Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1199-1217.doi: 10.3864/j.issn.0578-1752.2021.06.011
• HORTICULTURE • Previous Articles Next Articles
XuXian XUAN1(),ZiLu SHENG1,ZhenQiang XIE2,YuQing HUANG1,PeiJie GONG1,Chuan ZHANG1,Ting ZHENG1,Chen WANG1(
),JingGui FANG1
[1] | WANG T Y, PING X K, CAO Y R, JIAN H J, GA3O Y M, WANG J, TAN Y C, XU X F, LU K, LI J N, LIU L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biology, 2019,19(1):336. |
[2] |
XU Z S, CHEN M, LI L C, MA Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 2011,53(7):570-585.
doi: 10.1111/j.1744-7909.2011.01062.x pmid: 21676172 |
[3] | LI J, LUAN Y S, ZHAI J M, LIU P, XIA X Y. Bioinformatic analysis of functional characteristics of miR172 family in tomato. Journal of Northeast Agricultural University (English edition), 2013,20(4):21-29. |
[4] | 王梦琦, 解振强, 孙欣, 李晓鹏, 朱旭东, 王晨, 房经贵. 葡萄miR159及其靶基因VvGAMYB在花发育过程中的作用分析. 园艺学报, 2017,44(6):1061-1072. |
WANG M Q, XIE Z Q, SUN X, LI X P, ZHU X D, WANG C, FANG J G. Function analysis of miR159 and its target gene VvGAMYB in grape flower development. Acta Horticulturae Sinica, 2017,44(6):1061-1072. (in Chinese) | |
[5] |
MATHIEU J, YANT L J, MURDTER F, KUTTNER F, SCHMID M. Repression of flowering by the miR172 target SMZ. PLoS Biology, 2009,7(7):e1000148.
doi: 10.1371/journal.pbio.1000148 pmid: 19582143 |
[6] |
ZENG C Y, WANG W Q, ZHENG Y, CHEN X, BO W P, SONG S, ZHANG W X, PENG M. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Research, 2010,38(3):981-995.
doi: 10.1093/nar/gkp1035 pmid: 19942686 |
[7] |
TANG M Y, BAI X, NIU L J, CHAI X, CHEN M S, XU Z F. miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas. Plant and Cell Physiology, 2018,59(12):2549-2563.
doi: 10.1093/pcp/pcy175 pmid: 30541045 |
[8] | ZHU Q H, HELLIWELL C A. Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 2011,62:487-495. |
[9] | 侍婷, 高志红, 章镇, 庄维兵. MicroRNA参与植物花发育调控的研究进展. 中国农学通报, 2010,26(13):267-271. |
SHI T, GAO Z H, ZHANG Z, ZHUANG W B. Advance of research on microRNA in flower development regulation. Chinese Agricultural Science Bulletin, 2010,26(13):267-271. (in Chinese) | |
[10] |
YAO J L, TOMES S, XU J, GLEAVE A P. How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signaling and Behavior, 2016,11(4):e1156833.
doi: 10.1080/15592324.2016.1156833 pmid: 26926448 |
[11] |
RIPOLL J J, BAILRY L J, MAI Q A, WU S L, HON C T, CHAPMAN E J, DITTA G S, YANOFSKY M E, YANOFSKY M F. microRNA regulation of fruit growth. Nature Plants, 2015,1(4):15036.
doi: 10.1038/nplants.2015.36 pmid: 27247036 |
[12] |
CHEN X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303(5666):2022-2025.
doi: 10.1126/science.1088060 pmid: 12893888 |
[13] |
JUNG J H, SEO Y H, SEO P J, REYES J L, JU Y, CHUA N H, PARK C M. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 2007,19(9):2736-2748.
doi: 10.1105/tpc.107.054528 pmid: 17890372 |
[14] | JUNG J H, SEO P J, KANG S K, PARK C M. MiR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology, 2011,76(1):35-45. |
[15] |
YANT L, MATHIEU J, DINH T T, OTT F, LANZ C, WOLLMANN H, CHEN X, SCHMID M. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell, 2010,22(7):2156-2170.
doi: 10.1105/tpc.110.075606 pmid: 20675573 |
[16] | BARTLEY G E, ISHIDA B K. Digital fruit ripening: Data mining in the TIGR tomato gene index. Plant Molecular Biology Reporter, 2002,20(2):115-130. |
[17] |
ALBA R, PAYTON P, FEI Z J, MCQUINN R, DEBBIE P, MARTIN G B, TANKSLEY S D, GIOVANNONI J J. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell, 2005,17(11):2954-2965.
doi: 10.1105/tpc.105.036053 pmid: 16243903 |
[18] | CHUNG M Y, VREBALOV J, ALBA R, LEE J, MCQUINN R, CHUNG J D, KLEIN P, GIOVANNONI J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant Journal, 2010,64(6):936-947. |
[19] | 滕飞. 拟南芥AP2/ERF基因ERF055调控茎端分生组织发育的功能研究[D]. 泰安: 山东农业大学, 2013. |
TENG F. Functional study of Arabidopsis AP2/ERF family gene ERF055 in regulation of the development of the shoot apical meristem[D]. Tai’an: Shangdong Agrilcultural University, 2013. (in Chinese) | |
[20] | 张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展. 遗传, 2012,34(7):835-847. |
ZHANG J Y, WANG Q J, GUO Z R. Progresses on plant AP2/ERF transcription factors. Hereditas, 2012,34(7):835-847. (in Chinese) | |
[21] | 王文然, 王晨, 解振强, 贾海锋, 汤崴, 崔梦杰, 房经贵. VvmiR397a及其靶基因VvLACs在葡萄果实发育中的作用分析. 园艺学报, 2018,45(8):1441-1455. |
WANG W R, WANG C, XIE Z Q, JIA H F, TANG W, CUI M J, FANG J G. Function analysis of VvmiR397a and its target genes VvLACs in grape berry development. Acta Horticulturae Sinica, 2018,45(8):1441-1455. (in Chinese) | |
[22] |
KUNST L, KLENZ J E, MARTINEZ-ZAPATER J, HAUGHN G W. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell, 1989,1(12):1195-1208.
doi: 10.1105/tpc.1.12.1195 pmid: 12359889 |
[23] |
OKAMURO J K, BOER BGW, JOFUKU KD. Regulation of Arabidopsis flower development. Plant Cell, 1993,5(10):1183-1193.
pmid: 8281037 |
[24] |
NIU X, HELENTJARIS T, BATE N J. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell, 2002,14(10):2565-2575.
pmid: 12368505 |
[25] |
WANG C, ShANGGUAN L F, NICHOLAS K K, WANG X C, HAN J, SONG C N, FANG J G. Characterization of microRNAs identified in a table grapevine cultivar with validation of computationally predicated grapevine miRNAs by miR-RACE. PLoS ONE, 2016(7):e21259.
doi: 10.1371/journal.pone.0021259 pmid: 21829435 |
[26] | 张文颖, 王晨, 朱旭东, 马超, 王文然, 冷祥鹏, 郑婷, 房经贵. 葡萄全基因组DELLA蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征. 中国农业科学, 2018,51(16):3130-3146. |
ZHANG W Y, WANG C, ZHU X D, MA C, WANG W R, LENG X P, ZHENG T, FANG J G. Genome-wide identification and expression of DELLA protein gene family during the development of grape berry induced by exogenous GA. Scientia Agricultura Sinica, 2018,51(16):3130-3146. (in Chinese) | |
[27] | 朱旭东. 葡萄蔗糖合酶基因VvSS3的初步功能研究[D]. 南京: 南京农业大学, 2017. |
ZHU X D. The preliminary function analysis of the sucrose synthase gene VvSS3 in Vitis vinifera[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
[28] |
AKULLAN J B, PINTO D L P, BERTOLINI E, FASOLI M, ZENONI S, TORNIELLI G B, PEZZOTTI M, MEYERS B C, FARINA L, PE M E, MICA E. miRVine: A microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics, 2015,16:393.
pmid: 25981679 |
[29] | NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006,140(2):411-432. |
[30] |
TANG M F, LI G S, CHEN M S. The phylogeny and expression pattern of APETALA2-like genes in rice. Journal of Genetics and Genomics, 2007,34(10):930-938.
pmid: 17945171 |
[31] | GIL-HUMANES J, PISTON F, MARTIN A, BARRO F. Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids. BMC Plant Biology, 2009,9(1):66-79. |
[32] |
ZHUANG J, CAI B, PENG R H, ZHU B, JIN X F, XUE Y, GAO F, FU X Y, TIAN Y S, ZHAO W, QIAO Y S, ZHANG Z, XIONG A S, YAO Q H. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochemical and Biophysical Research Communications, 2008,371(3):468-474.
doi: 10.1016/j.bbrc.2008.04.087 pmid: 18442469 |
[33] |
ZHANG G Y, CHEN M, CHEN X P, XU Z S, GUAN S, LI L C, LI A L, GUO J M, MAO L, MA Y Z. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). Journal of Experimental Botany, 2008,59(15):4095-4107.
pmid: 18832187 |
[34] |
LI J P, CHEN F J, LI Y Q, LI P C, WANG Y Q, MI G H, YUAN L X. ZmRAP2.7, an AP2 transcription factor, is involved in Maize brace roots development. Frontiers in plant science, 2019,10:820.
doi: 10.3389/fpls.2019.00820 pmid: 31333689 |
[35] |
JOFUKU K D, DEN BOER B D, VAN MONTAGU M, OKAMURO J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994,6(9):1211-1225.
doi: 10.1105/tpc.6.9.1211 pmid: 7919989 |
[36] |
ZHU Q H, HELLIWELLl C A. Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 2011,62(2):487-495.
doi: 10.1093/jxb/erq295 pmid: 20952628 |
[1] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[2] | LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422. |
[3] | GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148. |
[4] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[5] | WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990. |
[6] | XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807. |
[7] | WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486. |
[8] | WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959. |
[9] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[10] | MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830. |
[11] | JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811. |
[12] | YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226. |
[13] | HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025. |
[14] | XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151. |
[15] | LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963. |
|