Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1673-1683.doi: 10.3864/j.issn.0578-1752.2021.08.008

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae

CHEN Xi1(),LIU YingJie1,2,DONG YongHao1,LIU JinYan1,LI Wei1,XU PengJun1,ZANG Yun1,REN GuangWei1()   

  1. 1Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
    2Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450008
  • Received:2020-07-01 Accepted:2020-08-14 Online:2021-04-16 Published:2021-04-25
  • Contact: GuangWei REN;


【Objective】The objective of this study is to investigate the effect of cucumber mosaic virus (CMV) infection on the growth, development and behavior of Myzus persicae on tobacco, and the role of 2b gene in the interaction between M. persicae and CMV.【Method】The host plants to be used were healthy tobacco, CMV-infected and CMV 2b gene deletion mutant (CMVΔ2b) infected tobacco. The Y-shaped olfactometer was used to determinate the selection tendency of M. persicae to different host tobacco plants, and electrical penetration graph (EPG) was used to monitor M. persicae feeding behavior combined with the detection of total sugar and free amino acid content in the host plant. The aphid life table was recorded through a single micro-cage to analyze the effects of CMV-infected tobacco on the growth and reproduction of M. persicae.【Result】The total sugar content of CMV-infected tobacco was significantly lower than that of healthy tobacco, while the content of free amino acids was significantly higher than that of healthy tobacco and CMVΔ2b-infected tobacco. The contents of threonine, glutamic acid, glycine, tyrosine, histidine, arginine and proline in the tobacco infected by CMVΔ2b were significantly higher than those of other treatments. The contents of valine and lysine in CMVΔ2b-infected tobacco were significantly higher than those of healthy tobacco. The content of aspartic acid in CMV-infected tobacco was significantly lower than that of other treatments, and its cystine content was significantly higher than that of CMVΔ2b-infected tobacco. Compared with CMV-infected tobacco, M. persicae had a stronger selection trend to healthy tobacco and CMVΔ2b-infected tobacco. There was no significant difference in the host selection behavior of M. persicae between healthy tobacco and CMVΔ2b-infected tobacco. CMV infection adversely affected the growth and feeding behavior of M. persicae. M. persicae had the most frequent probing behavior (pd wave) and the shortest duration of phloem feeding (E2 wave) on CMV-infected tobacco, and the frequency of xylem feeding (G wave) was significantly higher than that of healthy tobacco and CMVΔ2b-infected tobacco. The results indicated that CMV-infected tobacco was not suitable for aphid feeding. The growth characteristics of the M. persicae showed that CMV infection significantly prolonged the duration of the nymph aphid, increased the mortality rate of the 2nd-instar aphid, reduced the longevity of the aphid, and significantly reduced the fecundity of the aphid. The intrinsic rate of increase (r) and finite rate of increase (λ) of M. persicae on CMV-infected tobacco were significantly lower than those of healthy and CMVΔ2b-infected tobacco. CMV infection was not conducive to population growth of M. persicae.【Conclusion】CMV infection changes the composition of tobacco nutrients. The presence of CMV 2b gene increases the probing frequency and reduces the phloem feeding behavior. CMV infection results in prolonging pre-adult period, increasing mortality, decreasing longevity and fecundity of M. persicae. CMV infection reduces the host fitness of M. persicae, promotes aphids to transfer to new host plants, thus promoting the spread of the CMV.

Key words: cucumber mosaic virus (CMV), Myzus persicae, tobacco, growth and development, feeding behavior, host selection

Fig. 1

Contents of total sugar and free amino acids in different tobacco leaves Data in the figure are mean±SE. Different lowercase letters on the bars indicate the parameter has a significant difference at 0.05 level (LSD test after one-way ANOVA)"

Table 1

Contents of free amino acids in different tobacco leaves (μg?g-1 DW)"

Free amino acid
Healthy tobacco
CMV-infected tobacco
CMVΔ2b 侵染烟草
CMVΔ2b-infected tobacco
天冬氨酸Aspartic acid 1170.00±126.62a 576.67±61.19b 1230.00±92.37a
苏氨酸Threonine 786.67±91.34b 750.00±109.70b 2723.33±440.54a
丝氨酸Serine 636.67±126.67a 590.00±70.24a 930.00±104.40a
谷氨酸Glutamic acid 1960.00±292.63b 1886.67±144.95b 3030.00±135.77a
甘氨酸Glycine 10.00±0b 20.00±5.77b 70.00±10.00a
丙氨酸Alanine 253.33±8.82a 246.67±26.03a 263.33±12.02a
缬氨酸Valine 263.33±12.02b 306.67±26.03ab 356.67±29.63a
蛋氨酸Methionine 16.67±8.82a 6.67±6.67a 23.33±3.33a
异亮氨酸Isoleucine 53.33±3.33a 60.00±5.78a 50.00±3.77a
亮氨酸Leucine 70.00±5.77a 76.67±8.82a 76.67±8.82a
酪氨酸Tyrosine 63.33±3.33c 96.67±6.67b 133.33±12.02a
苯丙氨酸Phenylalanine 203.33±26.03a 226.67±24.04a 263.33±21.86a
赖氨酸Lysine 66.67±3.33b 76.67±8.82ab 100.00±11.54a
组氨酸Histidine 36.67±3.33b 50.00±5.77b 133.33±21.86a
精氨酸Arginine 26.67±6.67b 26.67±3.33b 56.67±6.67a
脯氨酸Proline 460.00±40.41b 373.00±67.41b 2763.33±316.88a
色氨酸Tryptophane 33.33±3.33a 80.00±5.77a 133.33±48.42a
胱氨酸Cystine 30.00±0ab 33.33±6.67a 16.67±3.33b

Fig. 2

Preference of M. persicae on healthy, CMV-infected and CMVΔ2b-infected tobacco ** represents extremely significant differences in the selection results of aphids on different host tobacco plants (P<0.01, Chi-square test)"

Table 2

Statistics for EPG parameters of M. persicae probing on different tobacco hosts"

EPG parameter
Healthy tobacco
CMV-infected tobacco (n=15)
CMVΔ2b-infected tobacco (n=15)
1 第一次刺探发生时间Time to 1st probe from start of EPG (min) 0.64±0.16a 0.75±0.42a 0.76±0.17a
2 第一次E1波前刺探次数Number of probes to the 1st E1 20.40±6.69a 14.00±2.60a 15.33±4.05a
3 pd次数Number of probes 197.73±9.53ab 217.93±50.51a 184.27±11.28b
4 np次数Number of np 39.40±7.97a 48.00±7.57a 46.07±6.17a
5 np 持续时长Total duration of np (min) 52.69±8.52a 63.43±9.67a 61.79±8.56a
6 口针第一次到达韧皮部的时间Time to phloem from the start of EPG (min) 87.72±31.03a 67.05±8.22a 79.89±14.70a
7 E1次数Number of E1 19.53±2.77a 16.60±3.23a 19.13±2.81a
8 E1持续总时长Total duration of E1 (min) 58.31±6.58a 69.64±8.09a 62.00±6.83a
9 E1持续总时长/总记录时间Total duration of E1/total record time (%) 16.20±1.83a 16.56±2.25a 17.22±1.90a
10 E2的次数Number of E2 13.67±2.37a 9.27±2.45a 14.73±2.72a
11 E2持续时长>10 min次数Number of sustained E2 (>10 min) 0.80±0.24a 0.33±0.16a 1.00±0.29a
12 E2持续总时长Total duration of E2 (min) 41.70±9.55ab 19.15±5.30b 42.93±8.81a
13 E2持续总时长/记录总时间Total duration of E2/total record time (%) 11.59±2.65ab 5.32±1.47b 11.92±2.45a
14 E1+E2持续总时长Total duration of E (min) 100.03±13.87a 78.79±11.65a 104.92±11.91a
15 最长E2波时间Duration of the longest E2 (min) 15.50±4.16a 6.11±1.65b 15.54±3.33a
16 G波持续总时间Duration of G (min) 24.13±0.00a 24.52±20.08a 13.57±2.73b
17 出现G波的蚜虫百分比Percentage of aphids showing waveform G (%) 6.67b 20.00a 6.67b
18 C波持续总时长Total duration of C (min) 208.51±10.37a 213.59±11.85a 191.85±10.95a
19 C波持续总时长/记录总时间Total duration of C/total record time (%) 57.92±2.88a 59.33±3.29a 53.29±1.78a

Fig. 3

Mortality rate of nymph aphids on different tobacco hosts Data in the figure are mean±SE. Different lowercase letters on the bars indicate significant difference at 0.05 level (Bootstrap program)"

Table 3

Developmental duration and longevity of M. persicae feeding on different tobacco hosts (d)"

Host plant
1st instar
2nd instar
3rd instar
4th instar
Pre-adult period
Adult period
Adult longevity
Healthy tobacco
1.52±0.10b 1.61±0.11b 1.55±0.10b 2.16±0.14a 6.81±0.16b 15.66±1.52a 22.03±1.54a
CMV-infected tobacco
2.19±0.20a 2.80±0.21a 2.71±0.25a 2.00±0.22a 9.40±0.58a 11.47±1.68a 12.49±1.49b
CMVΔ2b-infected tobacco
1.67±0.12b 1.83±0.17b 1.45±0.13b 2.32±0.15a 7.32±0.24b 16.09±1.77a 20.26±1.94a

Table 4

Reproductive period and fecundity of M. persicae feeding on different host tobacco plants"

Host plant
Adult pre-reproductive period (d)
Total pre-reproductive period (d)
Reproductive days (d)
Fecundity (number of nymphs produced by one female aphid)
Healthy tobacco
0.88±0.16a 7.69±0.21b 10.66±1.19a 24.66±3.44a
CMV-infected tobacco
1.17±0.35a 10.33±0.88a 9.25±1.40a 12.13±2.93b
CMVΔ2b-infected tobacco
0.81±0.19a 8.00±0.32b 10.86±1.17a 19.32±2.86ab

Table 5

Population parameters of M. persicae feeding on different tobacco hosts"

Host plant
Intrinsic rate of increase (r, d-1)
Finite rate of increase (λ, d-1)
Net reproductive rate (R0, offspring)
Mean generation time (T, d)
Gross reproduction rate (GRR)
Healthy tobacco
0.25±0.01a 1.28±0.02a 23.91±3.39a 12.95±0.32a 34.73±2.95a
CMV-infected tobacco
0.11±0.02c 1.11±0.02c 5.20±1.58b 15.65±1.36a 27.78±7.18ab
CMVΔ2b-infected tobacco
0.20±0.01b 1.22±0.02b 15.74±2.69a 13.59±0.49a 27.43±2.24b
[1] 朱贤朝, 王彦亭, 王智发. 中国烟草病害. 北京: 中国农业出版社, 2002: 76-89.
ZHU X C, WANG Y T, WANG Z F. Tobacco Disease of China. Beijing: China Agriculture Press, 2002: 76-89. (in Chinese)
[2] GUO H, GU L, LIU F, CHEN F, GE F, SUN Y. Aphid-borne viral spread is enhanced by virus-induced accumulation of plant reactive oxygen species. Plant Physiology, 2019,179(1):143-155.
pmid: 30381318
[3] TUNGADI T, GROEN S C, MURPHY A M, PATE A E, IQBAL J, BRUCE T J A, CUNNIFFE N J, CARR J P. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virology Journal, 2017,14(1):91.
doi: 10.1186/s12985-017-0754-0 pmid: 28468686
[4] MAUCK K E, DE MORAES C M, MESCHER M C. Evidence of local adaptation in plant virus effects on host-vector interactions. Integrative and Comparative Biology, 2014,54(2):193-209.
[5] HILY J M, GARCIA A, MORENO A, PLAZA M, WILKINSON M D, FERERES A, FRAILE A, GARCIA-ARENAL F. The relationship between host lifespan and pathogen reservoir potential: An analysis in the system Arabidopsis thaliana-cucumber mosaic virus. PLoS Pathogens, 2014,10(11):e1004492.
pmid: 25375140
[6] STAFFORD C A, WALKER G P, ULLMAN D E. Infection with a plant virus modifies vector feeding behavior. Proceedings of the National Academy of Science of the United States of America, 2011,108(23):9350-9355.
[7] MAUCK K E, DE MORAES C M, MESCHER M C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Science of the United States of America, 2010,107(8):3600-3605.
[8] MAUCK K E, DE MORAES C M, MESCHER M C. Effects of cucumber mosaic virus infection on vector and non-vector herbivores of squash. Communicative and Integrative Biology, 2010,3(6):579-582.
doi: 10.4161/cib.3.6.13094 pmid: 21331245
[9] GADHAVE K R, DUTTA B, COOLONG T, SRINIVASAN R. A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Scientific Reports, 2019,9:2503.
doi: 10.1038/s41598-019-39256-5 pmid: 30792431
[10] CASTEEL C L, YANG C, NANDURI A C, DE JONG H N, WHITHAM S A, JANDER G. The NIa-Pro protein of turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). The Plant Journal, 2014,77(4):653-663.
pmid: 24372679
[11] KERSCH-BECKER M F, THALER J S. Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores. Oecologia, 2014,174(3):883-892.
[12] LI H, LIU X, LIU X, MICHAUD J P, ZHI H, LI K, LI X, LI Z. Host plant infection by soybean mosaic virus reduces the fitness of its vector, Aphis glycines (Hemiptera: Aphididae). Journal of Economic Entomology, 2018,111(5):2017-2023.
pmid: 29945216
[13] NG J C, PERRY K L. Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 2004,5(5):505-511.
doi: 10.1111/j.1364-3703.2004.00240.x pmid: 20565624
[14] STAFFORD C A, WALKER G P, ULLMAN D E. Hitching a ride: Vector feeding and virus transmission. Communicative and Integrative Biology, 2012,5(1):43-49.
[15] JIMÉNEZ J, GARZO E, ALBA-TERCEDOR J, MORENO A, FERERES A, WALKER G P. The phloem-pd: A distinctive brief sieve element stylet puncture prior to sieve element phase of aphid feeding behavior. Arthropod-Plant Interactions, 2020,14:67-78.
[16] ALVAREZ A E, GARZO E, VERBEEK M, VOSMAN B, DICKE M, TJALLINGII W F. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 2007,125(2):135-144.
[17] COLLAR J L, AVILLA C, FERERES A. New correlations between aphid stylet paths and nonpersistent virus transmission. Environmental Entomology, 1997,26(3):537-544.
[18] REN G W, WANG X F, CHEN D, WANG X W, FAN X J, LIU X D. Potato virus Y-infected tobacco affects the growth, reproduction, and feeding behavior of a vector aphid, Myzus persicae (Hemiptera: Aphididae). Applied Entomology and Zoology, 2015,50(2):239-243.
[19] LIU J Y, LIU Y J, DONKERSLEY P, DONG Y H, CHEN X, ZANG Y, XU P J, REN G W. Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection. Archives of Virology, 2019,164(6):1567-1573.
[20] 姚敏, 张天奇, 田志超, 王源超, 陶小荣. 农杆菌介导的CMV侵染性克隆及2b缺失突变体构建. 中国农业科学, 2011,44(14):3060-3068.
YAO M, ZHANG T Q, TIAN Z C, WANG Y C, TAO X R. Construction of Agrobacterium-mediated cucumber mosaic virus infectious cDNA clones and 2b deletion viral vector. Scientia Agricultura Sinica, 2011,44(14):3060-3068. (in Chinese)
[21] SARRIA E, CID M, GARZO E, FERERES A. Excel Workbook for automatic parameter calculation of EPG data. Computers and Electronics in Agriculture, 2009,67(1/2):35-42.
[22] 臧连生, 刘银泉, 刘树生. 一种适合粉虱实验观察的新型微虫笼. 昆虫知识, 2005,42(3):329-331.
ZANG L S, LIU Y Q, LIU S S. A new clip-cage for whitefly experimental studies. Chinese Bulletin of Entomology, 2005,42(3):329-331. (in Chinese)
[23] CHI H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988,17(1):26-34.
[24] CHI H, LIU H. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 1985,24(2):225-240.
[25] KARIYAT R R, MAUCK K E, BALOGH C M, STEPHENSON A G, MESCHER M C, DE MORAES C M. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths. Proceedings of the Royal Society B: Biological Sciences, 2013,280(1757):20130020.
[26] MAXWELL D J, PARTRIDGE J C, ROBERTS N W, BOONHAM N, FOSTER G D. The effects of plant virus infection on polarization reflection from leaves. PLoS ONE, 2016,11(4):e0152836.
[27] MAUCK K E, DE MORAES C M, MESCHER M C. Biochemical and physiological mechanisms underlying effects of cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant, Cell and Environment, 2014,37(6):1427-1439.
pmid: 24329574
[28] DYER L A, PHILBIN C S, OCHSENRIDER K M, RICHARDS L A, MASSAD T J, SMILANICH A M, FORISTER M L, PARCHMAN T L, GALLAND L M, HURTADO P J, et al. Modern approaches to study plant-insect interactions in chemical ecology. Nature Reviews Chemistry, 2018,2(6):50-64.
[29] WU D, QI T, LI W X, TIAN H, GAO H, WANG J, GE J, YAO R, REN C, WANG X B, LIU Y, KANG L, DING S W, XIE D. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017,27(3):402-415.
[30] EIGENBRODE S D, DING H, SHIEL P, BERGER P H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society of London B: Biological Sciences, 2002,269(1490):455-460.
[31] MAUCK K, BOSQUE-PÉREZ N A, EIGENBRODE S D, DE MORAES C M, MESCHER M C. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Functional Ecology, 2012,26(5):1162-1175.
[32] WU J, LAN H, ZHANG Z F, CAO H H, LIU T X. Performance and transcriptional response of the green peach aphid Myzus persicae to the restriction of dietary amino acids. Frontiers in Physiology, 2020,11:487.
pmid: 32523545
[33] 陈茜, 刘金燕, 徐蓬军, 刘英杰, 董勇浩, 臧云, 蔡宪杰, 任广伟. PVY侵染后烟草营养成分的变化及其对介体烟蚜生长发育的影响. 昆虫学报, 2020,63(2):181-190.
CHEN X, LIU J Y, XU P J, LIU Y J, DONG Y H, ZANG Y, CAI X J, REN G W. Changes in the nutrient composition of tobacco plants after potato virus Y infection and their effects on the growth and development of the vector Myzus persicae (Hemiptera: Aphididae). Acta Entomologica Sinica, 2020,63(2):181-190. (in Chinese)
[34] MARTIN B, COLLAR J L, TJALLINGII W F, FERERES A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. Journal of General Virology, 1997,78:2701-2705.
[35] POWELL G. Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. Journal of General Virology, 2005,86(2):469-472.
[36] SHI X, GAO Y, YAN S, TANG X, ZHOU X, ZHANG D, LIU Y. Aphid performance changes with plant defense mediated by cucumber mosaic virus titer. Virology Journal, 2016,13:70.
doi: 10.1186/s12985-016-0524-4 pmid: 27103351
[37] 王佳, 王亚峰, 蒲颇, 陈媛, 刘映红. 烟草感染两种病毒对烟蚜种群增长、寄主选择与传毒的影响. 西南大学学报 (自然科学版), 2017,39(3):23-27.
WANG J, WANG Y F, PU P, CHEN Y, LIU Y H. Effect of two viruses infecting tobacco on population growth, host plant selection and virus transmission efficiency of aphids. Journal of Southwest University (Natural Science Edition), 2017,39(3):23-27. (in Chinese)
[38] ZIEBELL H, MURPHY A M, GROEN S C, TUNGADI T, WESTWOOD J H, LEWSEY M G, MOULIN M, KLECZKOWSKI A, SMITH A G, STEVENS M, POWELL G, CARR J P. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Scientific Reports, 2011,1:187.
[39] TUNGADI T, DONNELLY R, QING L, IQBAL J, MURPHY A M, PATE A E, CUNNIFFE N J, CARR J P. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. Molecular Plant Pathology, 2020,21(2):250-257.
doi: 10.1111/mpp.12892 pmid: 31777194
[40] CASTLE S J, BERGER P H. Rates of growth and increase of Myzus persicae on virus-infected potatoes according to type of virus-vector relationship. Entomologia Experimentalis et Applicata, 1993,69(1):51-60.
[41] MAUCK K E, DE MORAES C M, MESCHER M C. Infection of host plants by cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani. Scientific Reports, 2015,5:10963.
doi: 10.1038/srep10963 pmid: 26043237
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[3] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[4] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[5] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[6] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[9] HE YunChuan,WANG XinPu,HONG Bo,ZHANG TingTing,ZHOU XueFei,JIA YanXia. Effects of Four Insecticides LC25 on Feeding Behavior of Q-Type Bemisia tabaci Adults [J]. Scientia Agricultura Sinica, 2021, 54(2): 324-333.
[10] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[11] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[12] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[13] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[14] HE Hang,XIONG ZiBiao,SHOU YaXiao,XIE Qing,XIE HeFang. Effects of Rearing Modes on Nocturnal Feeding Behavior in Goslings [J]. Scientia Agricultura Sinica, 2019, 52(13): 2352-2358.
[15] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
Full text



No Suggested Reading articles found!