1007/s11816-009-0121-8
[25] HU L L, YU J H, LIAO W B, ZHANG G B, XIE J M, LV J, XIAO X M, YANG B L, ZHOU R H, BU R F. Moderate ammonium:nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Scientia Horticulturae, 2015, 186:143-153.
doi: 10.1016/j.scienta.2015.02.020
[26] 卿悦, 李廷轩, 叶代桦. 无机氮处理对矿山生态型水蓼氮积累及根系形态的影响. 草业学报, 2020, 29(1):203-210.
QING Y, LI T X, YE D H. Effects of inorganic N on the N accumulation and root morphology of a mining ecotype of Polygonum hydropiper. Acta Prataculturae Sinica, 2020, 29(1):203-210. (in Chinese)
[27] 张婧. 铵硝氮素比例影响辣椒生长与果实代谢的机理研究[D]. 兰州: 甘肃农业大学, 2020.
ZHANG J. The mechanism of ammonium and nitrate nitrogen ratio on the growth and fruit metabolism of Capsicum annuum L[D]. Lanzhou: Gansu Agricultural University, 2020.(in Chinese)
[28] 张小莉, 王鹏程, 宋纯鹏. 植物细胞过氧化氢的测定方法. 植物学通报, 2009, 44(1):103-106.
ZHANG X L, WANG P C, SONG C P. Methods of detecting hydrogen peroxide in plant cells. Chinese Bulletin of Botany, 2009, 44(1):103-106. (in Chinese)
[29] 高俊凤. 植物生理学实验指导, 北京: 高等教育出版社, 2006.
GAO J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. (in Chinese)
[30] NACRY P, BOUGUYON E, GOJON A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 2013, 370(1):1-29.
doi: 10.1007/s11104-013-1645-9
[31] YI J, GAO J P, ZHANG W Z, ZHAO C, WANG Y, ZHEN X X. Differential uptake and utilization of two forms of nitrogen in Japonica rice cultivars from north-eastern China. Frontiers in Plant Science, 2019, 10:1061.
doi: 10.3389/fpls.2019.01061
[32] GRUBER B D, GIEHL R F H, FRIEDEL S, VON WIRÉN N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 2013, 163(1):161-179.
doi: 10.1104/pp.113.218453
[33] KONG D Y, HAO Y L, CUI H C. The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Molecular Plant, 2016, 9(2):261-270.
doi: 10.1016/j.molp.2015.11.006
[34] DEN HERDER G, VAN ISTERDAEL G, BEECKMAN T, DE SMET I. The roots of a new green revolution. Trends in Plant Science, 2010, 15(11):600-607.
doi: 10.1016/j.tplants.2010.08.009
[35] PIERIK R, TESTERINK C. The art of being flexible: How to escape from shade, salt and drought. Plant Physiology, 2014, 166(1):5-22.
doi: 10.1104/pp.114.239160
[36] FUJIKAKE H, YAMAZAKI A, OHTAKE N, SUEYOSHI K, MATSUHASHI S, ITO T, MIZUNIWA C, KUME T, HASHIMOTO S, ISHIOKA N S, WATANABE S, OSA A, SEKINE T, UCHIDA H, TSUJI A, OHYAMA T. Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. Journal of Experimental Botany, 2003, 54(386):1379-1388.
doi: 10.1093/jxb/erg147
[37] ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 2006, 57:675-709.
doi: 10.1146/arplant.2006.57.issue-1
[38] KIRCHER S, SCHOPFER P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of SciencesProceedings of the National Academy of Sciences, 2012, 109(28):11217-11221.
[39] CAI X T, XU P, ZHAO P X, LIU R, YU L H, XIANG C B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications, 2014, 5:5833.
doi: 10.1038/ncomms6833
[40] YUAN T T, XU H H, ZHANG K X, GUO T T, LU Y T. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant, Cell & Environment, 2014, 37(6):1338-1350.
[41] OGURA T, GOESCHL C, FILIAULT D, MIREA M, SLOVAK R, WOLHRAB B, SATBHAI S B, BUSCH W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178(2):400-412.
doi: 10.1016/j.cell.2019.06.021
[42] 黄秀, 叶昌, 燕金香, 李福明, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 不同氮吸收效率水稻品种的苗期铵吸收特性及生长差异分析. 中国农业科学, 2021, 54(7):1455-1468.
HUANG X, YE C, YAN J X, LI F M, CHU G, XU C M, CHEN S, ZHANG X F, WANG D Y. Analysis of ammonium uptake and growth differences of rice varieties with different nitrogen recovery efficiency at seedling stage. Scientia Agricultura Sinica, 2021, 54(7):1455-1468. (in Chinese)
[43] 杨娜. 氮素(NH4+,NO3-)和植物激素在调控拟南芥根系构型中的相互作用[D]. 南京: 南京农业大学, 2010.
YANG N. Interaction between nitrogen (NH4+, NO3-) and plant hormones in regulation of root system architecture in Arabidopsis[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[44] YANG N, ZHU C H, GAN L J, NG D, XIA K. Ammonium- stimulated root hair branching is enhanced by methyl jasmonate and suppressed by ethylene in Arabidopsis thaliana. Journal of Plant Biology, 2011, 54(2):92-100.
doi: 10.1007/s12374-011-9147-x
[45] ZHU C H, GAN L J, SHEN Z G, XIA K. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. Journal of Experimental Botany, 2006, 57(6):1299-1308.
doi: 10.1093/jxb/erj103
[46] 张德健, 夏仁学, 曹秀. 矿质养分和激素对根毛生长发育的影响及作用机制. 植物营养与肥料学报, 2016, 22(3):802-810.
ZHANG D J, XIA R X, CAO X. Effects and mechanism of mineral nutrient and phytohormone on root hair development. Plant Nutrition and Fertilizer Science, 2016, 22(3):802-810. (in Chinese)
[47] MÄHÖNEN A P, BISHOPP A, HIGUCHI M, NIEMINEN K M, KINOSHITA K, TÖRMÄKANGAS K, IKEDA Y, OKA A, KAKIMOTO T, HELARIUTTA Y. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science, 2006, 311(5757):94-98.
doi: 10.1126/science.1118875
[48] 李想. 细胞分裂素抑制拟南芥侧根起始及调控根系发育的分子机理研究[D]. 杭州: 浙江大学, 2006.
LI X. Study on the molecular mechanisms of cytokinin repression of lateral root initiation and regulation of root system development in Arabidosis [D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
[49] 童敏. 一种新型植物生长调节剂CRZ-1对不同生长条件下小麦幼苗的影响[D]. 南京: 南京师范大学, 2011.
TONG M. The effect of a new plant growth regulator CRZ-1 on wheat seedlings under different growth conditions[D]. Nanjing: Nanjing Normal University, 2011. (in Chinese)
[50] LIN P C, HWANG S G, ENDO A, OKAMOTO M, KOSHIBA T, CHENG W H. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiology, 2006, 143(2):745-758.
doi: 10.1104/pp.106.084103
[51] 原牡丹, 侯智霞, 翟明普, 苏艳. IAA分解代谢相关酶(IAAO、POD)的研究进展. 中国农学通报, 2008, 24(8):88-92.
YUAN M D, HOU Z X, ZHAI M P, SU Y. The research advances on Indole-3-acetic acid (IAA) catabolism related enzymes: IAA oxidase (IAAO), peroxidase (POD). Chinese Agricultural Science Bulletin, 2008, 24(8):88-92. (in Chinese)
[52] EBRAHIMZADEH H, ABRISHAMCHI P. Changes in IAA, phenolic compounds, peroxidase, IAA oxidase, and polyphenol oxidase in relation to flower formation in Crocus sativus. Russian Journal of Plant Physiology, 2001, 48(2):190-195.
doi: 10.1023/A:1009048000109
[53] 李娇. 一氧化氮参与硝酸盐调控不同硝响应型水稻侧根生长的机制研究[D]. 南京: 南京农业大学, 2014.
LI J. Physiological mechanisms of nitric oxide participating lateral root growth regulated by partial nitrate nutrition in rice genotypes with different nitrate responsivity[D]. Nanjing : Nanjing Agricultural University, 2014. (in Chinese)
[54] 武晓东. 欧美山杨杂种微扦插技术及生根机理研究[D]. 哈尔滨: 东北林业大学, 2011.
WU X D. Study on micro-cutting of Populu stremula×P.emuloides and its rooting mechanism[D]. Harbin: Northeast Forestry University, 2011. (in Chinese)
[55] VAN CAMP W, VAN MONTAGU M, INZÉ D. H2O2 and NO: redox signals in disease resistance. Trends in Plant Science, 1998, 3(9):330-334.
doi: 10.1016/S1360-1385(98)01297-7
[56] 李师翁, 薛林贵, 冯虎元, 徐世键, 安黎哲. 植物中的H2O2信号及其功能. 中国生物化学与分子生物学报, 2007(10):804-810.
LI S W, XUE L G, FENG H Y, XU S J, AN L Z. Hydrogen peroxide signaling and its biological importance in plants. Chinese Journal of Biochemistry and Molecular Biology, 2007(10):804-810. (in Chinese)
[57] GOLD A J, PARKER D, WASKOM R M, DOBROWOLSKI J, O'NEILL M, GROFFMAN P M, ADDY K, BARBER M, BATIE S, BENHAM B, BIANCHI M, BLEWETT T, EVENSEN C, FARRELL-POE K, GARDNER C, GRAHAM W, HARRISON J, HARTER T, KUSHNER J, LOWRANCE R, et al. Advancing water resource management in agricultural, rural, and urbanizing watersheds: Why land-grant universities matter. Journal of Soil and Water Conservation, 2013, 68(4):337-348.
doi: 10.2489/jswc.68.4.337
[58] YUAN L X, LOQUÉ D, KOJIMA S, ISHIYAMA K, RAUCH S, INOUE E, TAKAHASHI H, VON WIRÉN N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell, 2007, 19(8):2636-2652.
doi: 10.1105/tpc.107.052134
[1] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[2] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[3] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
[4] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[5] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[6] GE Xia,XU Rui,LI Mei,TIAN JiaChun,LI ShouQiang,CHENG JianXin,TIAN ShiLong. Regulation Mechanism of Carvone on Seed Potato Sprouting [J]. Scientia Agricultura Sinica, 2020, 53(23): 4929-4939.
[7] LI XiaoLin, ZHENG Yi. Spatial-Temporal Distribution of Nitrogen Nutrient Flow and Environmental Effects of Crop-Livestock System in Yunnan Province
 
[J]. Scientia Agricultura Sinica, 2018, 51(3): 481-492.
[8] GUO YunHui, YU YuanYuan, WEN LiZhu, SUN CuiHui, SUN XianZhi, WANG WenLi, SUN Xia, ZHENG ChengShu. Molecular Basis of the Effects of Nitrate Signal on Root Morphological Structure Changes of Chrysanthemum [J]. Scientia Agricultura Sinica, 2017, 50(9): 1684-1693.
[9] LING QiHong, WANG ShaoHua, DING YanFeng, LI GangHua. Re-Evaluation of Using the Color Difference Between the Top 3rd Leaf and the 4th Leaf as a Unified Indicator for High-Yielding Rice [J]. Scientia Agricultura Sinica, 2017, 50(24): 4705-4713.
[10] LIU Yue-shan, LI Cheng, WANG Dong-xia, XU Gang, WANG Yu-ping, CHENG Li-xiang, ZHANG Jun-lian, WANG Di, ZHANG Feng. Solanum tuberosum L.; Correlation Among Endogenous Hormone Content, Threshold and Dormancy Periods in Processing Potato Varieties Minitubers During Storage [J]. Scientia Agricultura Sinica, 2015, 48(2): 262-269.
[11] LI Xiu, GONG Biao, XU Kun. Effect of Exogenous Spermidine on Levels of Endogenous Hormones and Chloroplast Ultrastructure of Ginger Leaves Under Heat Stress [J]. Scientia Agricultura Sinica, 2015, 48(1): 120-129.
[12] ZHOU Yu-Fei, WANG De-Quan, LU Zhang-Biao, WANG Na, WANG Yi-Tao, LI Feng-Xian, XU Wen-Juan, HUANG Rui-Dong. Effects of Drought Stress on Photosynthetic Characteristics and Endogenous Hormone ABA and CTK Contents in Green-Stayed Sorghum [J]. Scientia Agricultura Sinica, 2014, 47(4): 655-663.
[13] WANG Hai-bo, ZHAO Jun-quan, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi. The Influence of Changes of Endogenous Hormones in Shoot on the Grapes Flower Bud Differentiation in Greenhouse [J]. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705.
[14] YANG Dong-Qing-1, WANG Zhen-Lin-1, NI Ying-Li-1, 2 , YIN Yan-Ping-1, CAI Tie-1, YANG Wei-Bing-1, PENG Dian-Liang-1, CUI Zheng-Yong-1, JIANG Wen-Wen-1. Effect of High Temperature Stress and Spraying Exogenous ABA Post-Anthesis on Grain Filling and Grain Yield in Different Types of Stay-Green Wheat [J]. Scientia Agricultura Sinica, 2014, 47(11): 2109-2125.
[15] WANG Ru-Fang, ZHANG Ji-Wang, LU Peng , DONG Shu-Ting, LIU Peng, ZHAO Bin. Effects of Endogenous Hormones on Tiller Development Process of Different Maize Varieties [J]. Scientia Agricultura Sinica, 2012, 45(5): 840-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!