Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4373-4382.doi: 10.3864/j.issn.0578-1752.2022.22.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATIONTECHNOLOGY • Previous Articles     Next Articles

Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation

ZHANG HongCheng1,2(),HU YaJie2,DAI QiGen1,2,XING ZhiPeng2,WEI HaiYan2,SUN ChengMing2,GAO Hui1,2,HU Qun2   

  1. 1Cultivation Professional Committee of Crop Science Society of China, Yangzhou 225009, Jiangsu
    2Yangzhou University/Jiangsu Industrial Engineering Research Center of High Quality Japonica Rice, Yangzhou 225009, Jiangsu
  • Received:2022-02-11 Accepted:2022-06-21 Online:2022-11-16 Published:2022-12-14

Abstract:

China’s total grain output has exceeded 650 million tons since seven years ago, with the great achievement of ever-increased grain output for 18 consecutive years. However, China’s cereal production is facing many severe challenges, such as the shortage of agricultural resources per capita, higher cost for crop production per hectare, sharp decrease of labor population and progressively increase of grain import. Therefore, it is necessary to discuss the frontiers and the directions of scientific and technological innovation in China’s field crop cultivation. According to the existing problems in field crop production, the major scientific and technological requirements of China’s field crop were elaborated, such as the cooperative cultivation of high-quality and high-yield and high-efficient, the green cultivation of carbon fixation and energy conservation and emission reduction, and the “unmanned” intelligent cultivation. The scientific and technological frontiers and development status and trends of field crop cultivation at home and abroad were analyzed emphatically. The key scientific and technological breakthrough directions and paths were pointed out in three aspects: The coordination cultivation of high-quality and high-yield and high-efficient, the green cultivation of carbon fixation and energy saving and emission reduction, and the “unmanned” intelligent cultivation. Finally, the measures and suggestions for scientific and technological innovation of China’s field crop cultivation were put forward from the aspects of policy top-level design and effective investment, increasing the research and development of basic theories, the key technologies and practical products, and increasing the cultivation of compound talents. In the future, it is necessary to significantly improve grain quality and planting efficiency under the premise of continuously increasing grain yield through the collaborative cultivation of high-quality, high-yield and high efficiency in field crop cultivation. Through the green cultivation of carbon fixation and energy conservation and emission reduction, less material input and high efficient utilization of resources can be achieved. Through integration and innovation of various aspects of agronomy and agricultural machinery intelligence, the “unmanned” intelligent cultivation can be constructed for greatly less labor input and higher efficiency of large-scale production. Finally, it is to realize Chinese style modernization of field crop production, to ensure grain security and effective supply of agricultural products.

Key words: crop cultivation, frontier of science and technology, innovation direction, development suggestions

[1] 中华人民共和国国务院新闻办公室. 《中国的粮食安全》白皮书. 黑龙江粮食, 2019(11): 40-47.
Information Office of the State Council of the People's Republic of China. China's Food Security White Paper. Heilongjiang Grain, 2019(11): 40-47. (in Chinese)
[2] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54(7): 1301-1321.
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. (in Chinese)
[3] 王丹英, 徐春梅, 褚光, 陈松, 刘元辉, 陈里鹏, 章秀福. 水稻高产与优质栽培的冲突与协调. 中国稻米, 2021, 27(4): 58-62.
doi: 10.3969/j.issn.1006-8082.2021.04.012
WANG D Y, XU C M, CHU G, CHEN S, LIU Y H, CHEN L P, ZHANG X F. Conflict and coordination between high yield and good quality in rice planting. China Rice, 2021, 27(4): 58-62. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2021.04.012
[4] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48(4): 930-941.
doi: 10.3724/SP.J.1006.2022.12073
YAN S J, DENG A X, SHANG Z Y, TANG Z W, CHEN C Q, ZHANG J, ZHANG W J. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production. Acta Agronomica Sinica, 2022, 48(4): 930-941. (in Chinese)
doi: 10.3724/SP.J.1006.2022.12073
[5] 张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18): 3892-3902.
ZHANG W J, YAN S J, ZHANG J, JIANG Y, DENG A X. Win-win strategy for national food security and agricultural double-carbon goals. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902. (in Chinese)
[6] 赵春江. 智慧农业发展现状及战略目标研究. 智慧农业, 2019, 1(1): 1-7.
ZHAO C J. State-of-the-art and recommended developmental strategic objectives of smart agriculture. Smart Agriculture, 2019, 1(1): 1-7. (in Chinese)
[7] 罗锡文, 廖娟, 胡炼, 臧英, 周志艳. 提高农业机械化水平促进农业可持续发展. 农业工程学报, 2016, 32(1): 1-11.
LUO X W, LIAO J, HU L, ZANG Y, ZHOU Z Y. Improving agricultural mechanization level to promote agricultural sustainable development. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 1-11. (in Chinese)
[8] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. (in Chinese)
[9] 黄惠春, 管宁宁, 杨军. 生产组织模式推进农业经营规模化的逻辑与路径——基于江苏省的典型案例分析. 农业经济问题, 2021, (11): 128-139.
HUANG H C, GUAN N N, YANG J. The logic and path of promoting the scale of agricultural management by the mode of production organization: analysis based on the typical case of Jiangsu province. Issues in Agricultural Economy, 2021, (11): 128-139. (in Chinese)
[10] 谷保静, 段佳堃, 任琛琛, 汪思彤, 王琛. 规模化经营推动中国农业绿色发展. 农业资源与环境学报, 2021, 38(5): 709-715.
GU B J, DUAN J K, REN C C, WANG S T, WANG C. Large-scale farming promotes agricultural green development in China. Journal of Agricultural Resources and Environment, 2021, 38 (5): 709-715. (in Chinese)
[11] 钟大森, 赵明, 张昭. “粮食丰产增效科技创新”重点专项组织实施进展情况. 作物杂志, 2019(3): 1-9.
ZHONG D S, ZHAO M, ZHANG Z. Organization and implementation progress of national key research and development program “Science and Technology Innovation for High Yield and Efficiency of Crop”. Crops, 2019(3): 1-9. (in Chinese)
[12] AN N, WEI W L, QIAO L, ZHANG F S, CHRISTIE P, JIANG R F, DOBERMANN A, GOULDING K W T, FAN J L, FAN M S. Agronomic and environmental causes of yield and nitrogen use efficiency gaps in Chinese rice farming systems. European Journal of Agronomy, 2018, 93: 40-49.
doi: 10.1016/j.eja.2017.11.001
[13] 赵春江, 吴华瑞, 朱丽. 一种农田无线传感器网络能量控制与动态路由算法. 传感技术学报, 2011, 24(6): 909-914.
ZHAO C J, WU H R, ZHU L. Energy control and dynamic routing algorithms for farmland wireless sensor networks. Chinese Journal of Sensors and Actuators, 2011, 24(6): 909-914. (in Chinese)
[14] 李超, 李文峰, 赵耀, 尚敬敏. 基于GIS的云南山区玉米生态适宜性评价方法与应用. 中国农业科学, 2019, 52(3): 445-454.
LI C, LI W F, ZHAO Y, SHANG J M. A method of ecological suitability evaluation and its application for maize planted in mountain farmland based on GIS. Scientia Agricultura Sinica, 2019, 52(3): 445-454. (in Chinese)
[15] 吴才聪, 方向明. 基于北斗系统的大田智慧农业精准服务体系构建. 智慧农业, 2019, 1(4): 83-90.
WU C C, FANG X M. Development of precision service system for intelligent agriculture field crop production based on Beidou system. Smart Agriculture, 2019, 1(4): 83-90. (in Chinese)
[16] 李朋磊, 张骁, 王文辉, 郑恒彪, 姚霞, 朱艳, 曹卫星, 程涛. 基于高光谱和激光雷达遥感的水稻产量监测研究. 中国农业科学, 2021, 54(14): 2965-2976.
LI P L, ZHANG X, WANG W H, ZHENG H B, YAO X, ZHU Y, CAO W X, CHENG T. Assessment of terrestrial laser scanning and hyperpectral remote sensing for the estimation of rice grain yield. Scientia Agricultura Sinica, 2021, 54(14): 2965-2976. (in Chinese)
[17] 苑严伟, 徐玲, 冀福华, 郭大方, 安飒, 牛康. 农业机械作业大数据清洗方法与试验优化. 农业机械学报, 2021, 52(6): 35-42.
YUAN Y W, XU L, JI F H, GUO D F, AN S, NIU K. Experimental optimization of big data cleaning method for agricultural machinery. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 35-42. (in Chinese)
[18] 罗锡文, 廖娟, 胡炼, 周志艳, 张智刚, 臧英, 汪沛, 何杰. 我国智能农机的研究进展与无人农场的实践. 华南农业大学学报, 2021, 42(6): 8-17.
LUO X W, LIAO J, HU L, ZHOU Z Y, ZHANG Z G, ZANG Y, WANG P, HE J. Research progress of intelligent agricultural machinery and practice of unmanned farm in China. Journal of South China Agricultural University, 2021, 42(6): 8-17. (in Chinese)
[19] PENG X Y, LU C, FENG W. Industrialization path of agricultural intelligent equipment. Journal of Physics: Conference Series, 2020, 1533(3): 032066.
doi: 10.1088/1742-6596/1533/3/032066
[20] 蒋伟勤, 胡群, 俞航, 马会珍, 任高磊, 马中涛, 朱盈, 魏海燕, 张洪程, 刘国栋, 胡雅杰, 郭保卫. 优质食味粳稻控混肥一次性基施效应. 中国农业科学, 2021, 54(7): 1382-1396.
JIANG W Q, HU Q, YU H, MA H Z, REN G L, MA Z T, ZHU Y, WEI H Y, ZHANG H C, LIU G D, HU Y J, GUO B W. Effect of one-time basal application of the mixed controlled-release nitrogen fertilizer in japonica rice with good taste quality. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396. (in Chinese)
[21] 阮俊梅, 宋振伟, 王全辉, 王利. 中国农田减缓气候变化的潜力与技术途径. 中国农学通报, 2020, 36(5): 98-102.
RUAN J M, SONG Z W, WANG Q H, WANG L. The potential and technological approaches of China’s farmland to mitigate climate change. Chinese Agricultural Science Bulletin, 2020, 36(5): 98-102. (in Chinese)
[22] 张洪程, 陆建飞, 戴其根, 高辉, 魏海燕. 全面推进水稻生产绿色发展、高水平建设长江经济带绿色大粮仓. 中国稻米, 2021, 27(4): 7-8.
doi: 10.3969/j.issn.1006-8082.2021.04.002
ZHANG H C, LU J F, DAI Q G, GAO H, WEI H Y. Comprehensive promoting green development of rice production and high-level constructing ‘green granaries’ of the Yangtze river economic belt. China Rice, 2021, 27(4): 7-8. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2021.04.002
[23] 汤峰, 徐磊, 张蓬涛, 张贵军, 付梅臣, 张俊峰. 县域高标准基本农田建设适宜性评价与优先区划定. 农业工程学报, 2019, 35(21): 242-251.
TANG F, XU L, ZHANG P T, ZHANG G J, FU M C, ZHANG J F. Suitability evaluation and priority area delimitation of high standard basic farmland construction at country level. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 242-251. (in Chinese)
[24] 王亚娜, 杨启志, 毛罕平. 面向智能农业装备的农机类人才培养路径探究. 中国农机化学报, 2019, 40(5): 211-216.
doi: 10.13733/j.jcam.issn.2095-5553.2019.05.37
WANG Y N, YANG Q Z, MAO H P. Research on path of agricultural machinery talents cultivation in terms of intelligent agricultural equipment. Journal of Chinese Agricultural Mechanization, 2019, 40(5): 211-216. (in Chinese)
doi: 10.13733/j.jcam.issn.2095-5553.2019.05.37
[1] JIA Ji-zeng, GAO Li-feng, ZHAO Guang-yao, ZHOU Wen-bin, ZHANG Wei-jian. Crop Genomics and Crop Science Revolutions [J]. Scientia Agricultura Sinica, 2015, 48(17): 3316-3332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!