Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2077-2091.doi: 10.3864/j.issn.0578-1752.2022.11.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance

FANG TaoHong1(),ZHANG Min1,MA ChunHua1,ZHENG XiaoChen1,TAN WenJing1,TIAN Ran1,YAN Qiong1,ZHOU XinLi1(),LI Xin1,YANG SuiZhuang1,HUANG KeBing1,WANG JianFeng2,HAN DeJun3,WANG XiaoJie2,KANG ZhenSheng2()   

  1. 1Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan
    2College of Plant Protection, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
    3College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2022-01-11 Accepted:2022-02-28 Online:2022-06-01 Published:2022-06-16
  • Contact: XinLi ZHOU,ZhenSheng KANG E-mail:2398612723@qq.com;eli6951@sina.com;kangzs@nwsuaf.edu.cn

Abstract:

【Objective】 The objective of this study is to evaluate the application value of the high temperature adult plant (HTAP) resistance gene Yr52 in wheat production for improving stripe rust resistance. And wheat lines with good agronomic characters and high disease resistance were developed and selected. It laid a foundation for making full use of the existing HTAP resistance resources and improving the yield related traits.【Method】 The stripe rust resistance gene Yr52 was introgressed to Lunxuan 987 (LX987), Bainong Aikang 58 (AK58) and Han 6172 (H6172) by backcrossing and self-crossing combined with marker-assisted selection breeding. Adult-plant resistance of donor parent, receptor cultivars and their progeny lines were evaluated in the disease nursery fields at Mianyang, Sichuan and Yangling, Shaanxi by mixed endemic physiological races CYR32, CYR33 and CYR34. In comparison to the Chinese Spring reference genome, the flanking SSR markers Xcfa2040 (6.8 cm-Yr52) and Xbarc182 (1.2 cm-Yr52) of Yr52 were combined to search for markers of 35K SNP chip in the physical interval of target genes, and developed into derived cleaved amplified polymorphic sequences (dCAPS) and kompetitive allele specific PCR (KASP) markers. The resistance gene Yr52 was detected in BC2F5:6 progeny lines.【Result】 The evaluation of adult plant resistance and agronomic traits indicated that nineteen BC2F5:6 lines with LX987 background was obtained: Among of them, 11 were high resistance (IT=0-3, DS=1%-20%), 8 were moderate resistance (IT=4-6, DS=15%-30%), the average thousand kernel weight (TKW), kernels per spike (KPS), productive tiller number per line (PTN), plant height (PH) and spike length (SL) was 45.33 g, 46, 7, 113.26 cm and 10.05 cm, respectively. Four BC2F5:6 families with AK58 background: all showed high resistance (IT=0-3, DS=5%-25%); the average TKW, KPS, PTN, PH and SL were 44.67 g, 48, 7, 96.54 cm and 10.17 cm, respectively. Five BC2F5:6 lineages with H6172 background showed high resistance to stripe rust (IT=0-3, DS=5%-20%). The average TKW, KPS, PTN, PH and SL were 43.74 g, 49, 8, 109.72 cm and 10.06 cm, respectively. The detection rate of three simple sequence repeat (SSR) molecular markers Xbarc182, Xcfa2040 and Xwmc557 linked to Yr52, in offspring population were 78.57%, 66.67% and 66.67%, respectively. One dCAPS marker Xdcaps-Yr52-1 and one KASP marker Xkasp-Yr52-1 were successfully developed, and the detection rates were 73.68% and 41.67%, respectively. The agronomic traits of lines with high (IT=0-3) and medium (IT=4-6) resistance levels were compared. The results showed that the average TKW (P>0.05), PTN (P>0.05) and KPS (P<0.05) of lines with IT=0-3 were higher than those of families with moderate resistance level lines (IT=4-6). Five lines with disease resistance and stable agronomic traits were selected by evaluated of PH=80-105 cm, PTN≥6,KPS≥45, TKW≥42 g, SL≥8 cm.【Conclusion】 Yr52 was found to be resistant to all of the present predominant races in the adult plant stage. After introgression Yr52 into the main susceptible Chinese wheat varieties, the progeny lines with good disease resistance and agronomic characters could be used for breeding resistance varieties with multi-gene polymerization, it is enriching for the diversity of disease resistance genes and achieving durable utilization. The development of molecular markers will facilitate detect the utilization of Yr52 gene in resistance identification of germplasm in the future.

Key words: Triticum aestivum L., stripe rust, traits of yield components, stripe rust resistance, molecular markers development, molecular marker-assisted selection (MAS), backcross breeding, Yr52

Fig. 1

Frequency distributions of mean infection type and disease severity in lines of three crosses A: Infection type; B: Disease severity"

Table 1

Analysis of variance of resistant phenotypes data of BC2F5:6 and BC2F6:7 lines in 2020-2021 in Mianyang, Sichuan province and Yangling, Shaanxi province for three crosses"

鉴定地点
Location
家系反应型 IT of line 家系严重度 DS of lines (%)
最小 Min 最大 Max 平均 Mean 最小 Min 最大 Max 平均 Mean
绵阳MY (2020) 0 7 4 0 50 20
绵阳MY (2021) 0 7 3 0 40 10
杨凌YL (2021) 0 4 3 0 30 10
平均Mean 3 15
变异来源Source 自由度Df 均方MS 显著性a F. Sig. 自由度Df 均方MS 显著性a F. Sig.
家系 Lines 27 9.97 *** 27 421.34 ***
区组/环境Block/Environments 3 0.48 ns 3 49.07 **
环境Environments 2 19.54 *** 2 1156.58 ***
家系×环境 Lines×Environments 54 1.74 *** 54 106.67 ***
随机误差Error 81 0.42 81 12.01
遗传力H2 0.85 0.79

Table 2

Correlation analysis of resistant phenotypes data of wheat lines at two stripe rust identification locations (MY and YL) during two years (2020 and 2021)"

抗病表型
Resistant phenotypes
鉴定地点
Location
绵阳
MY (2020)
绵阳
MY (2021)
杨凌
YL (2021)
反应型IT 绵阳MY (2020) 1
绵阳MY (2021) 0.5** 1
杨凌YL (2021) 0.6** 0.55** 1
严重度
DS (%)
绵阳MY (2020) 1
绵阳MY (2021) 0.21ns 1
杨凌YL (2021) 0.33ns 0.73** 1

Fig. 2

The technology roadmap of populations construction and screening a, b: BC1F1 and BC2F1 population (left) screened with the flanking SSR markers Xbarc182 and Xcfa2040 (right [27]). c: Recombination screen of BC2F4 plants, 51 segregating BC2F5 families used for selected in 2017-2018; In 2018-2019, the selection was continued, and SSR markers Xcfa2040 and Xbarc182 (marked with an asterisk) were used to detect plants containing target gene, and a total of 28 BC2F5:6 lines were obtained. d: The stability agronomic traits and resistance of 28 lines were evaluated in 2020 and 2021"

Table 3

Primer sequences for simple sequence repeat (SSR) markers linked to Yr52 and developed derived cleaved amplified polymorphic sequences (dCAPS) marker and kompetitive allele specific PCR (KASP) marker"

标记类型
Marker type
分子标记
Marker
物理位置a
Position (Mb)
引物序列
Primer sequence (5-3)
大小
Size (bp)
SSR Xcfa2040 718.43 F:TCAAATGATTTCAGGTAACCACTA 286[27]
R:TTCCTGATCCCACCAAACAT
Xbarc182 732.40 F:CCATGGCCAACAGCTCAAGGTCTC 102[27]
R:CGCAAAACCGCATCAGGGAAGCACCAAT
Xwmc557 728.08 F:GGTGCTTGTTCATACGGGCT 298[36]
R:AGGTCCTCGATCCGCTCAT
dCAPS Xdcaps-Yr52-1 728.97 F:GGAGTACCGCAGGCTTGCCGAGCGCGbTTRA Wild:30+164
Mut:194
R:CCGTAGGAGAGAACCACATCGGGAAAC
KASP Xkasp-Yr52-1 730.91 F:GAAGGTGACCAAGTTCATGCTcGCCCACAACCTCTTTAGGCTGAT
F:GAAGGTCGGAGTCAACGGATTdCCCACAACCTCTTTAGGCTGAC
R:GATTTTAACAGTGGGTGGGGTCAGTT

Table 4

The number of selected progeny lines by combined with the resistant phenotypes and agronomic traits data"

亲本/家系
Parent/progeny lines
抗病表现和农艺性状 Resistant performance and agronomic trait Yr52
(+)/(-)
反应型
IT
严重度
DS (%)
穗长
SL (cm)
千粒重a
TKW(g)
每穗穗粒数
KPS
单株有效分蘖
PTN
株高
PH (cm)
PI 660057 0 0 0 41.77 43 6 128.33 +
轮选987 LX987 4 30 7.34 46.25 42 5 70.00 -
百农矮抗58 AK58 7 80 6.68 46.72 46 4 59.80 -
邯6172 H6172 6 60 7.84 53.50 43 6 68.40 -
LX987//LX987/PI660057-17 3 20 8.47 43.76 48 7 86.83 +
AK58//AK58/PI660057-20 2 10 9.11 43.26 45 8 84.67 +
AK58//AK58/PI660057-21 3 10 10.49 43.62 52 7 96.83 +
AK58//AK58/PI660057-23 3 20 9.33 47.26 47 8 99.17 +
H6172//H6172/PI660057-25 2 10 9.81 48.18 48 8 101.60 +

Fig. 3

The frequency distributions of histogram of mean agronomic characters on progeny lines of three crosses PTN: Productive tiller number per line; TKW: Thousand kernel weight; PH: Plant height; SL: Spike length; KPS: Kernels per spike. The same as below"

Fig. 4

Box plot for comparison of average agronomic traits in progenies between high and intermediate resistance *: The significant level of Student’s t test with no paired at P<0.05; ns: Not significant at P>0.05; Whiskers: 10%-90%"

[1] CHEN X M, KANG Z S. Stripe Rust. 1. Dordrecht: Springer, 2017.
[2] CHEN X M. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Security, 2020, 12(4): 239-251.
doi: 10.1007/s12571-020-01016-z
[3] BEDDOW J M, PARDEY P G, CHAI Y, HURLEY T M, KRITICOS D J, BRAUN H J, PARK R F, CUDDY W S, YONOW T. Research investment implications of shifts in the global georgraphy of wheat stripe rust. Nature Plants, 2015, 1(10): 15132.
doi: 10.1038/nplants.2015.132
[4] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45(1): 1-6.
MA Z H. Researches and control of wheat stripe rust in China. Journal of Plant Protection, 2018, 45(1): 1-6. (in Chinese)
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测. 作物学报, 2021, 47(7): 109-123.
XI L, WANG Y Q, ZHU W, WANG Y, CHEN G Y, PU Z J, ZHOU Y H, KANG H Y. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province. Acta Agronomica Sinica, 2021, 47(7): 109-123. (in Chinese)
[6] ZHOU X L, FANG T H, LI K X, HUANG K B, MA C H, ZHANG M, LI X, YANG S, ZREN R S, ZHANG P P. Yield losses associated with different levels of stripe rust resistance of commercial wheat cultivars in China. Phytopathology, 2021, doi: 10.1094/PHYTO-07-21-0286-R.
doi: 10.1094/PHYTO-07-21-0286-R
[7] CHEN X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 2005, 27(3): 314-337.
doi: 10.1080/07060660509507230
[8] LI J B, DUNDAS I, DONG C M, LI G R, TRETHOWAN R, YANG Z J, HOXHA S, ZHANG P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 2020, 133(4): 1095-1107.
doi: 10.1007/s00122-020-03534-y
[9] JAMIL S, SHAHZAD R, AHMAD S, FATIMA R, ZAHID R, ANWAR M, IQBAL M Z, WANG X K. Role of genetics, genomics, and breeding approaches to combat stripe rust of wheat. Frontiers Nutrition, 2020, 7: 580715.
doi: 10.3389/fnut.2020.580715
[10] 周新力, 詹刚明, 黄丽丽, 韩德俊, 康振生. 80份国外春小麦种质资源抗条锈性评价. 中国农业科学, 2015, 48(8): 1518-1526.
ZHOU X L, ZHAN G M, HUANG L L, HAN D J, KANG Z S. Evaluation of resistance to stripe rust in eighty abroad spring wheat germplasms. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526. (in Chinese)
[11] 穆京妹. 基于连锁分析和关联分析的小麦抗条锈病基因挖掘及Yr64Yr65聚合选育[D]. 杨凌: 西北农林科技大学, 2019.
MU J M. Identifation of resistance sources to stripe rust pathogen based on linkage mapping and association analysis and development of wheat lines with pyramided genes Yr64 and Yr65[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[12] WANG M N, CHEN X M, XU L S, CHENG P, BOCKELMAN H E. Registration of 70 common spring wheat germplasm lines resistance to stripe rust. Journal of Plant Registrations, 2012, 6(6): 104-110.
doi: 10.3198/jpr2011.05.0261crg
[13] CHEN X M. Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 4(3): 608-627.
doi: 10.4236/ajps.2013.43080
[14] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权. 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017, 47(5): 681-687.
LIU B, LIU T G, ZHANG Z Y, JIA Q Z, WANG B T, GAO L, PENG Y L, JIN S L, CHEN W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. triticiin China. Acta Phytopathologica Sinica, 2017, 47(5): 681-687. (in Chinese)
[15] 徐默然, 蔺瑞明, 王凤涛, 冯晶, 徐世昌. 103份小麦品种(系)抗条锈性和遗传多样性评价及基因检测. 中国农业科学, 2020, 53(4): 748-760.
XU M R, LIN R M, WANG F T, FENG J, XU S C. Evaluation of resistance to stripe rust and genetic diversity and detection of resistance genes in 103 wheat cultivars (lines). Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[16] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5): 1-12.
HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 1-12. (in Chinese)
[17] 李振岐. 我国小麦品种抗条锈性丧失原因及其解决途径. 中国农业科学, 1980, 13(3): 72-77.
LI Z Q. The variation of wheat variety resistance to stripe rust in China and the way of its solution. Scientia Agricultura Sinica, 1980, 13(3): 72-77. (in Chinese)
[18] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48(17): 3439-3453.
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015, 48(17): 3439-3453. (in Chinese)
[19] HAN D J, WANG Q L, CHEN X M, ZENG Q D, WU J H, XUE W B, ZHAN G M, HUANG L L, KANG Z S. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease, 2015, 99(6): 754-760.
doi: 10.1094/PDIS-08-14-0865-RE
[20] WANG L C, TANG X R, WU J H, SHEN C, DAI M F, WANG Q L, ZENG Q D, KANG Z S, WU Y F, HAN D J. Stripe rust resistance to a burgeoning Puccinia striiformis f. sp. tritici race CYR34 in current Chinese wheat cultivars for breeding and research. Euphytica, 2019, 215(4): 68.
doi: 10.1007/s10681-019-2383-8
[21] 胡朝月, 王凤涛, 郎晓威, 冯晶, 蔺瑞明, 李俊凯, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析. 中国农业科学, 2022, 55(3): 491-502.
HU C Y, WANG F T, LANG X W, FENG J, LIN R M, LI J K, YAO X B. Resistance analyses on wheat stripe rust resistance genes to the predominant races of Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2022, 55(3): 491-502. (in Chinese)
[22] 黄亮, 刘太国, 肖星芷, 屈春艳, 刘博, 高利, 罗培高, 陈万权. 中国79个小麦品种(系)抗条锈病评价及基因分子检测. 中国农业科学, 2017, 50(16): 3122-3134.
HUANG L, LIU T G, XIAO X Z, QU C Y, LIU B, GAO L, LUO P G, CHEN W Q. Evaluation of stripe rust resistance and molecular detection of Yr genes of 79 wheat varieties (lines) in China. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[23] 王树和, 龚凯悦, 初炳瑶, 孙秋玉, 骆勇, 马占鸿. 四川省100个小麦品种(系)抗条锈病基因的分子检测. 植物病理学报, 2018, 48(2): 195-206.
WANG S H, GONG K Y, CHU B Y, SUN Q Y, LUO Y, MA Z H. Molecular detection of stripe rust resistance gene(s) in 100 wheat cultivars (lines) from Sichuan Province in China. Acta Phytopathologica Sinica, 2018, 48(2): 195-206. (in Chinese)
[24] 孙建鲁, 王吐虹, 冯晶, 蔺瑞明, 王凤涛, 姚强, 郭青云, 徐世昌. 100个小麦品种资源抗条锈性鉴定及重要抗条锈病基因的SSR检测. 植物保护, 2017, 43(2): 64-72.
SUN J L, WANG T H, FENG J, LIN R M, WANG F T, YAO Q, GUO Q Y, XU S C. Identification of resistance to wheat stripe rust and detection of known resistance genes in 100 wheat cultivars with SSR markers. Plant Protection, 2017, 43(2): 64-72. (in Chinese)
[25] 管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测. 中国农业科学, 2020, 53(18): 3629-3637.
GUAN F N, LONG L, YAO F J, WANG Y Q, JIANG Q T, KANG H Y, JIANG Y F, LI W, DENG M, LI H, CHEN G Y. Evaluation of resistance to stripe rust and molecular detection of important known Yr Gene(s) of 152 Chinese wheat landraces from the Huang-huai-hai. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637. (in Chinese)
[26] 王明玉, 冀凯燕, 冯晶, 蔺瑞明, 王凤涛, 徐世昌. 104个小麦品种抗条锈性及遗传多样性分析. 植物保护学报, 2018, 45(1): 27-36.
WANG M Y, JI K Y, FENG J, LIN R M, WANG F T, XU S C. Identification of the resistance of 104 wheat varieties to stripe rust and analysis of their genetic diversity. Journal of Plant Protection, 2018, 45(1): 27-36. (in Chinese)
[27] REN R S, WANG M N, CHEN X M, ZHANG Z J. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics, 2012, 125(5): 847-857.
doi: 10.1007/s00122-012-1877-8
[28] ZHENG S G, LI Y F, LU L, LIU Z H, ZHANG C H, AO D H, LI L R, ZHANG C Y, LIU R, LUO C P, WU Y, ZHANG L. Evaluating the contribution of Yr genes to stripe rust resistance breeding through marker-assisted detection in wheat. Euphytica, 2017, 213(2): 50.
doi: 10.1007/s10681-016-1828-6
[29] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325.
doi: 10.1093/nar/8.19.4321
[30] WILKINSON P A, WINFIELD M O, BARKER G L, ALLEN A M, BURRIDGE A, COGHILL J A, EDWARDS K J. CerealsDB 2.0: An integrated resource for plant breeders and scientists. BMC Bioinformatics, 2012, 13(1): 219.
doi: 10.1186/1471-2105-13-219
[31] LI L, LIU J J, XUE X, LI C C, YANG Z F, LI T. CAPS/dCAPS Designer: A web-based high-throughput dCAPS marker design tool. Science China Life Sciences, 2018, 61(8): 992-995.
doi: 10.1007/s11427-017-9286-y
[32] 黄硕. 三个小麦品种(系)条锈病抗性遗传解析以及成株期抗条锈病基因YrXZ9104的精细定位[D]. 杨凌: 西北农林科技大学, 2021.
HUANG S. Genetic analysis and molecular mapping of stripe rust resistant genes in three wheat varieties and fine mapping for adult-plant resistance gene YrXZ9104 to stripe rust in wheat[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[33] LINE R F, QAYOUM A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. U.S. Department of Agriculture Technical Bulletin, 1992(1788): 1-54.
[34] PETERSON R F, CAMPBELL A B, HANNAH A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 1948, 26(5): 496-500.
[35] MENG L, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. The Crop Journal, 2015, 3(3): 269-283.
doi: 10.1016/j.cj.2015.01.001
[36] ZHOU X L, WANG M N, CHEN X M, LU Y, KANG Z S, JING J X. Identification of Yr59 conferring high temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theoretical and Applied Genetics, 2014, 127(4): 935-945.
doi: 10.1007/s00122-014-2269-z
[37] FENG J Y, WANG M N, SEE DR, CHAO S, ZHENG Y L, CHEN X M. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology, 2018, 108(6): 737-747.
doi: 10.1094/PHYTO-11-17-0375-R
[38] 薛文波, 许鑫, 穆京妹, 王琪琳, 吴建辉, 黄丽丽, 康振生, 韩德俊. 中国小麦主栽品种抗条锈性评价与基因分析. 麦类作物学报, 2014, 34(8): 1054-1060.
XUE W B, XU X, MU J M, WANG Q L, WU J H, HUANG L L, KANG Z S, HAN D J. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties. Journal of Triticeae Crops, 2014, 34(8): 1054-1060. (in Chinese)
[39] 黄亮, 刘太国, 刘博, 高利, 罗培高, 陈万权. 我国197份小麦核心种质资源对小麦条锈菌新小种CYR34的抗性评价. 植物保护, 2019, 45(258): 153-159.
HUANG L, LIU T G, LIU B, GAO L, LUO P G, CHEN W Q. Resistance evaluation of 197 Chinese wheat core germplasms to a new stripe rust race, CYR34. Plant Protection, 2019, 45(258): 153-159. (in Chinese)
[40] 杨立军, 曾凡松, 龚双军, 史文琦, 张学江, 汪华, 向礼波, 喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学, 2013, 46(16): 3354-3368.
YANG L J, ZENG F S, GONG S J, SHI W Q, ZHANG X J, WANG H, XIANG L B, YU D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Scientia Agricultura Sinica, 2013, 46(16): 3354-3368. (in Chinese)
[41] JIA J Z, XIE Y L, CHENG J F, KONG C Z, WANG M Y, GAO L F, ZHAO F, GUO J Y, WANG K, LI G W, CUI D Q, HU T Z, ZHAO G Y, WANG D W, RU Z G, ZHANG Y J. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific sub genome territories following polyploidization and introgression. Genome Biology, 2021, 22(1): 26.
doi: 10.1186/s13059-020-02225-7
[42] YANG Q, FANG T H, LI X, MA C H, YANG S Z, KANG Z S, ZHOU X L. Improving stripe rust resistance and agronomic performance in three elite wheat cultivars using a combination of phenotypic selection and marker detection of Yr48. Crop Protection, 2021, 148(2): 105752.
doi: 10.1016/j.cropro.2021.105752
[43] 王建康. 数量遗传学. 北京: 科学出版社, 2017: 293-297.
WANG J K. Quantitative Genetics. Beijing: Science Press, 2017: 293-297. (in Chinese)
[44] DREISIGACKER S, SUKUMARAN S, GUZMÁN C, HE X Y, LAN C, BONNETT D, CROSSA J. Molecular marker-based selection tools in spring bread wheat improvement: CIMMYT experience and prospects. Molecular Breeding for Sustainable Crop Improvement, 2016, 11: 421-474.
[45] COBB J N, BISWAS P S, PLATTEN J D. Back to the future: Revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 2019, 132(3): 647-667.
doi: 10.1007/s00122-018-3266-4
[46] SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6): 1354-1360.
doi: 10.1111/pbi.13361
[47] LIU R, LU J, ZHOU M, ZHENG S G, LIU Z H, ZHANG C H, DU M, WANG M X, LI Y F, WU Y, ZHANG L. Developing stripe rust resistant wheat (Triticum aestivum L.) lines with gene pyramiding strategy and marker-assisted selection. Genetic Resources and Crop Evolution, 2020, 67(3): 381-391.
doi: 10.1007/s10722-019-00868-5
[48] HSU Y C, CHIU C H, YAP R, TSENG Y C, WU Y P. Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. International Journal of Molecular Sciences, 2020, 21(4): 1281.
doi: 10.3390/ijms21041281
[49] PIETRUSIŃSKA A, CZEMBOR P C, CZEMBOR J H. Lr39+Pm21: A new effective combination of resistance genes for leaf rust and powdery mildew in wheat. Czech Journal of Genetics and Plant Breeding, 2013, 49(3): 109-115.
doi: 10.17221/150/2012-CJGPB
[50] 邓其明, 王世全, 郑爱萍, 张红宇, 李平. 利用分子标记辅助育种技术选育高抗白叶枯病恢复系. 中国水稻科学, 2006, 20(2): 153-158.
DENG Q M, WANG S Q, ZHENG A P, ZHANG H Y, LI P. Breeding restorer lines with high resistance to bacterial blight in hybrid rice by using molecular marker-assisted selection. Chinese Journal of Rice Science, 2006, 20(2): 153-158. (in Chinese)
[51] WANG M N, CHEN X M. Pyramiding stripe rust resistance genes on wheat chromosomes 2B, 4B and 7B. Phytopathology, 2016, S4: 207.
[52] CHEN X M. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Canadian Journal of Plant Pathology, 2014, 36(3): 311-326.
doi: 10.1080/07060661.2014.924560
[53] MELANIA F, KIM H K, PETER S S. A review of wheat diseases-a field perspective. Molecular Plant Pathology, 2017, 19(6): 1523-1536.
doi: 10.1111/mpp.12618
[54] NELSON R, WIESNER-HANKS T, WISSER R, BALINT-KURTI P. Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics, 2018, 19(1): 21-33.
doi: 10.1038/nrg.2017.82
[55] WANG J, ZHOU L, SHI H, CHERN M, YU H, YI H, HE M, YIN J J, ZHU X B, LI Y, LI W T, LIU J L, WANG J C, CHEN X Q, QING H, WANG Y P, LIU G F, WANG W M, LI P, WU X J, ZHU L H, ZHOU M Z, RONALD P C, LI S G, LI J Y, CHEN X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018, 361(6406): 1026-1028.
doi: 10.1126/science.aat7675
[56] LORRAIN S, VAILLEAU F, BALAGUÉ C, ROBY D. Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends in Plant Science, 2003, 8(6): 263-271.
doi: 10.1016/S1360-1385(03)00108-0
[57] FUKUOKA S, SAKA N, KOGA H, Ono K, SHIMIZU T, EBANA K, HAYASHI N, TAKAHASHI A, HIROCHIKA H, OKUNO K, YANO M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325(5943): 998-1001.
doi: 10.1126/science.1175550
[58] 邹少奎, 殷贵鸿, 唐建卫, 王俊生, 韩玉林, 李顺成, 李楠楠. 黄淮主推小麦品种主要农艺性状配合力及遗传效应分析. 麦类作物学报, 2017, 36(6): 730-738.
ZOU S K, YIN G H, TANG J W, WANG J S, HAN Y L, LI S C, LI N N. Combining ability and genetic effect analysis of main agronomic traits of cultivars in Huanghuai wheat region. Journal of Triticeae Crops, 2017, 36(6): 730-738. (in Chinese)
[59] 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019, 39(6): 682-691.
JIANG J, JIANG Y, WANG S R. Agronomic and quality traits of wheat varieties bred in Sichuan in recent years. Journal of Triticeae Crops, 2019, 39(6): 682-691. (in Chinese)
[1] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[2] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[3] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[4] TianYu ZHOU,JiangLing LI,Lan YANG,RenWu RUAN,YuHeng YANG,ZhongAn LI. The Resistance Prediction of Wheat Hybrids Based on the Sensibility of Their Parents to Stripe Rust [J]. Scientia Agricultura Sinica, 2020, 53(9): 1806-1819.
[5] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[6] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
[7] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[8] LI Bei, XU Qi, YANG YuHeng, WANG QiLin, ZENG QingDong, WU JianHui, MU JingMei, HUANG LiLi, KANG ZhenSheng, HAN DeJun. Stripe Rust Resistance and Genes in Chongqing Wheat Cultivars and Lines [J]. Scientia Agricultura Sinica, 2017, 50(3): 413-425.
[9] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[10] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[11] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[12] HAN De-Jun, ZHANG Pei-Yu, WANG Qi-Lin, ZENG Qing-Dong, WU Jian-Hui, ZHOU Xin-Li, WANG Xiao-Jie, HUANG Li-Li, KANG Zhen-Sheng. Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023.
[13] HAO Wei-Wei, TANG Cai-Guo, LI Bao-Chun, HAO Chen-Yang, ZHANG Xue-Yong. Analysis of Wheat-Thinopyrum ponticum Translocation Lines with Broad Spectrum Resistance to Stripe Rusts [J]. Scientia Agricultura Sinica, 2012, 45(16): 3240-3248.
[14] HAN Guo-Fei, WANG Hai-Guang, MA Zhan-Hong. Effects of Elevated CO2 and Enhanced UV-B on Epidemic Components of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2011, 44(20): 4326-4332.
[15] XIAO Yong-Gui, YIN Gui-Hong, LI Hui-Hui, XIA Xian-Chun, YAN Jun, ZHENG Tian-Cun, JI Wan-Quan, HE Zhong-Hu. Genetic Diversity and Genome-Wide Association Analysis of Stripe Rust Resistance Among the Core Wheat Parent Zhou 8425B and Its Derivatives [J]. Scientia Agricultura Sinica, 2011, 44(19): 3919-3929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!