Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1112-1126.doi: 10.3864/j.issn.0578-1752.2021.06.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Advances in Cotton Growth and Development Modelling and Its Applications in China

TongYu HOU1(),TingLi HAO2,HaiJiang WANG1,Ze ZHANG1,Xin LÜ1()   

  1. 1Agricultural College of Shihezi University, Shihezi 832000, Xinjiang
    2Analysis and Testing Center of Shihezi University, Shihezi 832000, Xinjiang
  • Received:2020-06-19 Accepted:2020-11-25 Online:2021-03-16 Published:2021-03-25
  • Contact: Xin Lü E-mail:tongyu.hou@shzu.edu.cn;lxshz@126.com

Abstract:

Cotton is an important commodity crop, and its high-yield, high-quality and high-efficiency production have strategic significance for China. The cotton growth and development models (CGDM) simulate the dynamic interactions of physiological and structural processes with the environment, and predict the growth, yield and quality formation of cotton, to provide great assistance and convenience for the optimal decision of management practices. Based on the comprehensive introduction of technical principle, structural composition and functional characteristics of physiological model, structural model and functional-structural model of cotton, some further discussions were developed on the research and application of these models at domestic and abroad. Some further discussions were developed on the research and application of these models at domestic and abroad, particularly in the application of the CGDMs for the simulation of dynamic change of cotton growth and yield, for the optimization of irrigation, fertilization and pest management strategies, and for the regional-assessment of cotton production system in China. According to the actual situation of cotton production in China, combined with the development direction of agricultural informatization in our country, several suggestions were put forward for the research, development and application of cotton growth simulation model in terms of localization study, scale improvement and popularization demonstration, in order to further promote the modernization development of cotton industry in China.

Key words: cotton, growth and development, modelling, functional-structural, virtual

Table 1

Comparisons of four classical cotton growth and development models"

模型要素 Model components GOSSYM[5] Cotton2K[10] OZCOT[6] CSM-CROPGRO-Cotton[8]
模型输入
Input
环境
Environment
日尺度气象数据;土壤初始水、氮含量
Daily weather data, initial soil water and nitrogen content
小时尺度气象数据;土壤初始水、氮含量
Hourly weather data, initial soil water and nitrogen content
日尺度气象数据;土壤初始水、氮含量
Daily weather data, initial soil water and nitrogen content
日尺度气象数据;土壤初始水、氮含量
Daily weather data, initial soil water and nitrogen content
品种
Cultivar
品种遗传参数
Genetic coefficients
品种遗传参数
Genetic coefficients
品种遗传参数
Genetic coefficients
品种遗传参数
Genetic coefficients
栽培
Management operations
播期、密度、灌溉、施肥、化调、脱叶
Planting date, plant density, irrigation, fertilizer, growth regulators and defoliation
播期、密度、滴灌、施肥、耕作、化调、脱叶
Planting date, plant density, drip irrigation, fertilizer, tillage, growth regulators and defoliation
播期、密度、灌溉、施肥、脱叶
Planting date, plant density, irrigation, fertilizer and defoliation
播期、密度、灌溉、施肥、留茬、耕作、脱叶
Planting date, plant density, irrigation, fertilizer, residue, tillage and defoliation
生育进程
Phenology
基于日平均温度和碳氮供需平衡调节生育进程
Develop based on daily thermal time and C:N ratio
基于小时尺度平均温度和碳氮供需平衡调节生育进程
Develop based on hourly thermal time and C:N ratio
基于出苗到现蕾所需积温的经验值计算现蕾时间
Based on the empirical accumulating day degrees between sowing and the appearance of the first square
基于生理日数模拟生育进程
Develop based on physiological degree days
物质积累和分配
Dry matter accumulation and allocation
光合
Photosynthesis
基于群体冠层对太阳辐射的截获效率计算潜在光合
Canopy-level radiation
interception
基于群体冠层对太阳辐射的截获效率计算潜在光合
Canopy-level radiation
interception
基于群体冠层对太阳辐射的截获效率计算潜在光合
Canopy-level radiation
interception
将单叶小时尺度的潜在光合整合为日尺度的冠层光合
Leaf-level biochemistry
呼吸
Respiration
基于光强、温度及生物量的经验公式
Uses an empirical function of respiration based on light, air temperature and biomass
由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸
Calculates growth and maintenance respiration and photorespiration
基于果节数量和温度调节因子的经验公式
Uses empirical functions of respiration based on fruiting site count and air temperature
由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸
Calculates growth and maintenance respiration
分配
Partitioning
根据各类器官的需求将积累的干物质按比例分配
Allocates carbon to individual growing organs based on the organ's contribution to the total demand
根据各类器官的需求将积累的干物质按比例分配
Allocates carbon to individual growing organs based on the organ's contribution to the total demand
将积累的干物质分配给每个棉铃,以估计棉铃的生长
Allocates carbon to cohort pools for developing bolls
按照生殖器官优先原则和各器官生长需求实现干物质动态分配
Reproductive tissues have first priority, then allocates carbon to single pools for leaves, stems and roots
器官生长
Organ growth
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
蕾铃脱落
Shedding of buds and bolls
根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响
Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stresses
根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响
Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stress
根据棉铃承载力与实际载铃量的比值确定棉铃脱落状态
Shedding based on the ratio of load to carrying capacity
当干物质分配无法满足生殖器官生长需求时即发生脱落
Shedding occurs when dry matter allocation cannot meet the growth needs of reproductive organs
模型要素 Model components GOSSYM[5] Cotton2K[10] OZCOT[6] CSM-CROPGRO-Cotton[8]
水分平衡
Water Balance
土壤
Soil
2D RHIZOS模型
2D RHIZOS model
2D RHIZOS 模型
2D RHIZOS model
Ritchie水分平衡
Ritchie model
Ritchie水分平衡
Ritchie model
蒸散
ET
Ritchie水分平衡
Ritchie model
CIMIS彭曼公式
CIMIS Penman model
Ritchie水分平衡
Ritchie model
FAO-56彭曼公式
FAO-56
氮素平衡
Nitrogen Balance
2D RHIZOS模型
2D RHIZOS model
对2D RHIZOS模型土壤氮素动态平衡模块进行了优化
Optimized 2D RHIZOS model
基于氮素池实现土壤-棉花-器官间氮素动态平衡
Dynamic nitrogen pools
由土壤-棉花氮平衡模块实现土壤-棉花-器官间氮素动态平衡
Based on the soil carbon and nitrogen balance sub module
模型输出
Output
棉花产量、株式图、水分利用效率、氮肥利用效率等
Yield, plant maps, WUE, NUE
棉花产量、株式图、水分利用效率、氮肥利用效率等
Yield, plant maps, WUE, NUE
棉花产量、载铃量、水分利用效率、氮肥利用效率等
Yield, boll load, plant maps, WUE, NUE
棉花产量、生物量、载铃量、水分利用效率、氮肥利用效率等
Yield, biomass, boll load, plant maps, WUE, NUE
应用情况
Application
机理性强,输入参数多,使用前需进行参数校验,在美国植棉区已经广泛应用[1]
Mainly applied in the cotton belt of U.S.[1]
针对干旱半干旱环境和栽培措施的优化使其在以色列[10]、新疆[28]等植棉区应用较多
Mainly applied in arid and semi-arid environments such as Israel[10] and Xinjiang China[28]
重点关注棉铃生长和脱落,对底层生理考虑较少,受澳大利亚官方支持应用广泛[2]
Mainly applied in Australia [2]
模块化组织提升了开发应用便捷性,目前在美国东南植棉区应用较多[2,32]
Mainly appliied in in the southeastern U.S. [2,32]

Fig. 1

A brief history of cotton growth and development modelling"

Fig. 2

Schematic diagram of typical cotton production scenarios of drip irrigation under mulch in Xinjiang"

[1] LANDIVAR J A, REDDY K R, HODGES H F. Physiological simulation of cotton growth and yield//STEWART J M, OOSTERHUIS D M, HEITHOLT J J, MAUNEY J R. Physiology of Cotton. Springer, Dordrecht, 2010: 318-331.
[2] THORP K R, ALE S, BANGE M P, BARNES E M, HOOGENBOOM G, LASCANO R J, MCCARTHY A C, NAIR S, PAZ J O, RAJAN N, REDDY K R, WALL G W, WHITE J W. Development and application of process-based simulation models for cotton production: A review of past, present, and future directions. Journal of Cotton Science, 2014,18(1):10-47.
[3] 潘学标, 韩湘玲, 石元春. COTGROW: 棉花生长发育模拟模型. 棉花学报, 1996,8(4):180-188.
PAN X B, HAN X L, SHI Y C. COTGROW: Cotton growth and development simulation model. Acta Gossypii Sinica, 1996,8(4):180-188. (in Chinese)
[4] 马富裕, 朱艳, 曹卫星, 杨建荣, 郑重, 程海涛, 慕彩芸. 棉纤维品质指标形成的动态模拟. 作物学报, 2006,32(3):442-448.
MA F Y, ZHU Y, CAO W X, YANG J R, ZHENG Z, CHENG H T, MU C Y. Modeling fiber quality formation in cotton. Acta Agronomica Sinica, 2006,32(3):442-448. (in Chinese)
[5] BAKER D N, LAMBERT J R, MCKINION J M. GOSSYM: A simulator of cotton crop growth and yield. Technical Bulletin, 1983: 1-135.
[6] HEARN A B. OZCOT: A simulation model for cotton crop management. Agricultural Systems, 1994,44(3):257-299.
[7] STAPLETON H N, BUXTON D R, WATSON F L, NOITING D J. Cotton: A Computer Simulation of Cotton Growth. College of Agriculture, University of Arizona, Tucson, Arizona, 1974.
[8] JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003,18(3):235-265.
[9] 刘文, 王恩利. 棉花生长发育的计算机模拟模型研究初探. 中国农业气象, 1992,13(6):10-16.
LIU W, WANG E L. A preliminary study on computer simulation model of cotton growth and development. Chinese Journal of Agrometeorology, 1992,13(6):10-16. (in Chinese)
[10] MARANI A. Cotton2K model version 4.0. Rehovot, Israel: Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 2000.
[11] BOOTE K J, JONES J W, HOOGENBOOM G. Crop simulation models as tools for agro-advisories for weather and disease effects on production. Journal of Agrometeorology, 2008(1):9-17.
[12] CAMMARANO D, PAYERO J, BASSO B, WILKENS P, GRACE P. Agronomic and economic evaluation of irrigation strategies on cotton lint yield in Australia. Crop and Pasture Science, 2012,63(7):647-655.
[13] 王雪姣, 潘学标, 陈超, 龙步菊. 基于COSIM模型的棉花冷害预测研究. 棉花学报, 2015,24(1):52-61.
WANG X J, PAN X B, CHEN C, LONG B J. Forecasting cotton chilling damage based on COSIM. Cotton Science, 2015,24(1):52-61. (in Chinese)
[14] LIANG X Z, XU M, GAO W, REDDY K R, KUNKEL K, SCHMOLDT D L, SAMEL A N. Physical modeling of U.S. cotton yields and climate stresses during 1979 to 2005. Agronomy Journal, 2012,104(3):675-683.
[15] 潘学标, 李玉娥. 新疆棉花生产区域评估系统研究. 中国农业科学, 2003,36(1):37-43.
PAN X B, LI Y E. Study on cotton production regional assessment system of Xinjiang. Scientia Agricultura Sinica, 2003,36(1):37-43. (in Chinese)
[16] JIN X L, KUMAR L, LI Z H, FENG H K, XU X G, YANG G J, WANG J H. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 2018,92:141-152.
[17] STAPLETON H N. Crop production system simulation. Transactions of the American Society of Agricultural Engineers, 1970(1):110-113.
[18] DUNCAN W. SIMCOT: A simulator of cotton growth and yield// MURPHY C. Proceedings of Workshop for Modeling Tree Growth. Duke University, Durham, North Carolina, 1972.
[19] HESKETH J D, MCKINION J M, JONES J W, BAKER D N. SIMCOT: A computer simulation of cotton growth and yield. Joint Automatic Control Conference. Texas: American Institute of Chemical Engineers, 1974: 337.
[20] JONES J W, THOMPSON A C, HESKETH J D. Analysis of SIMCOT: Nitrogen and growth//Proceedings: Beltwide Cotton Production Research Conferences. Texas: National Cotton Council, 1974: 111-118.
[21] MCKINION J M, BAKER D N, HESKETH J D, JONES J W. SIMCOT II: A simulation of cotton growth and yield. Computer Simulation of a Cotton Production System-Users Manual.USDA-ARS-S: 1975a(52):27-82.
[22] BAKER D N, LAMBERT J R, PHENE C J, MCKINION J M. GOSSYM: A simulator of cotton crop dynamics//Proceedings of Seminar on Agricultural Industrial Complexes. Scientific Research Institute of Planning, Latvian GOSPLAN. Moscow, Kishinev, 1976: 100-133.
[23] BAR-YOSEF B, LAMBERT J R, BAKER D N. Rhizos: A simulation of root growth and soil processes. sensitivity analysis and validation for cotton. Transactions of the ASAE, 1982,25(5):1268-1273.
[24] LEMMON H. COMAX: An expert system for cotton crop management. Science, 1986,233(4759):29-33.
pmid: 17812886
[25] MCKINION J M, BAKER D N, WHISLER F D, LAMBERT J R. Application of the GOSSYM/COMAX system to cotton crop management. Agricultural Systems, 1989,31(1):55-65.
[26] ATTIA A, RAJAN N, NAIR S S, DELAUNE P B, XUE Q, IBRAHIM A M H, HAYS D B. Modeling cotton lint yield and water use efficiency responses to irrigation scheduling using Cotton2K. Agronomy Journal, 2016,108(4):1614-1623.
[27] NAIR S, MAAS S, WANG C, MAUGET S. Optimal field partitioning for center-pivot-irrigated cotton in the Texas high plains. Agronomy Journal, 2013,105(1):124-133.
[28] YANG Y M, OUYANG Z, YANG Y H, LIU X J. Simulation of the effect of pruning and topping on cotton growth using COTTON2K model. Field Crops Research, 2008,106(2):126-137.
[29] YANG Y M, YANG Y H, MOIWO J P, HU Y K. Estimation of irrigation requirement for sustainable water resources reallocation in North China. Agricultural Water Management, 2010,97(11):1711-1721.
[30] PATHAK T B, FRAISSE C W, JONES J W, MESSINA C D, HOOGENBOOM G. Use of global sensitivity analysis for CROPGRO cotton model development. Transactions of the Asabe, 2007,50(50):2295-2302.
doi: 10.13031/2013.24082
[31] HOOGENBOOM G, PORTER C H, SHELIA V, BOOTE K J, SINGH U, WHITE J W, HUNT L A, OGOSHI R, LIZASO J I, KOO J, ASSENG S, SINGELS A, MORENO L P, JONES J W. Decision support system for agrotechnology transfer (DSSAT). Florida: DSSAT Foundation, 2019.
[32] SULEIMAN A A, TOJO SOLER C M, HOOGENBOOM G. Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate. Agricultural Water Management, 2007,91(1):33-42.
[33] HEARN A B, BANGE M P. SIRATAC and CottonLOGIC: Persevering with DSSs in the Australian cotton industry. Agricultural Systems, 2002,74(1):27-56.
[34] HEARN A B, DA ROZA G D. A simple model for crop management applications for cotton (Gossypium hirsutum L.). Field Crops Research, 1985,12:49-69.
[35] RITCHIE J T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 1972,8(5):1204-1213.
[36] RICHARDS Q D, BANGE M P, JOHNSTON S B. HydroLOGIC: An irrigation management system for Australian cotton. Agricultural Systems, 2008,98(1):40-49.
[37] NELSON R A, HOLZWORTH D P, HAMMER G L, HAYMAN P T. Infusing the use of seasonal climate forecasting into crop management practice in North East Australia using discussion support software. Agricultural Systems, 2002,74(3):393-414.
[38] WALL G W, AMTHOR J S, KIMBALL B A. COTCO2: A cotton growth simulation model for global change. Agricultural and Forest Meteorology, 1994,70:289-342.
[39] LIANG X Z, XU M, GAO W, REDDY K R, KUNKEL K, SCHMOLDT D L, SAMEL A N. A distributed cotton growth model developed from GOSSYM and its parameter determination. Agronomy Journal, 2012,104(3):661.
[40] VAN DIEPEN C A, WOLF J, KEULEN H, RAPPOLDT C. WOFOST: A simulation model of crop production. Soil Use & Management, 1989,5(1):16-24.
[41] FARAHANI H J, IZZI G, OWEIS T Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 2009,101(3):469-476.
[42] KO J, MAAS S J, LASCANO R J, WANJURA D. Modification of the GRAMI model for cotton. Agronomy Journal, 2005,97(5):1374-1379.
[43] MAAS S J. Parameterized model of gramineous crop growth: I. leaf area and dry mass simulation. Agronomy Journal, 1993,85(2):348-353.
[44] MAAS S J. Parameterized model of gramineous crop growth: II. within-season simulation calibration. Agronomy Journal, 1993,85(2):354-358.
[45] SOMMER R, KIENZLER K, CONRAD C, IBRAGIMOV N, LAMERS J, MARTIUS C, VLEK P. Evaluation of the CropSyst model for simulating the potential yield of cotton. Agronomy for Sustainable Development, 2008,28(2):345-354.
[46] 吴国伟, 翟连荣, 李典谟, 兰仲雄. 棉花生长发育模拟模型的研究. 生态学报, 1988,8(3):201-210.
WU G W, ZHAI L R, LI D M, LAN Z X. Simulation model of cotton growth and development. Acta Ecologica Sinaca, 1988,8(3):201-210. (in Chinese)
[47] 翟连荣, 李典谟. 棉铃虫与棉花生长发育耦合系统的建立. 应用生态学报, 1991,2(2):134-140.
ZHAI L R, LI D M. Establishment of a field management system with coupling cotton bollworm (Helitothis armigera) dynamics and cotton plant development. Chinese Journal of Applied Ecology, 1991,2(2):134-140. (in Chinese)
[48] 冯利平, 韩学信. 棉花栽培计算机模拟决策系统(COTSYS). 棉花学报, 1999,11(5):251-254.
FENG L P, HAN X X. COTSYS-Cotton cultivational simulation and decision-making system. Acta Gossypii Sinica, 1999,11(5):251-254. (in Chinese)
[49] 杨艳敏, 刘小京, 欧阳竹. COTTON2K在新疆棉花精准种植管理中的应用. 中国生态农业学报, 2005,13(3):123-126.
YANG Y M, LIU X J, OUYANG Z. Application of COTTON2K in the precision planting management of cotton in Xinjiang. Chinese Journal of Eco-Agriculture, 2005,13(3):123-126. (in Chinese)
[50] ZHANG L Z, WERF W V D, CAO W X, LI B G, PAN X B, SPIERTZ J H J. Development and validation of SUCROS-Cotton: A potential crop growth simulation model for cotton. NJAS - Wageningen Journal of Life Sciences, 2008,56(1):59-83.
doi: 10.1007/s11427-012-4425-5 pmid: 23314868
[51] 马富裕. 棉铃发育及纤维品质形成的生态效应与模拟研究[D]. 南京: 南京农业大学, 2004.
MA F Y. Eco-study and simulation of boll development and fiber quality formation in cotton[D]. Nanjing: Nanjing Agricultural University, 2004. (in Chinese)
[52] LI W F, ZHOU Z G, MENG Y L, XU N Y, FOK M. Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crops Research, 2009,112(2):131-140.
[53] 李文峰, 孟亚利. 棉籽蛋白质和油分含量预测的生态模型. 生态学杂志, 2011,30(11):2653-2658.
LI W F, MENG Y L. Ecological model for predicting the protein and oil contents in cottonseed. Chinese Journal of Ecology, 2011,30(11):2653-2658. (in Chinese)
[54] CHEN M L, ZHAO W Q, MENG Y L, CHEN B L, WANG Y H, ZHOU Z G, OOSTERHUIS D M. A model for simulating the cotton (Gossypium hirsutum L.) embryo oil and protein accumulation under varying environmental conditions. Field Crops Research, 2015,183:79-91.
[55] ZHAO W Q, MENG Y L, LI W F, CHEN B L, XU N Y, WANG Y H, ZHOU Z G, OOSTERHUIS D M. A model for cotton (Gossypium hirsutum L.) fiber length and strength formation considering temperature-radiation and N nutrient effects. Ecological Modelling, 2012,243:112-122.
doi: 10.1016/j.ecolmodel.2012.06.015
[56] ZHAO W Q, ZHOU Z G, MENG Y L, CHEN B L, WANG Y H. Modeling fiber fineness, maturity, and micronaire in cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 2013,12(1):67-79.
doi: 10.1016/S2095-3119(13)60206-3
[57] 康孟珍. 植物功能结构模型研究的回顾与展望. 系统仿真学报, 2012,24(10):2039-2048.
KANG M Z. Review and perspectives on research about functional- structural plant models. Journal of System Simulation, 2012,24(10):2039-2048. (in Chinese)
[58] GODIN C, COSTES E, SINOQUET H. A Method for describing plant architecture which integrates topology and geometry. Annals of Botany, 1999,84(3):343-357.
[59] 郭焱, 李保国. 虚拟植物的研究进展. 科学通报, 2001,46(4):273-280.
GUO Y, LI B G. Advances in virtual plants. Chinese Science Bulletin, 2001,46(4):273-280. (in Chinese)
[60] LINDENMAYER A. Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. Journal of Theoretical Biology, 1968,18(3):300-315.
doi: 10.1016/0022-5193(68)90080-5 pmid: 5659072
[61] DE REFFYE P, EDELIN C, FRANCCON J, JAEGER M, PUECH C. Plant models faithful to botanical structure and development// Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1988: 151-158.
[62] PRADAL C, BOUDON F, NOUGUIER C, CHOPARD J, GODIN C. PlantGL: A Python-based geometric library for 3D plant modelling at different scales. Graphical Models, 2009,71(1):1-21.
[63] DAUZAT J, CLOUVEL P, LUQUET D, MARTIN P. Using virtual plants to analyse the light-foraging efficiency of a low-density cotton crop. Annals of Botany, 2008,101(8):1153-1166.
doi: 10.1093/aob/mcm316 pmid: 18184646
[64] MUTSAERS H J W. KUTUN: A morphogenetic model for cotton (Gossypium hirsutum L.). Agricultural Systems, 1984,14(4):229-257.
[65] LANG A R G. Leaf orientation of a cotton plant. Agricultural Meteorology, 1973,11:37-51.
[66] SINOQUET H, THANISAWANYANGKURA S, MABROUK H, KASEMSAP P. Characterization of the light environment in canopies using 3D digitising and image processing. Annals of Botany, 1998,82(2):203-212.
[67] 杨娟, 赵明, 潘学标. 基于NURBS和VC++6.0的棉花生长可视化研究. 农业工程学报, 2006,22(10):159-162.
YANG J, ZHAO M, PAN X B. Visualization of cotton growth based on NURBS and VC++6.0. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(10):159-162. (in Chinese)
[68] 周娟, 周治国, 陈兵林, 孟亚利. 基于形态模型的棉花(Gossypium hirsutum L.)虚拟生长系统研究. 中国农业科学, 2009,42(11):3843-3851.
ZHOU J, ZHOU Z G, CHEN B L, MENG Y L. Morphogenesis model-based virtual growth system of cotton (Gossypium hirsutum L.). Scientia Agricultura Sinica, 2009,42(11):3843-3851. (in Chinese)
[69] 陈超, 潘学标, 张立祯, 庞艳梅, 刘琰琰. 棉花地上部形态模拟模型的建立. 中国生态农业学报, 2012,20(12):1650-1656.
CHEN C, PAN X B, ZHANG L Z, PANG Y M, LIU Y Y. Establishment of morphology simulation model for above-ground part of cotton plant. Chinese Journal of Eco-Agriculture, 2012,20(12):1650-1656. (in Chinese)
[70] GU S H, EVERS J B, ZHANG L Z, MAO L L, ZHANG S P, ZHAO X H, LIU S D, VAN DER WERF W, LI Z H. Modelling the structural response of cotton plants to mepiquat chloride and population density. Annals of Botany, 2014,114(4):877-887.
doi: 10.1093/aob/mct309 pmid: 24489020
[71] HANAN J S, HEARN A B. Linking physiological and architectural models of cotton. Agricultural Systems, 2003,75(1):47-77.
[72] JALLAS E, SEQUEIRA R, MARTIN P, TURNER S, PAPAJORGJI P. Mechanistic virtual modeling: Coupling a plant simulation model with a three-dimensional plant architecture component. Environmental Modeling & Assessment, 2009,14(1):29-45.
[73] 丁维龙, 马培良, 程志君. 基于结构-功能互反馈机制的植物生长可视化建模与仿真. 农业工程学报, 2008,24(11):165-168.
DING W L, MA P L, CHENG Z J. Visual modeling and simulation of plant growth based on plant functional-structural mutual feedback mechanism. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(11):165-168. (in Chinese)
[74] ZHAN Z G, REY H, LI D, GUO Y, COURNÈDE P H, DE REFFYE P. Study on the effects of defoliation on the growth of cotton plant using the functional structural model GREENLAB//2006 Second International Symposium on Plant Growth Modeling and Applications. NW Washington, DC: IEEE, 2006: 194-201.
[75] 张吴平, 李保国. 棉花根系生长发育的虚拟研究. 系统仿真学报, 2006(z1):283-286.
ZHANG W P, LI B G. Three-dimensional model simulating development and growth of cotton root system. Journal of System Simulation, 2006(z1):283-286. (in Chinese)
[76] VOS J, EVERS J B, BUCK-SORLIN G H, ANDRIEU B, CHELLE M, DE VISSER P H B. Functional-structural plant modelling: A new versatile tool in crop science. Journal of Experimental Botany, 2010,61(8):2101-2115.
pmid: 19995824
[77] DE REFFYE P, BLAISE F, CHEMOUNY S, JAFFUEL S, FOURCAUD T, HOULLIER F. Calibration of a hydraulic architecture- based growth model of cotton plants. Agronomie, 1999,19(3/4):265-280.
[78] RENTON M, HANAN J, BURRAGE K. Using the canonical modelling approach to simplify the simulation of function in functional-structural plant models. New Phytologist, 2005,166(3):845-857.
doi: 10.1111/j.1469-8137.2005.01330.x
[79] GUO Y, MA Y T, ZHAN Z G, LI B G, DINGKUHN M, LUQUET D, DE REFFYE P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany, 2006,97(2):217-230.
doi: 10.1093/aob/mcj033 pmid: 16390847
[80] HEMMERLING R, KNIEMEYER O, LANWERT D, KURTH W, BUCK-SORLIN G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Functional Plant Biology, 2008,35(10):739-750.
doi: 10.1071/FP08052 pmid: 32688828
[81] 陈超, 潘学标, 张立祯, 庞艳梅. 棉花地上部生长的功能-结构模型研究. 作物学报, 2012,38(12):2237-2245.
CHEN C, PAN X B, ZHANG L Z, PANG Y M. Functional and structural model for above-ground growth in cotton. Acta Agronomica Sinica, 2012,38(12):2237-2245. (in Chinese)
[82] WANG X J, ZHANG L Z, EVERS J B, MAO L L, WEI S J, PAN X B, ZHAO X H, VAN DER WERF W, LI Z H. Predicting the effects of environment and management on cotton fibre growth and quality: A functional-structural plant modelling approach. AoB Plants, 2014,6:1-16.
[83] JEGEDE A. Top 10 largest cotton producing countries in the world. The Daily Records, 2019. http://www.thedailyrecords.com/2018- 2019-2020-2021/world-famous-top-10-list/world/largest-cotton-producing-countries-world/12785/.
[84] 李锋. 2020 年中国和美国棉花生产成本估计及其技术需求分析. 农业科研经济管理, 2019(2):1-6.
LI F. . Estimation of cotton production cost and analysis of technology demand in China and America in 2020. Management for Economy in Agricultural Scientific Research, 2019(2):1-6. (in Chinese)
[85] 董占山, 韩湘玲, 潘学标. GOSSYM模拟模型在黄淮海棉区的验证. 棉花学报, 1996,8(6):318-322.
DONG Z S, HAN X L, PAN X B. Validation of GOSSYM: In the condition of Huanghuaihai cotton region. Acta Gossypii Sinica, 1996,8(6):318-322. (in Chinese)
[86] 赵黎, 钟骏平, 赵富强, 毕双杰, 段瑞萍, 刘忠元. 棉花生长模拟模型GOSSYM及其在北疆棉区的应用. 新疆农业大学学报, 1999(1):43-50.
ZHAO L, ZHONG J P, ZHAO F Q, BI S J, DUAN R P, LIU Z Y. GOSSYM and application under the condition of north Xinjiang cotton region. Journal of Xinjiang Agricultural University, 1999(1):43-50. (in Chinese)
[87] 杨艳敏, 欧阳竹, 王淑芬. 基于COTTON2K的华北平原和新疆2个棉区棉花耗水特征比较. 华北农学报, 2012,27(s1):229-233.
YANG Y M, OUYANG Z, WANG S F. Comparison of cotton growth and water use in North China Plain and Xinjiang based on cotton simulation model COTTON2K. Acta Agriculturae Boreali-Sinica, 2012,27(s1):229-233. (in Chinese)
[88] 吴立峰, 张富仓, 范军亮, 周罕觅, 邢英英, 强生才. 不同灌水水平下CROPGRO棉花模型敏感性和不确定性分析. 农业工程学报, 2015,31(15):55-64.
WU L F, ZHANG F C, FAN J L, ZHOU H M, XING Y Y, QIANG S C. Sensitivity and uncertainty analysis for CROPGRO-cotton model at different irrigation levels. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(15):55-64. (in Chinese)
[89] LI M, DU Y J, ZHANG F C, BAI Y G, FAN J L, ZHANG J H, CHEN S M. Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model. Agricultural Water Management, 2019,218:124-138.
[90] TAN S, WANG Q J, ZHANG J H, CHEN Y, SHAN Y Y, XU D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agricultural Water Management, 2018,196:99-113.
[91] 孙莉, 陈曦, 周可法, 罗毅, 包安明, 欧阳竹. 应用Cotton2k模型模拟北疆棉花生长结果的分析. 干旱区地理, 2006,29(2):262-268.
SUN L, CHEN X, ZHOU K F, LUO Y, BAO A M, OUYANG Z. Simulation of cotton growth in Xinjiang with Cotton2k model. Arid Land Geography, 2006,29(2):262-268.
[92] 吕新, 魏亦农, 李少昆. 基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究. 中国农业科学, 2002,35(7):883-887.
LÜ X, WEI Y N, LI S K. Research on management of soil fertility information and fertilization decision support system in cotton. Scientia Agricultura Sinica, 2002,35(7):883-887. (in Chinese)
[93] 顾佳敏, 王佩玲, 刘阳天, 高攀, 郭文超. 基于数字图像的棉田复杂背景下棉蚜统计方法. 新疆农业科学, 2018,55(12):2279-2287.
GU J M, WANG P L, LIU Y T, GAO P, GUO W C. A statistical method for counting cotton aphis under complex background in cotton field based on digital image. Xinjiang Agricultural Sciences, 2018,55(12):2279-2287. (in Chinese)
[94] 许敬诚, 吕新, 林皎, 张泽, 姚秋双, 范向龙, 洪延宏. 基于叶片纹理特征的棉花蚜害诊断模型研究. 棉花学报, 2020,32(2):133-142.
XU J C, LÜ X, LIN J, ZHANG Z, YAO Q S, FAN X L, HONG Y H. The diagnostic model of cotton aphids based on leaf textural features. Cotton Science, 2020,32(2):133-142. (in Chinese)
[95] 陈兵, 王刚, 刘景德, 马占鸿, 王静, 李天南. 高光谱的病害棉叶光合参数提取. 光谱学与光谱分析, 2018,38(6):1834-1838.
CHEN B, WANG G, LIU J D, MA Z H, WANG J, LI T N. Extraction of photosynthetic parameters of cotton leaves under disease stress by hyperspectral remote sensing. Spectroscopy and Spectral Analysis, 2018,38(6):1834-1838. (in Chinese)
[96] 王姣, 李志沛, 张立福, 黄长平. 基于棉花黄萎病多“症状”特征的植被指数构建及病情遥感监测研究. 地理与地理信息科学, 2019,35(5):46-51.
WANG J, LI Z P, ZHANG L F, HUANG C P. Study of cotton verticillium wilt: Construction of a vegetation index based on multiple "symptoms" characteristics and remote sensing monitoring. Geography and Geo-Information Science, 2019,35(5):46-51. (in Chinese)
[97] ZHANG J H, KONG F T, WU J Z, HAN S Q, ZHAI Z F. Automatic image segmentation method for cotton leaves with disease under natural environment. Journal of Integrative Agriculture, 2018,17(8):1800-1814.
[98] HUANG H S, DENG J Z, LAN Y B, YANG A Q, DENG X L, ZHANG L, WEN S, JIANG Y, SUO G Y, CHEN P C. A two-stage classification approach for the detection of spider mite- infested cotton using UAV multispectral imagery. Remote Sensing Letters, 2018,9(10):933-941.
[99] 陈超, 潘学标, 李慧阳, 张立祯, 龙步菊. 基于COSIM模型的新疆棉花延迟型冷害指标分析. 棉花学报, 2009,21(3):201-205.
CHEN C, PAN X B, LI H Y, ZHANG L Z, LONG B J. Analysis of cotton delayed cool injury indices in Xinjiang based on COSIM. Cotton Science, 2009,21(3):201-205. (in Chinese)
[100] 王雪姣, 潘学标, 王森, 胡莉婷, 郭燕云, 李新建. 基于COSIM模型的新疆棉花产量动态预报方法. 农业工程学报, 2017,33(8):160-165.
WANG X J, PAN X B, WANG S, HU L T, GUO Y Y, LI X J. Dynamic prediction method for cotton yield based on COSIM model in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(8):160-165. (in Chinese)
[101] CHEN J, LIU L T, WANG Z B, SUN H C, ZHANG Y J, LU Z Y, LI C D. Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons. PLoS ONE, 2018,13(5):e0197284.
doi: 10.1371/journal.pone.0197284 pmid: 29750816
[102] ZHANG J, WANG Y M, DONG Q X, HOU J L. Research advances of cotton dynamic simulation models. Transactions of the CSAE, 2007,23(3):257-266.
[103] PENG B, GUAN K Y, TANG J Y, AINSWORTH E A, ASSENG S, BERNACCHI C J, COOPER M, DELUCIA E H, ELLIOTT J W, EWERT F, GRANT R F, GUSTAFSON D I, HAMMER G L, JIN Z N, JONES J W, KIMM H, LAWRENCE D M, LI Y, LOMBARDOZZI D L, MARSHALL-COLON A, MESSINA C D, ORT D R, SCHNABLE J C, VALLEJOS C E, WU A, YIN X Y, ZHOU W. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020,6(4):338-348.
doi: 10.1038/s41477-020-0625-3 pmid: 32296143
[104] ROZENSTEIN O, HAYMANN N, KAPLAN G, TANNY J. Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agricultural Water Management, 2019,223:105715.
[105] 赵春江, 杨信廷, 李斌, 李明, 闫华. 中国农业信息技术发展回顾及展望. 农学学报, 2018,8(1):180-186.
ZHAO C J, YANG X T, LI B, LI M, YAN H. The retrospect and prospect of agricultural information technology in China. Journal of Agriculture, 2018,8(1):180-186. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[8] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[9] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[10] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[11] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[12] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[13] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[14] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[15] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!