Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3508-3519.doi: 10.3864/j.issn.0578-1752.2011.17.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Grain Yield Associated Traits Using Ye 478 Introgression Lines in Maize

ZHAO  Pu, LIU  Rui-Xiang, LI  Cheng-Pu, XING  Xiang-Ru, CAO  Xiao-Liang, TAO  Yong-Sheng, ZHANG  Zu-Xin   

  1. 1. 河北农业大学农学院/国家玉米改良中心河北分中心
    2. 华中农业大学植物科学技术学院/作物遗传改良国家重点实验室
  • Received:2011-01-10 Revised:2011-02-24 Online:2011-09-01 Published:2011-03-22
  • Contact: Pu ZHAO E-mail:yshtao@hebau.edu.cn

Abstract: 【Objective】 The purpose of this investigation was to identify QTL (Quantitative Trait Locus) for maize yield related traits and those introgression lines containing favorable alleles. 【Method】 Two maize inbred lines, QB80 and Qi319 were used as the donor parents, respectively, and the Ye478 as the recurrent parent, two introgression line populations consisting of 61 and 72 family lines were constructed by backcrossing combined with directional selection, respectively. The two introgression line populations were evaluated across 4 environments in 2 years. The QTLs for yield and related traits were detected by stepwise regression (RSTEP-LRT) using Windows QTL ICI Mapping software. 【Result】 A total of 49 QTLs for 9 traits were identified in the population with QB80 as the donor, and 42 QTLs for 9 traits were identified in the population with Qi319 as the donor under four environments. Of which 16 QTLs were detected across not less than two environments. In addition, some QTLs for same trait detected in different environments were located in the same chromosome regions, and those QTLs for diverse traits were also located in the same or adjacent chromosome region, forming several multiple QTL-rich regions. The less consistent QTL was detected in two populations, indicating that the two donors contain different sets of favorable alleles. And the yield associated traits of those lines containing favorable introgression segments or alleles were significantly improved, implicating those lines are available for improving of Ye478 by QTL pyramiding. 【Conclusion】 The genetic difference between QB80 and Ye 478 is more than that of Qi319 and Ye478 , therefore, more yield trait QTL can be detected. Those introgression lines containing favorable alleles can be used to improve Ye478 by designed QTL pyramiding. The detected QTL-rich regions have given a subset of important chromosome regions for fine mapping and cloning of genes for yield associated traits.

Key words: Maize (Zea Mays L.), Introgression line, Yield trait, Quantitative trait loci (QTL)

[1]Duvick D N. Heterosis: Feeding people and protecting natural resources//Coors C J, Pandey S. Genetics and Exploitation of Hetorosis in Crops. Madison, WI, USA: CSSA, ASA. 1999: 19-29.

[2]彭  勃, 王  阳, 李永祥, 刘  成, 张  岩, 刘志斋, 谭巍巍, 王  迪, 孙宝成, 石云素, 宋燕春, 王天宇, 黎  裕. 玉米籽粒产量与产量构成因子的关系及条件QTL分析. 作物学报, 2010, 36(10): 1624-1633.

Peng B, Wang Y, Li Y X, Liu C, Zhang Y, Liu Z Z, Tan W W, Wang D, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y. Correlation analysis and conditional QTL analysis of grain yield and yield components in maize. Acta Agronomica Sinica, 2010, 36(10): 1624-1633. (in Chinese)

[3]赵秀琴, 徐建龙, 朱苓华, 黎志康. 利用高代回交导入系定位水、旱条件下影响水稻根系及产量的QTL. 中国农业科学, 2008, 41(7): 1887-1893.

Zhao X Q, Xu J L, Zhu L H, Li Z K. QTL mapping of yield and root traits under irrigation and drought conditions using advanced backcrossing introgression lines in rice. Scientia Agricultura Sinica, 2008, 41(7): 1887-1893. (in Chinese)

[4]Liu X H, He S L, Zheng Z P, Huang Y B, Tan Z B, Li Z, He C, Wu X, Pu Q B. Identification of the QTLs for grain yield using RIL population under different nitrogen regimes in maize. African Journal of Agricultural Research, 2010, 5(15): 2002-2007.

[5]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. Journal of Genetics and Genomics, 2008, 35(2): 119-127.

[6]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742.

[7]Eshed Y, Zamir D. Introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics, 1995, 141: 1147-1162.

[8]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Domingo R J, Vijayakumar C H M, Maghirang R. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Molecular Biology, 2005, 59: 33-52.

[9]Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theoretical and Applied Genetics, 2005, 110: 634-639.

[10]Von Korff M, Wang H, Leon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theoretical and Applied Genetics, 2004, 109: 1736-1745.

[11]曾瑞珍, Akshay Talukdar, 刘  芳, 张桂权. 利用单片段代换系定位水稻粒形 QTL. 中国农业科学, 2006, 39(4): 647-654.

Zeng R Z, Talukdar A, Liu F, Zhang G Q. Mapping of the QTLs for grain shape using single segment substitution lines in rice. Scientia Agricultura Sinica, 2006, 39(4): 647-654. (in Chinese)

[12]赵芳明, 刘桂富, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 用单片段代换系对不同时期水稻分蘖数 QTL的非条件和条件定位. 中国农业科学, 2008, 41(2): 322-330.

Zhao F M, Liu G F, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Unconditional and conditional QTL mapping by using single segment substitution lines for tiller number at various stages in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2008, 41(2): 322-330. (in Chinese)

[13]赵芳明, 张桂权, 曾瑞珍, 杨正林, 朱海涛, 钟秉强, 凌英华, 何光华. 用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应. 作物学报, 2009, 35(1): 48-56.

Zhao F M, Zhang G Q, Zeng R Z, Yang Z L, Zhu H T, Zhong B Q, Ling Y H, He G H. Additive Effects and Epistasis Effects of QTL for plant height and its components using single segment substitution lines (SSSLs) in rice. Acta Agronomica Sinica, 2009, 35(1): 48-56. (in Chinese)

[14]唐绍清, 胡培松, 罗  炬, 焦桂爱, 万建民, 石春海. 利用回交重组自交系定位稻米赖氨酸含量的基因座位. 中国水稻科学, 2008, 22(4): 435-438.

Tang S Q, Hu P S, Luo J, Jiao G A, Wan J M, Shi C H. QTLs mapping for lysine content of rice using backcross inbred lines. Chinese Journal of Rice Science, 2008, 22(4): 435-438. (in Chinese)

[15]郑天清, 徐建龙, 傅彬英, 高用明, Satish Veruka, Renee Lafitte, 翟虎渠, 万建民, 朱苓华, 黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究. 作物学报, 2007, 33(8): 1380-1384.

Zheng T Q, Xu J L, Fu B Y, Gao Y M, Veruka S, Lafitte R, Zhai H Q, Wan J M, Zhu L H, Li Z K. Preliminary identification of genetic overlaps between sheath blight resistance and drought tolerance in the introgression lines from directional selection. Acta Agronomica Sinica, 2007, 33(8): 1380-1384. (in Chinese)

[16]余传元, 江  玲, 肖应辉, 翟虎渠, 万建民. 籼型染色体置换片段在杂交粳稻中的配合力分析. 作物学报, 2008, 34(8): 1308-1316.

Yu C Y, Jiang L, Xiao Y H, Zhai H Q, Wan J M. Combining ability of yield-component traits for indica chromosome substituted segments in japonica hybrids. Acta Agronomica Sinica, 2008, 34(8): 1308-1316. (in Chinese)

[17]Szalma S J, Hostert B M, LeDeaux J R, Stuber C W, Holland J B. QTL mapping with near-isogenic lines in maize. Theoretical and Applied Genetics, 2007, 114(7): 1211-1228.

[18]Rae A M, Howell E C, Kearsey M J. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity, 1999, 83: 586-596.

[19]Borevitz J O, Chory J. Genomics tools for QTL analysis and gene discovery. Current Opinion in Plant Biology, 2004, 7: 132-136.

[20]叶金才. 育成我国首例对玉米南方锈病免疫系齐319. 中国农业科学, 2000, 33(4): 110.

Ye J C. The first inbred lines Qi319 immune to maize southern rust bred in China. Scientia Agricultura Sinica, 2000, 33(4): 110. (in Chinese)

[21]Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetical Research, 2006, 88: 93-104.

[22]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.

[23]Tang J H, Yan J B, Ma X Q, Teng W T, Wu W R, Dai J R, Dhillon B S, Melchinger A E, Li J S. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theoretical and Applied Genetics, 2010, 120: 333-340.

[24]Guo J F, Su G Q, Zhang J P, Wang G Y. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. African Journal of Biotechnology, 2008, 7(12): 1829-1838.

[25]李永祥, 王  阳, 石云素, 宋燕春, 王天宇, 黎  裕. 玉米籽粒构型与产量性状的关系及QTL作图. 中国农业科学, 2009, 42(2): 408-418.

Li Y X, Wang Y, Shi Y S, Song Y C, Wang T Y, Li Y. Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Scientia Agricultura Sinica, 2009, 42(2): 408-418. (in Chinese)

[26]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTL regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. Annual Botany, 2002, 89: 941-963.

[27]刘宗华, 汤继华, 卫晓轶, 王春丽, 田国伟, 胡彦民, 陈伟程. 氮胁迫和正常条件下玉米穗部性状的QTL分析. 中国农业科学, 2007, 40(11): 2409-2417.

Liu Z H, Tang J H, Wei X Y, Wang C L, Tian G W, Hu Y M, Chen W C. QTL mapping of ear traits under low and high nitrogen conditions in maize. Scientia Agricultura Sinica, 2007, 40(11): 2409-2417. (in Chinese)

[28]Melchinger A E, Utz H, Schoen C C. Quantitative trait locus(QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998(149): 383-403.

[29]Austin D, Lee M. Comparative mapping in F-2:3 and F-6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theoretical and Applied Genetics, 1996, 92(7): 817-826.

[30]万建民. 作物分子设计育种. 作物学报, 2006, 32: 455-462.

Wan J M. Perspectives of molecular design breeding in crops. Acta Agronomica Sinica, 2006, 32: 455-462. (in Chinese)

[31]Austin D, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and non-stress environments. Crop Science, 1998, 38: 1296-1308.

[32]李新海, 袁力行, 李晓辉, 张世煌, 李明顺, 李文华. 利用SSR标记划分70份我国玉米自交系的杂种优势群. 中国农业科学, 2003, 36(6): 622-627.

Li X H, Yuan L X, Li X H, Zhang S H, Li M S, Li W H. Heterotic grouping of 70 maize inbred lines by SSR markers. Scientia Agricultura Sinica, 2003, 36(6): 622-627. (in Chinese)
[1] LI YongXiang,LI ChunHui,YANG JunPin,YANG Hua,CHENG WeiDong,WANG LiMing,LI FengYan,LI HuiYong,WANG YanBo,LI ShuHua,HU GuangHui,LIU Cheng,LI Yu,WANG TianYu. Genetic Dissection of Heterosis for Huangzaosi, a Foundation Parental Inbred Line of Maize in China [J]. Scientia Agricultura Sinica, 2020, 53(20): 4113-4126.
[2] YANG QingHua, QIU Jun, LI Hai, YANG TianYu, CHENG BingWen, ZHAO Min, LIU GuoQing, GAO XiaoLi, FENG BaiLi. Comprehensive Evaluation of Agronomic, Yield and Quality Traits of Broomcorn Millet (Panicum miliaceum L.) Cultivars [J]. Scientia Agricultura Sinica, 2017, 50(23): 4530-4544.
[3] WANG Yu-hai, HE Fang, BAO Yin-guang, MING Dong-feng, DONG Lei, HAN Qing-dian, LI Ying-ying, WANG Hong-gang. Development and Genetic Analysis of a Novel Wheat-Aegilops Germplasm TA002 Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2016, 49(3): 418-428.
[4] TENG Fei, LI Sheng-you, RAO De-min, YAO Xing-dong, ZHANG Hui-jun, AO Xue, WANG Hai-ying, Steven St.Martin, XIE Fu-ti. Effects of Super-High-Yield Soybean Cultivars as Rootstock on Some Physiological and Yield Traits of Cultivars Released in Different Decades [J]. Scientia Agricultura Sinica, 2016, 49(23): 4531-4543.
[5] ZHU Yu-jun, CHEN Jun-yu, ZHANG Zhen-hua, ZHANG Hong-wei, FAN Ye-yang, ZHUANG Jie-yun. QTL Mapping for Standard Heterosis of Yield Traits in Rice [J]. Scientia Agricultura Sinica, 2016, 49(2): 232-238.
[6] YU Shu-xun, FAN Shu-li, WANG Han-tao, WEI Heng-ling, PANG Chao-you. Progresses in Research on Cotton High Yield Breeding in China [J]. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476.
[7] YANG Luo-miao, SUN Jian, ZHAO Hong-wei, WANG Jing-guo, LIU Hua-long, ZOU De-tang. QTL Analysis of Heading Date and Yield Traits in Japonica Rice Under Cold Water Stress in Different Years [J]. Scientia Agricultura Sinica, 2016, 49(18): 3489-3503.
[8] JIAO Fu-Chao, LI Yong-Xiang, CHEN Lin, LIU Zhi-Zhai, SHI Yun-Su, SONG Yan-Chun, ZHANG Deng-Feng, LI Yu, WANG Tian-Yu. Genetic Dissection for Kernel Row Number in the Specific Maize Germplasm Four-Rowed Waxy Corn [J]. Scientia Agricultura Sinica, 2014, 47(7): 1256-1264.
[9] LIU Chun-Xiao-1, ZHAO Hai-Jun-1, DONG Shu-Ting-2, WANG Qing-Cheng-1, LI Zong-Xin-1, LIU Kai-Chang-1. Study on Characteristics of Nitrogen Metabolism in Diallel Cross Generation of Different Maize Genotypes After Silking [J]. Scientia Agricultura Sinica, 2014, 47(1): 33-42.
[10] MENG Jia-Li, LOU Qun-Feng, ZHOU Xiao-Hui, SHI Jian-Lei, CHEN Jin-Feng. Construction of Cucumber-Sour Cucumber Chromosome Introgression Lines and Location of Fruit Related QTLs [J]. Scientia Agricultura Sinica, 2012, 45(8): 1558-1567.
[11] ZHANG Chun-Zhi, LIU Lei, SUN Yu-Yan, ZHOU Long-Xi, YANG Yu-Hong, XIE Bing-Yan, LI Jun-Ming. Identification of QTLs Conferring Resistance to Late Blight in Solanum lycopersicoides LA2951 Introgression Line Population [J]. Scientia Agricultura Sinica, 2012, 45(6): 1093-1105.
[12] LIU Zhi-Zhai, WU Xun, LIU Hai-Li, LI Yong-Xiang, LI Qing-Chao, WANG Feng-Ge, SHI Yun-Su, SONG Yan-Chun, SONG Wei-Bin, ZHAO Jiu-Ran, LAI Jin-Sheng, LI Yu, WANG Tian-Yu. Genetic Diversity and Population Structure of Important Chinese Maize Inbred Lines Revealed by 40 Core Simple Sequence Repeats (SSRs) [J]. Scientia Agricultura Sinica, 2012, 45(11): 2107-2138.
[13] SHILi-yu1;2;LIXin-hai2;XIEChuan-xiao2;HAOZhuan-fang2;WENGJian-feng2;ZHANGShi-huang2;PANGuang-tang1. Development of SCARs from AFLP Markers Linked to Resistance to Maize Rough Dwarf Virus (MRDV) Using Bulked Segregant Analysis in Maize [J]. Scientia Agricultura Sinica, 2011, 44(9): 1763-1744.
[14] ZHANG Li,ZHANG Ji-wang,LIU Peng,DONG Shu-ting. Starch Granule Size Distribution in Grains of Maize with Different Starch Contents [J]. Scientia Agricultura Sinica, 2011, 44(8): 1596-1602 .
[15] YANG Xiu-yan, CAI Yi, FU Jie, TANG Qi-lin, RONG Ting-zhao. Karyotypes of Maize and Its Relatives—Teosinte [J]. Scientia Agricultura Sinica, 2011, 44(7): 1307-1314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!