Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3520-3528.doi: 10.3864/j.issn.0578-1752.2011.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Discussion on Development of Crop Models

CAO  Hong-Xin, ZHAO  Suo-Lao, GE  Dao-Kuo, LIU  Yong-Xia, LIU  Yan, SUN  Jin-Ying, YUE  Yan-Bin, ZHANG  Zhi-You, CHEN  Yu-Li   

  1. 1.江苏省农业科学院农业经济与信息研究所/数字农业工程技术研究中心
    2.西北农林科技大学
    3.新疆维吾尔自治区伦台县农业技术推广中心
  • Received:2010-12-09 Revised:2011-01-05 Online:2011-09-01 Published:2011-01-20
  • Contact: Hong-xin CAO E-mail:caohongxin@hotmail.com

Abstract:  In order to deepen the studies of crop models (CMs), promote its development, and make it to join into international development tide, the methods of systematic analysis, classification, comparison, and mining of epistemology, etc were adopted in this paper. The roles in CMs were set forth through definition and classification of CMs, and the relationships between CMs and digital plant (DP) were analyzed in this paper. The latest studies and application progresses of CMs in China and overseas were reviewed, the issues in their current studies and application were analyzed through comparison of differences in plant growth models among four research groups (DSSAT, School of de Wit, APSIM, and China) and in functional structural plant models (FSPMs) among three research groups (L-Studio, GREENLAB, and China) in the world, and some countermeasures and suggestions for their further development were proposed. At present, although the application of CMs and DP is little, it will have a wide development and application foreground with development of agriculture in China in future, especially, changes in proportion of town and countryside.

Key words: crop models (CMs), crop growth models, crop morphological models, development, discussion

[1]高亮之. 数字农业与我国农业发展. 计算机与农业, 2001(9):1-3.

Gao L Z. Digital agriculture and agricultural development in China. Computer and Agriculture, 2001 (9):1-3. (in Chinese)

[2]高亮之. 农业模型学基础. 香港: 天马图书有限公司, 2004.

Gao L Z. Foundation of Agricultural Model Sciences. Hongkong: Tianma Books Co. Ltd. 2004. (in Chinese)

[3]de Wit C T. Photosynthesis of leaf canopies//Agricultural Reseach Report. Wageningen: Pudocuer, 1965.

[4]Duncan W G, Loomis R S, Williams W A, Hanau R. A model for simulating photosynthesis in plant communities. Hilgardia, 1967, 38:181-205.

[5]Jones J W, Keating B A, Porter C H. Approaches to modular model development. Agricultural Systems, 2001,70 : 421-443.

[6]Prusinkiewicz P. A look at the visual modeling of plant using L-systems. Agronomie, 1990, 19: 21l-224.

[7]Guo Y, Ma Y T, Zhan Z G, Li B G, Dingkuhn M, Luquet D, de Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany, 2006, 97:217-230.

[8]Gao L Z. ALFAMOD: An agroclimatological computer model of alfalfa production. Jiangsu Journal of Agricultural Sciences, 1985 (2): 1-6.

[9]Gao L Z, Jin Z Q, Li L. Photo-thermal models of rice growth duration for various varietal types in China. Agricultural Forestry Meteorology, 1987,39: 205-213.

[10]诸叶平, 张建兵, 孙开梦, 鄂 越, 雪 燕. 小麦-玉米连作环境模拟与智能决策系统. 计算机与农业, 2001 (专刊): 41-44.

Zhu Y P, Zhang J B, Sun K M, Xue Y. Environmental simulation and intelligent decision making system in wheat-corn succession cropping. Computer and Agriculture, 2001 (Specia1):41-44. (in Chinese)

[11]宋有洪, 郭 焱, 李保国, de Refrye P. 基于器官生物量构建植株形态的玉米虚拟模型. 生态学报, 2003, 23: 2579-2586.

Song Y H, Guo Y, Li B G, de Refrye P. Virtual maize model of plant morphological constructing based on organ biomass accumulation. Acta Ecological Sinica,2003, 23: 2579-2586. (in Chinese)

[12]曹卫星, 朱 艳, 田永超, 姚 霞, 刘小军. 数字农作技术研究的若干进展与发展方向. 中国农业科学, 2006, 39(2): 281-288.

Cao W X, Zhu Y, Tian Y C, Yao X, Liu X J. Research progress and prospect of digital farming techniques. Scientia Agricultura Sinica, 2006, 39(2): 281-288. (in Chinese)

[13]曹宏鑫, 金之庆, 石春林, 葛道阔, 高亮之. 中国作物模型系列的研究与应用. 农业网络信息, 2006(5):45-48.

Cao H X, Jin Z Q, Shi C L, Ge D K, Gao L Z. Researches and application of crop model series in China. Agricultural Network Information, 2006(5):45-48. (in Chinese)

[14]曹宏鑫, 石春林, 金之庆. 植物形态结构模拟与可视化研究进展. 中国农业科学, 2008, 41(3): 669-677.

Cao H X, Shi C L, Jin Z Q. Advances in researches on plant morphological structure simulation and visualization. Scientia Agricultura Sinica, 2008, 41(3): 669-677. (in Chinese)

[15]赵春江, 陆声链, 郭新宇, 肖伯祥, 温维亮. 数字植物及其技术体系探讨. 中国农业科学, 2010, 43(10): 2023-2030.

Zhao C J, Lu S L, Guo X Y, Xiao B X, Wen W J. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. (in Chinese)

[16]Fisher R A. Farming systems of Australia: exploiting the synergy between genetic improvement and agronomy//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston : Academic Press, 2009:23-54.

[17]曹宏鑫, 葛道阔, 赵锁劳, 刘永霞, 刘 岩, 王渭龙. 对计算机模拟在作物生长发育研究中应用的评价. 麦类作物学报, 2010(1): 183-187.

Ccao H X, Ge D K, Zhao S L, Liu Y X, Liu Y, Wang W L. Evaluation for applying computer simulation in crop growth and development research.  Journal of Triticeae Crops, 2010(1):183-187. (in Chinese)

[18]Colbach N, Clermont-Dauphin C, Meynard J M. GeneSys: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers I. Temporal evolution of a population of rapeseed volunteers in a field. Agricultural Ecosystem and Environment, 2001, 83: 235-253

[19]Asseng S, Cao W, Zhang W, Ludwig F. Crop physiology, modeling and climate change: impact and adaptation strategies//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston: Academic Press, 2009:511-543.

[20]刘铁梅, 张 琼, 邱 枫, 刘铁芳, 谢国生, 曹凑贵. 油菜器官间干物质分配动态的定量模拟. 中国油料作物学报, 2005, 27(1):55-59.

Liu T M, Zhang Q, Qiu F, Liu T F, Xie G S, Cao C G. Quantitative simulation on matter partitioning dynamics of Brassica napus L. Chinese Journal of Oil Crop Sciences, 2005, 27(1):55-59. (in Chinese)

[21]刘  岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42(11): 4093-4099.

Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Scientia Agricultura Sinica, 2009, 42: 4093-4099. (in Chinese)

[22]江 敏, 金之庆. CERES-Rice模型区域应用中遗传参数升尺度的一种方法. 中国水稻科学, 2009(2): 172-178.

Jiang M, Jin Z Q. A method to upscale the genetic parameters of CERES-Rice in regional applications. Chinese Journal of Rice Science, 2009(2): 172-178. (in Chinese)

[23]Hall A, Sadras V. Whither crop physiology//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston: Academic Press, 2009:545-570.

[24]王纪华, 赵春江, 黄文江, 杨宝祝, 王北洪, 杨信廷. 定量遥感参数与作物肥水模型链接初探. 华北农学报, 2001,16(4):52-58.

Wang J H, Zhao C J, Huang W J, Yang B Z, Wang B H, Yang X T. Preliminary studies on the interlinkage between the remote sensing parameters and the crop fertilizer and moisture models. Acta Agriculturae Boreali-Sinica, 2001, 16(4):52-58. (in Chinese)

[25]Basso B, Ritchie J T, Chou T Y. SALUS: A system approach for land use sustainability. Net of  digital agriculture & agricultural modeling, 2005. http://www. jaaslib.ac.cn: 88/daamnet/DAAM-5/SALU% 20A% 20system% 20approach%2 0for%20 land%20 use%20 sustainability. htm.

[26]周天颖, 简致远. 空间信息技术与土地永续使用系统模型(SALUS Model)之整合. 数字农业与农业模型通讯, 2008. http://www.jaaslib. ac.cn:88/daamnet/DAAM-8/空间信息技术与土地永续使用系统模型(SALUS%20Model)之整合.htm.

Zhou T Y, Jian Z Y. Integrating of space information and system approach to land use sustainability. Net of Digital Agriculture & Agricultural Modeling, 2008. http://www.jaaslib.ac.cn:88/daamnet/ DAAM-8/空间信息技术与土地永续使用系统模型(SALUS% 20Model)之整合.htm. (in Chinese)

[27]International consortium for agricultural systems applications. Introduction of DSSAT Software, 2010. http://www.icasa.net/ about_us/index.html.

[28]International consortium for agricultural systems applications. ORYZA2000: Modeling Lowland Rice, 2010. http://www.icasa.net/ oryza/index.html.

[29]APSIM Google Group. APSIM introduction,2010. http://www.apsim. info/Wiki/Introduction.ashx.

[30]Tsuji G Y, Uehara G, Balas S. DSSAT v3: Vols. 1, 2, and 3. IBSNAT Project. Honolulu, Hawaii: University of Hawaii, 1994.

[31]Bouman B A M, van Keulen H, van Laar H H, Rabbinge R. The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agricultural Systems, 1996, 52: 171-198.

[32]McCown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M. APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems, 1996, 50, 255-271.

[33]曹宏鑫, 杨余旺, 金之庆, 石春林, 葛道阔, 魏秀芳. 基于Web与模拟模型的水稻栽培数字化设计. 农业工程学报, 2008, 24(12): 137-139.

Cao H X, Yang Y W, Jin Z Q, Shi C L, Ge D K, Wei X F. Digital design of rice cultivation based on Web and simulation model. Transactions of the CSAE, 2008, 24(12):137-139. (in Chinese)

[34]Boote K J, Pickering N B. Modelling photosynthesis of row crop canopies. HortScience, 1994, 29:1423-1434.

[35]Martre P, Porter J R, Jamieson P D, Eugène Triboï E. Modelling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiology, 2003, 133: 1959-1967.

[36]Kirkegaard J, Christen O, Krupinsky J, Layzell D. Break crop benefits in temperate wheat production. Field Crops Research, 2008, 107:185-195.

[37]Ryan J, Singh M, Pala M, Donald L S. Long-term cereal-based rotation trials in the Mediterranean region: implications for cropping sustainability. Advances in Agronomy, 2008, 97: 273-319.

[38]Wolf S, Rudich J. Predicting harvesting data of processing tomato by a simulation model. Journal of American Society Horticulture Science, 1984, 111(1):11-16.

[39]Heuelink E. Evaluation of a dynamic simulation model for tomato crop growth and development. Annals of Botany, 1999, 4(83): 413-422.

[40]谢祝捷, 陈春宏, 赵京音. 自控温室黄瓜生长发育动态及基于有效积温的发育模型研究. 上海农业学报,2007,23(2):46-49.

Xie Z J, Chen C H, Zhao J Y. Study on cucumber growth and development in automatic control glasshouse and its development model based on effective accumulated temperature. Acta Agriculturae Shanghai, 2007,23(2):46-49. (in Chinese)

[41]徐 刚, 张昌伟. 温室长季节栽培番茄发育动态模拟模型的研究. 农业工程学报,2005,12(21):243-246.

Xu G, Zhang C W. Developmental stage simulation model for long term tomato growing in greenhouse. Transactions of the CSAE, 2005, 12(21):243-246. (in Chinese)

[42]李立昆, 李玉红, 程智慧. 基于有效积温早春设施厚皮甜瓜果实发育模拟模型. 北方园艺,2010(6):97-100.

Li L K, Li Y H, Cheng Z H. Simulation model of muskmelon fruit development in early spring protected cultivation based on effected accumulated temperature. Northern Gardening, 2010(6):97-100. (in Chinese)

[43]张培新, 贺超兴. 基于生理发育时间的日光温室番茄发育模拟模型. 中国农业气象,2006,27(4):314-317.

Zhang P X, He C X .A simulation model for tomato plant growth and development in solar greenhouse based on physiological development time. Chinese Journal of Agro Meteorology, 2006,27(4):314-317. (in Chinese)

[44]冯胜利, 陈远良. 基于生理发育时间的加工番茄生育期模拟模型. 应用生态学报, 2008,19(7):1544-1550.

Feng S L, Chen Y L. Simulation model for the development stages of processing tomato based on physiological development time. Chinese Journal of Applied Ecology, 2008, 19(7):1544-1550. (in Chinese)

[45]袁昌梅, 罗卫红. 温室网纹甜瓜发育模拟模型研究. 园艺学报,2005,32(2):262-267.

Yuan C M, Luo W H. Simulation of the development of greenhouse muskmelon. Acta Horticulturae Sinica, 2005, 32(2): 262-267. (in Chinese)

[46]Wang J K, van Ginkel M, Podlich D, Ye G Y, Trethowan R, Pfeiffer W, Delacy I H, Cooper M, Rajaram S. Comparison of two breeding strategies by computer simulation. Crop Science, 2003, 43: 1764-1773.

[47]Chenu K, Chapman S C, Tardieu F, McLean G, Welcker C, Hammer G L. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: A “gene-to-phenotype” modelling approach. Genetics, 2009, 183: 1507-1523.

[48]Messina C, Hammer G, Dong Z, Podlich D, Cooper M. Modelling crop improvement in a G×E×M framework via gene-trait-phenotype relationships//Sadras V, Calderini D. Crop Physiology: Applications for Genetic Improvement and Agronomy. Amsterdam, Boston: Academic Press, 2009: 235-265.

[49]Wang J, Chapman S C, Bonnett D G, Rebetzke G J, Crouch J. Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Science, 2007, 47(2): 582-588.

[50]Hammer G L, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S C, Podlich, D. Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science, 2006, 11: 587-593.

[51]Cieslak M, Lemieux C, Hanan J, Prusinkiewicz P. Quasi-Monte Carlo simulation of the light environment of plants. Functional Plant Biology, 2008, 35, 837-849.

[52]Yang Z, Midmore D J. Self-organized resource allocation and growth partitioning at the whole plant level: a modeling study, 2007, http://algorithmicbotany.org /FSPM07/ proceedings.html.

[53]刘永霞, 岳延滨, 刘 岩, 曹宏鑫, 葛道阔, 魏秀芳. 不同品种和氮肥条件下水稻根系主要几何参数动态的量化研究. 中国农业科学, 2010, 43(9): 1782-1790.

Liu Y X, Yue Y B, Liu Y, Cao H X, Ge D K, Wei X F. Quantitative research of dynamic models of the main geometric parameters of rice root system of different varieties under different nitrogen conditions. Scientia Agricultura Sinica, 2010, 43(9): 1782-1790. (in Chinese)

[54]Risto S. Looking back: ten years of FSPM, 2007. http:// algorithmicbotany.org /FSPM07/ proceedings.html.

[55]Evers J B, Vos J, Romero P, Yin X, van der Putten P E L, Kang M Z, Struik P C. Extending a functional-structural plant model of spring wheat with sub-models for photosynthesis and carbon distribution, 2007. http://algorithmicbotany.org/FSPM07/Individual/16.pdf.

[56]Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Vakev A J. Lignum: A tree model based oil simple structural units. Annals of Botany, 1996, 77: 87-98.

[57]Perttunen J, Sievänen R, Nikinmaa E. Lignum: a model combining the structure and the functioning of trees. Ecological Modelling, 1998, 108: 189-198.

 

[58]Perttunen J, Nikinmaa E, Martin J, Lechowicz, Sievänen R, Messier C. Application of the functional-structural tree model Lignum to sugarmaple saplings (Acer saccharum Marsh) vowing in forest gaps. Annals of Botany, 2001, 88: 471-481.

[59]Cieslak M, Seleznyova A N, Hanan J. A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. Annals of Botany, 2010, 107(5): 747-764.

[60]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agricultural Systems, 2003, 75: 47-77.

[61]Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural Modelling. Annals of Botany, 2005, 95: 1131-1143.

[62]Yan H P, Kang M Z, de Reffye P, Dingkuhn M. A dynamic architectural plant model simulating resource-dependent growth. Annals of Botany, 2004, 93: 59 1-602.

[63]常丽英, 顾东祥, 张文宇, 杨 杰, 曹卫星, 朱 艳. 水稻叶片伸长过程的模拟模型. 作物学报, 2008, 34(2): 311-317.

Chang L Y, Gu D X, Zhang W Y, Yang J, Cao W X, Zhu Y. A simulation model of leaf elongation process in rice. Acta Agronomica Sinica, 2008, 34(2): 311-317. (in Chinese)

[64]Pradal C, Dufour-Kowalski S, Boudon F, Dones N. The architecture of OpenAlea: A visual programming and component based software for plant modeling, 2007. http://algorithmicbotany.org/FSPM07/ Individual/25.pdf.

[65]Han L Q, Hanan J, Gresshoff P M. Computational complementation: a modelling approach to study signalling mechanisms during legume autoregulation of nodulation. PLoS Computational Biology, 2010, 6(2):1-8.

[66]White J W. From genome to wheat: emerging opportunities for modelling wheat growth and development. European Journal Agronomy, 2006,25:79-88.
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[6] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[7] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[11] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[12] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[13] ZHANG HongCheng,HU YaJie,YANG JianChang,DAI QiGen,HUO ZhongYang,XU Ke,WEI HaiYan,GAO Hui,GUO BaoWei,XING ZhiPeng,HU Qun. Development and Prospect of Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321.
[14] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[15] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!