Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4895-4911.doi: 10.3864/j.issn.0578-1752.2022.24.009

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush

YOU YuWan(),ZHANG Yu,SUN JiaYi,ZHANG Wei()   

  1. College of Horticulture & Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070
  • Received:2022-03-04 Accepted:2022-04-24 Online:2022-12-16 Published:2023-01-04
  • Contact: Wei ZHANG E-mail:1797435616@qq.com;zhangw@mail.hzau.edu.cn

Abstract:

【Objective】This study was designed to identify the NAC gene family in Rosa chinensis Old Blush and to analyze the sequences characteristics and expression pattern of RcNACs to reveal the biological functions of RcNACs, which also provided an important foundation to explore the role of RcNACs in prickles. 【Method】The BLATP and HMMER search were conducted to identify NAC proteins in Rosa chinensis Old Blush using the sequences of NAC proteins of Arabidopsis. Physical and chemical properties, subcellular location, structure and phylogenetic relationship of each gene were further analyzed. Based on the released transcriptome data, the expression characteristics of RcNACs in different tissues and organs under different stress conditions were analyzed. What’s more, the technology of RNA-seq was used to screen RcNAC genes that might be related to the prickle development. 【Result】In this study, 116 NAC genes from Rosa chinensis Old Blush genome were identified and characterized. These RcNACs genes encoded proteins containing 69 to 713 amino acids, with the theoretical isoelectric points ranging from 4.43 to 9.54 and the molecular weight ranging from 7.87 to 79.99 kD. The prediction of subcellular localization showed that 81 RcNACs were located in the nucleus. Moreover, RcNACs were unevenly distributed on 7 chromosomes. According to phylogenetic relationships, AtNACs, OsNACs and RcNACs were clustered into 21 groups. These 116 RcNACs were differentially expressed in various tissues and organs, and the expression levels of 31 members changed in response to abiotic and biotic stresses. Furthermore, in the RNA-seq data of prickles, 53 RcNACs were detected, among which 26 members were differentially expressed genes. 【Conclusion】This study demonstrated that RcNACs were involved in the regulation of plant development and stress responses. Some members might be involved in the processes of prickle cell proliferation, secondary cell wall biosynthesis, and programmed cell death, which could be selected as candidate genes related with prickle development for further study.

Key words: Rosa chinensis ‘Old Blush’, NAC transcription factor, transcriptome sequencing, prickle development

Fig. 1

Prickle of Rosa chinensis Old Blush at different developmental stages used for RNA-Seq Stage I: Soft and flexible prickles not yet lignified; Stage II: Hooked prickles with a certain degree of lignification; Stage III: Fully lignified prickles; Stage IV: Prickles entering a senescent phase"

Table 1

Primer sequences for qRT-PCR"

基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
基因ID
Gene ID
基因注释
Gene annotation
RcNAC001 TGATGAAGGGACAAAGTGGGC GCTCGATCTATCTTGGCCATT RchiOBHmChr0c19g0500091 NAC
RcNAC010 TTCGGTGACGGGCAATTCTTA CTGCTCAACCAGAGGTTCACT RchiOBHmChr1g0334901 NAC
RcNAC012 CGACAACACCAGCAGCATAAC CAAAAGCTCCCTCCTGATCGT RchiOBHmChr1g0360971 NAC
RcNAC057 TGGGAGTAGGACCGATTGGAT GATGAAGAACAAGGCGCAAGG RchiOBHmChr4g0429461 NAC
RcNAC063 AATGTGGTATGGGCACTCCAG TCCCTATTCTGGCCTCCTTGA RchiOBHmChr5g0009331 NAC
RcNAC098 GCTTCTCCAACCATGAGTCCA GTTTTCAAGCAAGGCCCTCAG RchiOBHmChr7g0181751 NAC
RcNAC111 CTGTGTGAGGGTAAGCAGTGG CGACACAACACGTATCCGCTA RchiOBHmChr7g0225481 NAC
RcGST CCTCAGATCCCAAGCCAAGTT TCGGGCACTCTGGTTCAATAC RchiOBHmChr5g0027341 谷胱甘肽转移酶Glutathione transferase
RcTGL CAGGCATCAGGGAAGAACCTT CCCAAACCATACACACCCGTA RchiOBHmChr2g0141171 三酰基甘油脂肪酶Triacylglycerol lipase
RcWRKY CTGAGGTAGCTTTGCCTCACA GTGTTTCCCCTCGTATGTGGT RchiOBHmChr2g0166991 WRKY
RcbHLH GGAAAAACGACCCCGGAAAAG GAAGACGTTCGGGACTCTTGT RchiOBHmChr7g0209751 bHLH
RcEXPA TTAGTGGTGGACACCTTGCTG CAAAATGTCCTGGCCCAAACC RchiOBHmChr6g0279781 EXPA
RcNAC032 GTGGTGGCACTGGAATTAGGA TGTGATATTTGGTGTGGCGGA RchiOBHmChr1g0383091 NAC
RcNAC035 TGGACCGGAATAAAGTGGCAA CGGCGAGAATACATGATCCGA RchiOBHmChr2g0122871 NAC
RcNAC052 GAAAGCTCTGCGACTCCAAAC TGTTGTTGTCTCCTCCAGCAA RchiOBHmChr3g0482951 NAC

Fig. 2

Phylogenetic tree of NAC proteins in Rosa chinensis Old Blush (red), Arabidopsis thaliana (black), and Oryza sativa subsp. Japonica (black)"

Table 2

Basic information of NAC family members in Rosa chinensis Old Blush"

分组
Group
基因数
Gene
范围 Range 亚细胞定位
Subcellular localization
蛋白长度
Length (aa)
等电点
pI
分子质量
Molecular weight (kD)
A 5 292-494 5.07-9.16 32.8-55.76 细胞核 Nucleus
C 22 75-573 4.87-9.08 8.69-64.42 细胞核 Nucleus:14; 液泡 Cytosol:3; 内质网 Endoplasmic reticulum:3; 叶绿体 Chloroplast:2
D 4 382-617 4.66-6.01 42.85-67.7 细胞核 Nucleus:2; 叶绿体 Chloroplast:2
E 4 268-688 5.04-5.62 30.46-78.38 细胞核 Nucleus:2; 细胞膜 Plasma membrane:1; 过氧化物酶体 Peroxisome:1
F 2 577-713 5-5.05 64.55-79.99 细胞核 Nucleus
G 8 184-474 5.97-9.78 20.48-52.9 细胞核 Nucleus
H 2 287-341 5.67-6.45 33.02-38.55 细胞核 Nucleus:1; 叶绿体 Chloroplast:1
I 8 179-421 5.07-9.35 21.03-47.55 细胞核 Nucleus:5; 过氧化物酶体 Peroxisome:1; 叶绿体 Chloroplast:2
J 2 225-596 4.9-9.12 26.13-67.31 细胞核 Nucleus:1; 叶绿体 Chloroplast:1
L 3 150-379 6.4-8.55 17.19-25.83 细胞核 Nucleus:1; 叶绿体 Chloroplast:1; 液泡 Cytosol:1
M 3 256-291 5.91-6.55 28.94-32.66 细胞核 Nucleus
N 8 166-467 6.18-9.54 19.44-53.02 细胞核 Nucleus:6; 液泡 Cytosol:2
O 2 289-315 6.32-8.13 32.96-36.17 细胞核 Nucleus
P 1 352 8.38 39.75 细胞核 Nucleus
Q 7 162-552 5.68-9.54 18.63-62.59 细胞核 Nucleus:5; 液泡 Cytosol:1; 叶绿体 Chloroplast:1
R 5 197-251 4.73-9.42 22.55-28.29 细胞核 Nucleus:4; 液泡 Cytosol:1
S 5 172-658 5.4-9.47 19.83-76.46 细胞核 Nucleus:2; 液泡 Cytosol:2; 叶绿体 Chloroplast:1
T 25 69-595 4.43-9.41 7.87-66.08 细胞核 Nucleus:17; 液泡 Cytosol:5; 叶绿体 Chloroplast:2; 高尔基体 Golgi apparatus:1

Fig. 3

Chromosomal locations of RcNAC genes"

Fig. 4

Collinearity analysis of RcNAC and AtNAC genes"

Fig. 5

The predicted motifs and conserved domain of RcNAC proteins in Rosa chinensis Old Blush"

Fig. 6

Analysis of the cis-acting element on the promoter of RcNAC genes"

Fig. 7

The heatmap of partial RcNAC gene expressions in Rosa chinensis Old Blush Rosa-FTS: Leaves from water stressed plants; Rosa-FTB: Leaves infected with Botrytis cinerea LR18; Rosa-FTN: Young leaves and stems; Rosa-RAC: White young roots; Rosa-NDB: Dormant axillary buds (vegetative meristem); Rosa-DBO: Active axillary buds (vegetative meristem); Rosa-IFL: Floral bud at floral meristem transition; Rosa-IMO: Floral meristem and early floral organs (sepal, petal, stamens and carpels) development; Rosa-BFL: Closed flower; Rosa-OFT: Open flower; Rosa-SEN: Senescent flower; Rosa-DET: Stamens; Rosa-CYN: Fruit from pollination up to early fruit pigmentation"

Fig. 8

The heat map of RcNAC genes expression at different developmental stages of Rosa chinensis Old Blush prickles"

Fig. 9

The number of differentially expressed RcNAC genes at different developmental stages of Rosa chinensis Old Blush prickles"

Fig. 10

Expression analysis of some RcNAC genes by qRT-PCR a: The qRT-PCR analysis of genes selected randomly from RNA-seq; b: The qRT-PCR analysis of genes belonged to δ and γ-1"

[1] ZHOU N N, SIMONNEAU F, THOUROUDE T, OYANT L H, FOUCHER F. Morphological studies of rose prickles provide new insights. Horticulture Research, 2021, 8(1): 221. doi: 10.1038/s41438-021-00689-7.
doi: 10.1038/s41438-021-00689-7 pmid: 34556626
[2] SINGH K B. Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiology, 1998, 118(4): 1111-1120. doi: 10.1104/pp.118.4.1111.
doi: 10.1104/pp.118.4.1111 pmid: 9847085
[3] ZHANG Y, ZHAO M J, ZHU W, SHI C M, BAO M Z, ZHANG W. Nonglandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora. Physiologia Plantarum, 2021, 173(3): 1147-1162. doi: 10.1111/ppl.13510.
doi: 10.1111/ppl.13510
[4] SOUER E, VAN HOUWELINGEN A, KLOOS D, MOL J, KOES R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170. doi: 10.1016/s0092-8674(00)81093-4.
doi: 10.1016/s0092-8674(00)81093-4
[5] OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79-87. doi: 10.1016/j.tplants.2004.12.010.
doi: 10.1016/j.tplants.2004.12.010 pmid: 15708345
[6] 张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55(7): 915-924. doi: 10.13592/j.cnki.ppj.2019.0107.
doi: 10.13592/j.cnki.ppj.2019.0107
ZHANG H Z, BAI X Q, ZENG Y L. Biological functions of plant NAC transcription factors. Plant Physiology Journal, 2019, 55(7): 915-924. doi: 10.13592/j.cnki.ppj.2019.0107. (in Chinese)
doi: 10.13592/j.cnki.ppj.2019.0107
[7] JENSEN M K, KJAERSGAARD T, NIELSEN M M, GALBERG P, PETERSEN K, O'SHEA C, SKRIVER K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426(2): 183-196. doi: 10.1042/BJ20091234.
doi: 10.1042/BJ20091234
[8] OOKA H, SATOH K, DOI K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, KAWAI J, CARNINCI P, HAYASHIZAKI Y, SUZUKI K, KOJIMA K, TAKAHARA Y, YAMAMOTO K, KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10(6): 239-247. doi: 10.1093/dnares/10.6.239.
doi: 10.1093/dnares/10.6.239
[9] SUN H, HU M L, LI J Y, CHEN L, LI M, ZHANG S Q, ZHANG X L, YANG X Y. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology, 2018, 18(1): 150. doi: 10.1186/s12870-018-1367-5.
doi: 10.1186/s12870-018-1367-5 pmid: 30041622
[10] SUN L, LIU L P, WANG Y Z, YANG L, WANG M J, LIU J X. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252(6): 95. doi: 10.1007/s00425-020-03502-2.
doi: 10.1007/s00425-020-03502-2
[11] YANG J H, LEE K H, DU Q, YANG S, YUAN B J, QI L Y, WANG H Z. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. New Phytologist, 2020, 226(1): 59-74. doi: 10.1111/nph.16289.
doi: 10.1111/nph.16289 pmid: 31660587
[12] ZHONG R O, LEE C, HAGHIGHAT M, YE Z H. Xylem vessel- specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements. New Phytologist, 2021, 231(4): 1496-1509. doi: 10.1111/nph.17425.
doi: 10.1111/nph.17425
[13] FANG S, SHANG X G, YAO Y, LI W X, GUO W Z. NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. Plant Science, 2020, 301: 110657. doi: 10.1016/j.plantsci.2020.110657.
doi: 10.1016/j.plantsci.2020.110657
[14] 文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展. 西南林业大学学报(自然科学版), 2021, 41(2): 182-188.
WEN J, WANG C T, YANG Y P. Advances in regulation of xylem secondary cell wall thickening in plants. Journal of Southwest Forestry University (Natural Science Edition), 2021, 41(2): 182-188. (in Chinese)
[15] CHEN D D, CHAI S C, MCINTYRE C L, XUE G P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Reports, 2018, 37(2): 225-237. doi: 10.1007/s00299-017-2224-y.
doi: 10.1007/s00299-017-2224-y pmid: 29079898
[16] LIU X W, WANG T, BARTHOLOMEW E, BLACK K, DONG M M, ZHANG Y Q, YANG S, CAI Y L, XUE S D, WENG Y Q, REN H Z. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Horticulture Research, 2018, 5: 31. doi: 10.1038/s41438-018-0036-z.
doi: 10.1038/s41438-018-0036-z
[17] MEISRIMLER C N, PELGROM A J E, OUD B, OUT S, VAN DEN ACKERVEKEN G. Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. Plant Journal, 2019, 99(6): 1098-1115. doi: 10.1111/tpj.14383.
doi: 10.1111/tpj.14383
[18] 朱自果, 阴启忠, 张庆田, 韩真, 张倩, 李勃. 欧洲葡萄‘粉红亚都蜜’NAC基因DRL1负向调节植物抗旱性. 园艺学报, 2020, 47(12): 2290-2300. doi: 10.16420/j.issn.0513-353x.2020-0185.
doi: 10.16420/j.issn.0513-353x.2020-0185
ZHU Z G, YIN Q Z, ZHANG Q T, HAN Z, ZHANG Q, LI B. DRL1,a NAC gene from Vitis vinifera Yatomo Rose, negatively regulates the drought tolerance. Acta Horticulturae Sinica, 2020, 47(12): 2290-2300. doi: 10.16420/j.issn.0513-353x.2020-0185. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0185
[19] 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征. 浙江农业学报, 2022, 34(4): 766-780.
doi: 10.3969/j.issn.1004-1524.2022.04.13
LI X L, ZHANG R, HAO L L, WANG H. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2022.04.13
[20] JIN J F, WANG Z Q, HE Q Y, WANG J Y, LI P F, XU J M, ZHENG S J, FAN W, YANG J L. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress. BMC Genomics, 2020, 21(1): 288. doi: 10.1186/s12864-020-6689-7.
doi: 10.1186/s12864-020-6689-7 pmid: 32264854
[21] RAYMOND O, GOUZY J, JUST J, BADOUIN H, VERDENAUD M, LEMAINQUE A, VERGNE P, MOJA S, CHOISNE N, PONT C, CARRERE S, CAISSARD J C, COULOUX A, COTTRET L, AURY J M, SZECSI J, LATRASSE D, MADOUI M A, FRANCOIS L, FU X P, et al. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50(6): 772-777. doi: 10.1038/s41588-018-0110-3.
doi: 10.1038/s41588-018-0110-3 pmid: 29713014
[22] HIBRAND S L, RUTTINK T, HAMAMA L, KIROV I, LAKHWANI D, ZHOU N N, BOURKE P M, DACCORD N, LEUS L, SCHULZ D, VAN DE GEEST H, HESSELINK T, VAN LAERE K, DEBRAY K, BALZERGUE S, THOUROUDE T, CHASTELLIER A, JEAUFFRE J, VOISINE L, GAILLARD S, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants, 2018, 4(7): 473-484. doi: 10.1038/s41477-018-0166-1.
doi: 10.1038/s41477-018-0166-1
[23] TIAN F, YANG D C, MENG Y Q, JIN J P, GAO G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research, 2020, 48(D1): D1104-D1113. doi: 10.1093/nar/gkz1020.
doi: 10.1093/nar/gkz1020
[24] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190
[25] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096 pmid: 29722887
[26] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 49(W1): W293-W296. doi: 10.1093/nar/gkab301.
doi: 10.1093/nar/gkab301
[27] BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208. doi: 10.1093/nar/gkp335.
doi: 10.1093/nar/gkp335
[28] DUBOIS A, CARRERE S, RAYMOND O, POUVREAU B, COTTRET L, ROCCIA A, ONESTO J P, SAKR S, ATANASSOVA R, BAUDINO S, FOUCHER F, LE BRIS M, GOUZY J, BENDAHMANE M. Transcriptome database resource and gene expression atlas for the rose. BMC Genomics, 2012, 13: 638. doi: 10.1186/1471-2164-13-638.
doi: 10.1186/1471-2164-13-638 pmid: 23164410
[29] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.
doi: 10.1186/s13059-014-0550-8
[30] SU H Y, ZHANG S Z, YUAN X W, CHEN C T, WANG X F, HAO Y J. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple. Plant Physiology Biochemistry, 2013, 71: 11-21. doi: 10.1016/j.plaphy.2013.06.022.
doi: 10.1016/j.plaphy.2013.06.022
[31] AHMAD M, YAN X H, LI J Z, YANG Q S, JAMIL W, TENG Y W, BAI S L. Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biology, 2018, 18(1): 214. doi: 10.1186/s12870-018-1427-x.
doi: 10.1186/s12870-018-1427-x pmid: 30285614
[32] WANG Z Q, NI L J, LIU D N, FU Z K, HUA J F, LU Z G, LIU L Q, YIN Y L, LI H G, GU C S. Genome-wide identification and characterization of NAC family in Hibiscus hamabo Sieb. et Zucc. under various abiotic stresses. International Journal of Molecular Sciences, 2022, 23(6): 3055. doi: 10.3390/ijms23063055.
doi: 10.3390/ijms23063055
[33] 高文杰, 刘娇, 马祥庆, 帅鹏. 杉木NAC基因家族基因的鉴定及生物信息学分析. 中南林业科技大学学报, 2022, 42(2): 108-118. doi: 10.14067/j.cnki.1673-923x.2022.02.012.
doi: 10.14067/j.cnki.1673-923x.2022.02.012
GAO W J, LIU J, MA X Q, SHUAI P. ldentification and bioinformatics analysis of Chinese fir NAC gene family. Journal of Central South University of Forestry & Technology, 2022, 42(2): 108-118. doi: 10.14067/j.cnki.1673-923x.2022.02.012. (in Chinese)
doi: 10.14067/j.cnki.1673-923x.2022.02.012
[34] SHAN X M, YANG K B, XU X R, ZHU C L, GAO Z M. Genome-wide investigation of the NAC gene family and its potential association with the secondary cell wall in Moso Bamboo. Biomolecules, 2019, 9(10): 609. doi: 10.3390/biom9100609.
doi: 10.3390/biom9100609
[35] WANG Q, GUO C, LI Z Y, SUN J H, DENG Z C, WEN L C, LI X X, GUO Y F. Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2021, 22(5): 2568. doi: 10.3390/ijms22052568.
doi: 10.3390/ijms22052568
[36] ZHANG X, LONG Y, CHEN X X, ZHANG B L, XIN Y F, LI L Y, CAO S L, LIU F H, WANG Z G, HUANG H, ZHOU D G, XIA J X. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology, 2021, 21(1): 546. doi: 10.1186/s12870-021-03333-7.
doi: 10.1186/s12870-021-03333-7
[37] 曹瑞兰, 李知青, 欧阳雯婷, 胡冬南, 周增亮, 苏文娟, 陈霞, 刘娟. 油茶NAC基因鉴定及对干旱胁迫响应分析. 江西农业大学学报, 2021, 43(6): 1357-1370. doi: 10.13836/j.jjau.2021145.
doi: 10.13836/j.jjau.2021145
CAO R L, LI Z Q, OUYANG W T, HU D N, ZHOU Z L, SU W J, CHEN X, LIU J. Identification of NAC Gene in Camellia oleifera and Analysis of Its Response to Drought Stress. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(6): 1357-1370. doi: 10.13836/j.jjau.2021145. (in Chinese)
doi: 10.13836/j.jjau.2021145
[38] 王佳丽, 王鹤冰, 杨慧勤, 胡若琳, 魏大勇, 汤青林, 王志敏. NAC转录因子在植物花发育中的作用. 生物工程学报, 2022, 38(8): 2687-2699.
WANG J L, WANG H B, YANG H Q, HU R L, WEI D Y, TANG Q L, WANG Z M. The role of NAC transcription factors in flower development in plants. Chinese Journal of Biotechnology, 2022, 38(8): 2687-2699. (in Chinese)
[39] 牛早柱, 赵艳卓, 陈展, 宣立锋, 牛帅科, 褚凤杰, 杨丽丽. 葡萄果实成熟相关NAC转录因子的筛选、克隆及表达分析. 果树学报, 2022, 39(7): 1137-1146.
NIU Z Z, ZHAO Y Z, CHEN Z, XUAN L F, NIU S K, CHU F J, YANG L L. Screening, Cloning and Expression Analysis of NAC TranscriptionFactors Related to Grape Fruit ripening. Journal of Fruit Science, 2022, 39(7): 1137-1146. (in Chinese)
[40] MARTIN-PIZARRO C, VALLARINO J G, OSORIO S, MECO V, URRUTIA M, PILLET J, CASANAL A, MERCHANTE C, AMAYA I, WILLMITZER L, FERNIE A R, GIOVANNONI J J, BOTELLA M A, VALPUESTA V, POSE D. The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell, 2021, 33(5): 1574-1593. doi: 10.1093/plcell/koab070.
doi: 10.1093/plcell/koab070
[41] SWARNKAR M K, KUMAR P, DOGRA V, KUMAR S. Prickle morphogenesis in rose is coupled with secondary metabolite accumulation and governed by canonical MBW transcriptional complex. Plant Direct, 2021, 5(6): e00325. doi: 10.1002/pld3.325.
doi: 10.1002/pld3.325
[42] ZHAO C S, AVCI U, GRANT E H, HAIGLER C H, BEERS E P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant Journal, 2008, 53(3): 425-436. doi: 10.1111/j.1365-313X.2007.03350.x.
doi: 10.1111/j.1365-313X.2007.03350.x
[43] SAKAMOTO S, MITSUDA N. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant & cell physiology, 2015, 56(2): 299-310.
[44] 李媛, 陈金焕, 金曌, 侯景丫, 姜玉松, 邢海涛. 毛果杨NAC128基因在次生壁形成中的功能. 林业科学, 2020, 56(11): 62-72.
LI Y, CHEN J H, JIN Z, HOU J Y, JIANG Y S, XING H T. Functions of NAC128 Gene from Populus trichocarpa in Secondary Cell Wall Formation. Scientia Silvae Sinicae, 2020, 56(11): 62-72. (in Chinese)
[45] GUO Y F, GAN S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal, 2006, 46(4): 601-612. doi: 10.1111/j.1365-313X.2006.02723.x.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597
[46] KOU X H, WATKINS C B, GAN S S. Arabidopsis AtNAP regulates fruit senescence. Journal of Experimental Botany, 2012, 63(17): 6139-6147. doi: 10.1093/jxb/ers266.
doi: 10.1093/jxb/ers266
[1] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[2] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[3] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[4] SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511.
[5] DOU YiNing, QIN YuHai, MIN DongHong, ZHANG XiaoHong, WANG ErHui, DIAO XianMin, JIA GuanQing, XU ZhaoShi, LI LianCheng, MA YouZhi, CHEN Ming. Transcription Factor SiNAC18 Positively Regulates Seed Germination Under Drought Stress Through ABA Signaling Pathway in Foxtail Millet (Setaria italic L.) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3071-3081.
[6] QI Yuan-cheng,WANG Fei-fei,LIU Wei-qun,GAO Mei-juan. Cloning and Analysis of NAC Transcription Factor in Tobacco(Nicotiana tabacum L.) [J]. Scientia Agricultura Sinica, 2011, 44(11): 2225-2233 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!