Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1657-1666.doi: 10.3864/j.issn.0578-1752.2022.08.015
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
WU Yan1,2(),ZHANG Hao1,LIANG ZhenHua1,PAN AiLuan1,SHEN Jie1,PU YueJin1,HUANG Tao1,PI JinSong1(
),DU JinPing1
[1] |
MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, LE NOBLE F, RAJEWSKY N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. doi: 10.1038/nature11928.
doi: 10.1038/nature11928 |
[2] |
ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, IVANOV A, BARTOK O, HANAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N, KADENER S. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014, 56(1): 55-66. doi: 10.1016/j.molcel.2014.08.019.
doi: 10.1016/j.molcel.2014.08.019 |
[3] |
STARKE S, JOST I, ROSSBACH O, SCHNEIDER T, SCHREINER S, HUNG L H, BINDEREIF A. Exon circularization requires canonical splice signals. Cell Reports, 2015, 10(1): 103-111. doi: 10.1016/j.celrep.2014.12.002.
doi: 10.1016/j.celrep.2014.12.002 |
[4] |
LI X, YANG L, CHEN L L. The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 2018, 71(3): 428-442. doi: 10.1016/j.molcel.2018.06.034.
doi: 10.1016/j.molcel.2018.06.034 |
[5] |
KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, EBBESEN K K, HANSEN T B, KJEMS J. The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7.
doi: 10.1038/s41576-019-0158-7 |
[6] |
ZHANG H D, JIANG L H, SUN D W, HOU J C, JI Z L. CircRNA: a novel type of biomarker for cancer. Breast Cancer (Tokyo, Japan), 2018, 25(1): 1-7. doi: 10.1007/s12282-017-0793-9.
doi: 10.1007/s12282-017-0793-9 |
[7] |
YAN Y, SU M, QIN B L. CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal. Biochemical and Biophysical Research Communications, 2020, 524(4): 839-846. doi: 10.1016/j.bbrc.2020.01.055.
doi: 10.1016/j.bbrc.2020.01.055 |
[8] |
ZHANG C R, LIU J Q, LAI M H, LI J, ZHAN J H, WEN Q D, MA H X. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome. Archives of Gynecology and Obstetrics, 2019, 300(2): 431-440. doi: 10.1007/s00404-019-05129-5.
doi: 10.1007/s00404-019-05129-5 |
[9] |
JIA W C, XU B, WU J. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism, 2018, 85: 192-204. doi: 10.1016/j.metabol.2018.04.002.
doi: 10.1016/j.metabol.2018.04.002 |
[10] |
TAO H, XIONG Q, ZHANG F, ZHANG N, LIU Y, SUO X J, LI X F, YANG Q P, CHEN M X. Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus). Genomics, 2018, 110(4): 257-266. doi: 10.1016/j.ygeno.2017.10.005.
doi: 10.1016/j.ygeno.2017.10.005 |
[11] |
ZHANG L, LIU X R, CHE S C, CUI J Z, LIU Y X, AN X P, CAO B Y, SONG Y X. CircRNA-9119 regulates the expression of prostaglandin- endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reproduction, Fertility, and Development, 2018, 30(12): 1759-1769. doi: 10.1071/RD18074.
doi: 10.1071/RD18074 |
[12] |
ZHANG L, LIU X R, MA X N, LIU Y X, CHE S C, CUI J Z, AN X P, CAO B Y, SONG Y X. Testin was regulated by circRNA3175-miR182 and inhibited endometrial epithelial cell apoptosis in pre-receptive endometrium of dairy goats. Journal of Cellular Physiology, 2018, 233(10): 6965-6974. doi: 10.1002/jcp.26614.
doi: 10.1002/jcp.26614 |
[13] |
XU G X, ZHANG H F, LI X, HU J H, YANG G S, SUN S D. Genome-wide differential expression profiling of ovarian circRNAs associated with litter size in pigs. Frontiers in Genetics, 2019, 10: 1010. doi: 10.3389/fgene.2019.01010.
doi: 10.3389/fgene.2019.01010 |
[14] |
SHEN M M, LI T T, ZHANG G X, WU P F, CHEN F X, LOU Q H, CHEN L, YIN X M, ZHANG T, WANG J Y. Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development in chicken. BMC Genomics, 2019, 20(1): 96. doi: 10.1186/s12864-019-5462-2.
doi: 10.1186/s12864-019-5462-2 |
[15] |
ZHANG M, HAN Y, ZHAI Y H, MA X F, AN X L, ZHANG S, LI Z Y. Integrative analysis of circRNAs, miRNAs, and mRNAs profiles to reveal ceRNAs networks in chicken intramuscular and abdominal adipogenesis. BMC Genomics, 2020, 21(1): 594. doi: 10.1186/s12864-020-07000-3.
doi: 10.1186/s12864-020-07000-3 |
[16] |
WU Y, XIAO H W, PI J S, ZHANG H, PAN A L, PU Y J, LIANG Z H, SHEN J, DU J P. The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway. Journal of Cellular Physiology, 2020, 235(7/8): 5750-5763. doi: 10.1002/jcp.29509.
doi: 10.1002/jcp.29509 |
[17] |
MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. The Journal of Reproduction and Development, 2012, 58(1): 44-50. doi: 10.1262/jrd.2011-012.
doi: 10.1262/jrd.2011-012 |
[18] |
FAN H Y, LIU Z L, SHIMADA M, STERNECK E, JOHNSON P F, HEDRICK S M, RICHARDS J S. MAPK3/ 1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science, 2009, 324(5929): 938-941. doi: 10.1126/science.1171396.
doi: 10.1126/science.1171396 |
[19] |
ETCHES R J, PETITTE J N. Reptilian and avian follicular hierarchies: models for the study of ovarian development. The Journal of Experimental Zoology Supplement: Published Under Auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry, 1990, 4: 112-122. doi: 10.1002/jez.1402560419.
doi: 10.1002/jez.1402560419 |
[20] | 林金杏. 局部性促生长因子对鸡卵泡发育的调控及其机理的研究[D]. 杭州: 浙江大学, 2011. |
LIN J X. Regulation of local growth-promoting factors on follicular development in the laying chickens[D]. Hangzhou: Zhejiang University, 2011. (in Chinese) | |
[21] |
JOHNSON P. Follicle selection in the avian ovary. Reproduction in Domestic Animals, 2012, 47: 283-287. doi: 10.1111/j.1439-0531.2012.02087.x.
doi: 10.1111/j.1439-0531.2012.02087.x. |
[22] |
WANG Y Y, CHEN Q Y, LIU Z M, GUO X L, DU Y Z, YUAN Z J, GUO M, KANG L, SUN Y, JIANG Y L. Transcriptome analysis on single small yellow follicles reveals that Wnt4 is involved in chicken follicle selection. Frontiers in Endocrinology, 2017, 8: 317. doi: 10.3389/fendo.2017.00317.
doi: 10.3389/fendo.2017.00317 |
[23] |
魏泽辉, 贾存灵. 家禽卵泡选择过程中颗粒细胞的分子调控机制. 中国家禽, 2017, 39(21): 1-5. doi: 10.16372/j.issn.1004-6364.2017.21. 001.
doi: 10.16372/j.issn.1004-6364.2017.21. 001 |
WEI Z H, JIA C L. The molecular regulation mechanism of granulosa cells in the process of poultry follicle selection. China Poultry, 2017, 39(21): 1-5. doi: 10.16372/j.issn.1004-6364.2017.21.001. (in Chinese)
doi: 10.16372/j.issn.1004-6364.2017.21. 001 |
|
[24] |
陆思羽, 何颖婷, 周小枫, 辛晓萍, 张爱玲, 袁晓龙, 张哲, 李加琪.干扰KISS1基因对猪卵巢颗粒细胞功能的影响. 中国农业科学, 2020, 53(23): 4940-4949. doi: 10.3864/j.issn.0578-1752.2020.23.018.
doi: 10.3864/j.issn.0578-1752.2020.23.018 |
LU S Y, HE Y T, ZHOU X F, XIN X P, ZHANG A L, YUAN X L, ZHANG Z, LI J Q.Effect of KISS1 interference on the function of porcine granulosa cells in porcine ovary. Scientia Agricultura Sinica, 2020, 53(23): 4940-4949. doi: 10.3864/j.issn.0578-1752.2020.23.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.018 |
|
[25] |
DEPALO R, NAPPI L, LOVERRO G, BETTOCCHI S, CARUSO M L, VALENTINI A M, SELVAGGI L. Evidence of apoptosis in human primordial and primary follicles. Human Reproduction, 2003, 18(12): 2678-2682. doi: 10.1093/humrep/deg507.
doi: 10.1093/humrep/deg507 |
[26] |
ROSKOSKI R J. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochemical and Biophysical Research Communications, 2004, 319(1): 1-11. doi: 10.1016/j.bbrc.2004.04.150.
doi: 10.1016/j.bbrc.2004.04.150 |
[27] |
YARDEN Y, PINES G. The ERBB network: at last, cancer therapy meets systems biology. Nature Reviews Cancer, 2012, 12 (8): 553-563. doi: 10.1038/nrc3309.
doi: 10.1038/nrc3309 |
[28] |
WU Y, XIAO H W, PI J S, ZHANG H, PAN A L, PU Y J, LIANG Z H, SHEN J, DU J P. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle, 2019, 18(20): 2742-2756. doi: 10.1080/15384101.2019.1656952.
doi: 10.1080/15384101.2019.1656952 |
[29] |
VEIKKOLAINEN V, ALI N, DOROSZKO M, KIVINIEMI A, MIINALAINEN I, OHLSSON C, POUTANEN M, RAHMAN N, ELENIUS K, VAINIO S J, NAILLAT F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Human Molecular Genetics, 2020, 29(17): 2813-2830. doi: 10.1093/hmg/ddaa161.
doi: 10.1093/hmg/ddaa161 |
[30] |
AN R, FENG J X, XI C, XU J, SUN L J.miR-146a attenuates Sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxidative Medicine and Cellular Longevity, 2018, 2018: 7163057. doi: 10.1155/2018/7163057.
doi: 10.1155/2018/7163057 |
[31] |
SONG G Y, ZHANG H C, CHEN C L, GONG L J, CHEN B, ZHAO S Y, SHI J, XU J, YE Z Y. miR-551b regulates epithelial- mesenchymal transition and metastasis of gastric cancer by inhibiting ERBB4 expression. Oncotarget, 2017, 8(28): 45725-45735. doi: 10.18632/oncotarget.17392.
doi: 10.18632/oncotarget.17392 |
[32] |
ZHANG M X, ZHANG L M, CUI M L, YE W G, ZHANG P J, ZHOU S N, WANG J J. miR-302b inhibits cancer-related inflammation by targeting ERBB4, IRF2 and CXCR4 in esophageal cancer. Oncotarget, 2017, 8(30): 49053-49063. doi: 10.18632/oncotarget.17041.
doi: 10.18632/oncotarget.17041 |
[33] |
LIANG H W, LIU M H, YAN X, ZHOU Y, WANG W G, WANG X L, FU Z, WANG N, ZHANG S Y, WANG Y B, ZEN K, ZHANG C Y, HOU D X, LI J, CHEN X. miR-193a-3p functions as a tumor suppressor in lung cancer by down-regulating ERBB4. Journal of Biological Chemistry, 2015, 290(2): 926-940. doi: 10.1074/jbc.M114.621409.
doi: 10.1074/jbc.M114.621409 |
[34] |
NISHI M, EGUCHI-ISHIMAE M, WU Z, GAO W, IWABUKI H, KAWAKAMI S, TAUCHI H, INUKAI T, SUGITA K, HAMASAKI Y, ISHII E, EGUCHI M. Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia, 2013, 27 (2): 389-397. doi: 10.1038/leu.2012.242.
doi: 10.1038/leu.2012.242 |
[35] |
许文前, 黄源茂, 肖慧芳.microRNA let-7b在急性淋巴细胞白血病的表达分析与表观遗传学研究. 中国试验血液学杂志, 2015, 23(6): 1535-1541. doi: 10.7534/j.issn.1009-2137.2015.06.001.
doi: 10.7534/j.issn.1009-2137.2015.06.001 |
XU W Q, HUANG Y M, XIAO H F.Expression analysis and epigenetics of microRNA let-7b in acute lymphoblastic leukemia. Journal of Experimental Hematology, 2015, 23(6): 1535-1541. doi: 10.7534/j.issn.1009-2137.2015.06.001. (in Chinese)
doi: 10.7534/j.issn.1009-2137.2015.06.001 |
|
[36] |
BALZEAU J, MENEZES M R, CAO S Y, HAGAN J P. The LIN28/let-7 pathway in cancer. Frontiers in Genetics, 2017, 8: 31. doi: 10.3389/fgene.2017.00031.
doi: 10.3389/fgene.2017.00031 |
[37] |
PELOSI A, CARECCIA S, LULLI V, ROMANIA P, MARZIALI G, TESTA U, LAVORGNA S, LO-COCO F, PETTI M C, CALABRETTA B, LEVRERO M, PIAGGIO G, RIZZO M G. miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene, 2013, 32(31): 3648-3654. doi: 10.1038/onc.2012.398.
doi: 10.1038/onc.2012.398 |
[38] |
AKAMINE P S, LIMA C R, LUSTOZA-COSTA G J, FUZIWARA C S, DEL DEBBIO C B, KIMURA E T, SANTOS M F, HAMASSAKI D E.Age-related increase of let-7 family microRNA in rat retina and vitreous. Experimental Eye Research, 2021, 204: 108434. doi: 10.1016/j.exer.2020.108434.
doi: 10.1016/j.exer.2020.108434 |
[39] |
ZHOU T Z, LIN K, NIE J J, PAN B, HE B S, PAN Y Q, SUN H L, XU T, WANG S K.LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7 a/b/i-5p. Pathology - Research and Practice, 2021, 217: 153268. doi: 10.1016/j.prp.2020.153268.
doi: 10.1016/j.prp.2020.153268 |
[40] |
JOHNSON D T, DAVIS A G, ZHOU J H, BALL E D, ZHANG D E. microRNA let-7b downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3'UTR. Experimental Hematology & Oncology, 2021, 10(1): 8. doi: 10.1186/s40164-021-00204-7.
doi: 10.1186/s40164-021-00204-7 |
[1] | GUO ZeYuan, DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua. Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells [J]. Scientia Agricultura Sinica, 2023, 56(13): 2597-2608. |
[2] | LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. |
[3] | WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675. |
[4] | LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061. |
[5] | ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066. |
[6] | WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674. |
[7] | CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676. |
[8] | YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242. |
[9] | MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007. |
[10] | DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342. |
[11] | TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723. |
[12] | Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912. |
[13] | CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687. |
[14] | ZhiWei ZHU,ShuNing HOU,QingLing HAO,JiongJie JING,LiHua LÜ,PengFei LI. Sequence Structure and Expression Characteristics Analysis of AGTR2 in Bovine Follicle [J]. Scientia Agricultura Sinica, 2020, 53(7): 1482-1490. |
[15] | ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070. |
|