Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 755-764.doi: 10.3864/j.issn.0578-1752.2024.04.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Tomato Grafting and Nitrogen Fertilization on Fertilizer Nitrogen Fate and Nitrogen Balance

SUN ZhaoAn1(), ZHANG YiWen2, JIANG LiHua3, LI ZhaoJun1, GUO Xin1, CAO Hui1(), MENG FanQiao4()   

  1. 1 University Characteristic Laboratory of Precision Cultivation and Germplasm Innovation of Horticultural Crops in Shandong/School of Advanced Agricultural Sciences, Weifang University, Weifang 261061, Shandong
    2 Agricultural Technology Extension Center of Zhaoyuan Agricultural and Rural Bureau, Zhaoyuan 265499, Shandong
    3 Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100
    4 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
  • Received:2023-08-02 Accepted:2023-12-01 Online:2024-02-16 Published:2024-02-20
  • Contact: CAO Hui, MENG FanQiao

Abstract:

【Objective】 By quantifying the amounts of soil-derived nitrogen (N) uptake by tomato aboveground and residual fertilizer N in soil, this study evaluated the impacts of tomato grafting and N fertilization on the fertilizer N fate, net residual fertilizer N, and N balance in soil-tomato production.【Method】A pot experiment with 15N-labeled urea and the experiment were conducted. Tomato varieties were Qidali and 017, included grafting (grafting and self-rooted), and fertilization (control and N-fertilization) treatments. The 15N tracer was used to distinguish the contribution of fertilizer- and soil-derived N in plants and soils, the fertilizer N fate and the added-N interaction (ANI, i.e. the difference of soil-derived N uptake between N-fertilized and -unfertilized treatments), and the N balance in soil-tomato production was also evaluated.【Result】The contribution of fertilizer N to whole plant N uptake was 35.9%-38.8%, and the contribution to aboveground plant N uptake (35.9%-39.9%) was higher than that in root N uptake (31.6%-36.2%). The ANI exhibited positive values in most treatments, and there was no significant impacts from grafting. Under all the treatments, the average fertilizer N allocated to aboveground, soil and loss was 4.0﹕2.6﹕3.4, and the total recovery of fertilizer N (aboveground N uptake + soil residue) was about 70%. At the fertilizer N level of 250 kg·hm-2, the residual fertilizer N in the soil could not compensate for the soil-derived N allocation to tomato aboveground, and this might cause the depletion of soil N stock in the long run. 【Conclusion】The risk of fertilizer N loss was high if large rate of N fertilization was chosen compensate the consumption of soil native N. Compared with tomato 017 scion and self-rooted treatment, the combination of tomato Qidali scion and pumpkin rootstock increased the fertilizer N stay in soil and reduced the fertilizer N loss. Appropriate tomato scion and rootstock could be an feasible and effective measure to maintain the soil N fertility in tomato production.

Key words: tomato, fertilizer nitrogen recovery, added-N interaction, fertilizer nitrogen fate, 15N labeling

Fig. 1

Pot-grown tomato plants in growth chamber"

Fig. 2

Conceptual diagram for added-N interaction of soil- derived nitrogen uptake A, B and C denote plant nitrogen uptake, fertilizer-derived nitrogen uptake and soil-derived nitrogen uptake at the nitrogen fertilization treatment, respectively; D denote soil-derived nitrogen uptake at the control treatment"

Table 1

P-values of three-way analysis of variance for effects of nitrogen fertilization, varieties and grafting on biomass and nitrogen uptake of tomato plant"

因子
Factor
生物量 Biomass 氮吸收量 N uptake
根系
Root
地上部Aboveground 整个植株
Total plant
根系
Root
地上部Aboveground 整个植株
Total plant
施氮Fertilization (A) 0.026 <0.001 <0.001 0.002 <0.001 <0.001
品种Varieties (B) 0.039 0.001 0.001 0.019 0.148 0.070
嫁接Grafting (C) 0.066 0.111 0.045 0.110 0.877 0.346
A×B 0.556 0.605 0.511 0.556 0.376 0.634
A×C 0.395 0.358 0.277 0.813 0.880 0.634
B×C 0.012 0.068 0.686 0.004 0.451 0.634
A×B×C 0.312 0.958 0.704 0.218 0.433 0.346

Fig. 3

Effects of tomato grafting and nitrogen fertilization on biomass and nitrogen uptake of plant Different upper case letters denote significant differences (P<0.05) of biomass and nitrogen uptake between CK and +N treatments at the same varieties and grafting treatments; different lower case letter denote significant differences (P<0.05) of biomass and nitrogen uptake between self-rooted and grafted treatments at the same varieties and fertilization treatments"

Table 2

P-values of two-way analysis of variance for effects of varieties and grafting on contribution and fate of fertilizer nitrogen"

因子
Factor
肥料氮的贡献
Fertilizer N contribution
肥料氮的去向
Fertilizer N fate
土壤氮平衡
Soil N balance
根系
Root
地上部
Aboveground
整个植株
Total plant
地上部
Aboveground
土壤+根系
Soil+Root
植株+土壤
Plant+Soil
损失
Loss
品种 Varieties (A) 0.148 0.414 0.494 0.732 0.024 0.295 0.295 0.569
嫁接Grafting (B) 0.203 0.740 0.604 0.957 0.296 0.718 0.718 0.731
A×B 0.757 0.206 0.416 0.709 0.082 0.381 0.381 0.430

Fig. 4

Contributions of fertilizer-and soil-derived nitrogen to nitrogen uptake by tomato plant"

Fig. 5

Added-N interaction of soil-derived nitrogen uptake by tomato plants Different uppercase letters indicate significant differences of added-N interaction among different components (P<0.05)"

Fig. 6

Fate of fertilizer-derived nitrogen in tomato-soil system Different uppercase letters indicate significant differences of different fertilizer nitrogen rate at the same tomato-soil system (P<0.05)"

Fig. 7

Effects of tomato varieties and grafting on nitrogen balance and net residual fertilizer nitrogen in soils Different uppercase letters indicate significant differences of net residual fertilizer nitrogen in soils among different components (P<0.05)"

Fig. 8

Literature synthesis of the ratio between soil residual fertilizer nitrogen and positive added-N interaction The N in the figure represents the number of data points; the solid and dashed lines represent the median and mean values, respectively; the ratio of soil residual fertilizer nitrogen to positive ANI are based on a 15N literature synthesis from pot-grown wheat[17,26-27], maize[28⇓-30], and rice[12,31]"

[1]
FAO. FAO statistics. http://faostat.fao.org,2020.
[2]
梁斌, 陈清, 董静, 李俊良. 设施番茄绿色增产潜力及技术体系建设. 中国蔬菜, 2017(1): 27-31.
LIANG B, CHEN Q, DONG J, LI J L. Yield-increasing potential of tomato and integrated soil-fertilizer-water managements under greenhouse system. China Vegetables, 2017(1): 27-31. (in Chinese)
[3]
袁亭亭, 宋小艺, 王忠宾, 杨建平, 徐坤. 嫁接与施肥对番茄产量及氮、磷、钾吸收利用效率的影响. 植物营养与肥料学报, 2011, 17(1): 131-136.
YUAN T T, SONG X Y, WANG Z B, YANG J P, XU K. Effect of grafting cultivation and fertilization on the yield, NPK uptake and utilization of tomatoes. Plant Nutrition and Fertilizer Science, 2011, 17(1): 131-136. (in Chinese)
[4]
王海宁, 葛顺峰, 姜远茂, 魏绍冲, 陈倩, 孙聪伟. 不同砧木嫁接的富士苹果幼树13C和15N分配利用特性比较. 园艺学报, 2013, 40(4): 733-738.
WANG H N, GE S F, JIANG Y M, WEI S C, CHEN Q, SUN C W. Effects of different rootstocks on distribution and utilization of 13C and 15N of Malus × domestica Borkh.‘Red Fuji’. Acta Horticulturae Sinica, 2013, 40(4): 733-738. (in Chinese)
[5]
薛亮, 马忠明, 杜少平. 嫁接与施氮对甜瓜产量和氮素吸收、利用的影响. 应用生态学报, 2017, 28(6): 1909-1916.

doi: 10.13287/j.1001-9332.201706.004
XUE L, MA Z M, DU S P. Effects of grafting and nitrogen fertilization on melon yield and nitrogen uptake and utilization. Chinese Journal of Applied Ecology, 2017, 28(6): 1909-1916. (in Chinese)
[6]
SUN Z A, WU S X, ZHANG Y W, MENG F Q, ZHU B, CHEN Q. Effects of nitrogen fertilization on pot-grown wheat photosynthate partitioning within intensively farmed soil determined by 13C pulse-labeling. Journal of Plant Nutrition and Soil Science, 2019, 182(6): 896-907.

doi: 10.1002/jpln.v182.6
[7]
LIANG J Y, CHEN X L, GUO P J, REN H Z, XIE Z L, ZHANG Z, ZHEN A. Grafting improves nitrogen-use efficiency by regulating the nitrogen uptake and metabolism under low-nitrate conditions in cucumber. Scientia Horticulturae, 2021, 289: 110454.

doi: 10.1016/j.scienta.2021.110454
[8]
JENKINSON D S, FOX R H, RAYNER J H. Interactions between fertilizer nitrogen and soil nitrogen-the so-called ‘priming’ effect. Journal of Soil Science, 1985, 36(3): 425-444.

doi: 10.1111/ejs.1985.36.issue-3
[9]
HARMSEN K. A comparison of the isotope-dilution and the difference method for estimating fertilizer nitrogen recovery fractions in crops. II. Mineralization and immobilization of nitrogen. NJAS: Wageningen Journal of Life Sciences, 2003, 50(3/4): 349-381.

doi: 10.1016/S1573-5214(03)80016-7
[10]
杨秉庚, 蔡思源, 刘宇娟, 徐灵颖, 汪玉, 彭显龙, 赵旭, 颜晓元. 土壤供保氮能力决定稻田氮肥增产效果和利用率. 土壤学报, 2023, 60(1): 212-223.
YANG B G, CAI S Y, LIU Y J, XU L Y, WANG Y, PENG X L, ZHAO X, YAN X Y. Soil nitrogen supply and retention capacity determine the effect and utilization rate of nitrogen fertilizer in paddy field. Acta Pedologica Sinica, 2023, 60(1): 212-223. (in Chinese)
[11]
孙昭安, 陈清, 吴文良, 孟凡乔. 冬小麦对基肥和追肥15N的吸收与利用. 植物营养与肥料学报, 2018, 24(2): 553-560.
SUN Z A, CHEN Q, WU W L, MENG F Q. Nitrogen uptake and recovery from basal and top-dressing fertilizer 15N in winter wheat. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 553-560. (in Chinese)
[12]
QUAN Z, ZHANG X, FANG Y T, DAVIDSON E A. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nature Food, 2021, 2: 241-245.

doi: 10.1038/s43016-021-00263-3 pmid: 37118466
[13]
张怀志, 唐继伟, 袁硕, 冀宏杰, 黄绍文. 化肥减施对日光温室越冬长茬番茄氮肥利用率及去向的影响. 植物营养与肥料学报, 2020, 26(7): 1295-1302.
ZHANG H Z, TANG J W, YUAN S, JI H J, HUANG S W. Effect of fertilizer reduction on nitrogen utilization efficiency and fate during overwinter long-season tomato production in greenhouse. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1295-1302. (in Chinese)
[14]
曹兵, 贺发云, 徐秋明, 蔡贵信. 南京郊区番茄地中氮肥的效应与去向. 应用生态学报, 2006, 17(10): 1839-1844.
CAO B, HE F Y, XU Q M, CAI G X. Use efficiency and fate of fertilizer N in tomato field of Nanjing suburb. Chinese Journal of Applied Ecology, 2006, 17(10): 1839-1844. (in Chinese)
[15]
姜慧敏, 张建峰, 李玲玲, 李树山, 张水勤, 潘攀, 郭俊娒, 刘恋, 杨俊诚. 优化施氮模式下设施菜地氮素的利用及去向. 植物营养与肥料学报, 2013, 19(5): 1146-1154.
JIANG H M, ZHANG J F, LI L L, LI S S, ZHANG S Q, PAN P, GUO J M, LIU L, YANG J C. Utilization and fate of nitrogen in greenhouse vegetable under optimized nitrogen fertilization. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1146-1154. (in Chinese)
[16]
YAN M, PAN G X, LAVALLEE J M, CONANT R T. Rethinking sources of nitrogen to cereal crops. Global Change Biology, 2020, 26(1): 191-199.

doi: 10.1111/gcb.14908 pmid: 31789452
[17]
孙昭安, 陈清, 朱彪, 曹慧, 孟凡乔. 化肥氮对冬小麦氮素吸收的贡献和土壤氮库的补偿. 植物营养与肥料学报, 2020, 26(3): 413-430.
SUN Z A, CHEN Q, ZHU B, CAO H, MENG F Q. Contributions of fertilizer N to winter wheat N uptake and compensation of soil N pool in farmland. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 413-430. (in Chinese)
[18]
GAO H X, ZHANG C C, VAN DER WERF W, NING P, ZHANG Z, WAN S B, ZHANG F S. Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut. Field Crops Research, 2022, 284: 108561.

doi: 10.1016/j.fcr.2022.108561
[19]
RAO A C S, SMITH J L, PARR J F, PAPENDICK R I. Considerations in estimating Nitrogen Recovery Efficiency by the difference and isotopic dilution methods. Fertilizer Research, 1992, 33(3): 209-217.

doi: 10.1007/BF01050876
[20]
巨晓棠. 氮肥有效率的概念及意义: 兼论对传统氮肥利用率的理解误区. 土壤学报, 2014, 51(5): 921-933.
JU X T. The concept and meanings of nitrogen fertilizer availability ratio-discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese)
[21]
巨晓棠, 张福锁. 关于氮肥利用率的思考. 生态环境, 2003, 12(2): 192-197.
JU X T, ZHANG F S. Thinking about nitrogen recovery rate. Ecology and Environmental Sciences, 2003, 12(2): 192-197. (in Chinese)
[22]
朱兆良. 中国土壤氮素研究. 土壤学报, 2008, 45(5): 778-783.
ZHU Z L. Research on soil nitrogen in China. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese)
[23]
LIN S, DITTERT K, WU W L, SATTELMACHER B. Added nitrogen interaction as affected by soil nitrogen pool size and fertilization-significance of displacement of fixed ammonium. Journal of Plant Nutrition and Soil Science, 2004, 167(2): 138-146.

doi: 10.1002/jpln.v167:2
[24]
SUN Z A, ZHU B. Rethinking discrepancies between difference and 15N methods for estimating fertilizer nitrogen recovery. Biology and Fertility of Soils, 2022, 58(8): 855-869.

doi: 10.1007/s00374-022-01672-7
[25]
LIU X J A, VAN GROENIGEN K J, DIJKSTRA P, HUNGATE B A. Increased plant uptake of native soil nitrogen following fertilizer addition-not a priming effect? Applied Soil Ecology, 2017, 114: 105-110.
[26]
RAO A C S, SMITH J L, PAPENDICK R I, PARR J F. Influence of added nitrogen interactions in estimating recovery efficiency of labeled nitrogen. Soil Science Society of America Journal, 1991, 55(6): 1616-1621.

doi: 10.2136/sssaj1991.03615995005500060019x
[27]
吴成龙, 沈其荣, 夏昭远, 相恒成, 徐阳春. 麦-稻轮作系统有机无机肥料配施协同氮素转化的机制研究Ⅰ.小麦季15N去向分析. 土壤学报, 2010, 47(5): 905-912.
WU C L, SHEN Q R, XIA Z Y, XIANG H C, XU Y C. Mechanisms for the increased utilization of fertilizer n under integrated use of inorganic and organic fertilizers in a winter wheat-rice rotation system Ⅰ.fate of fertilizer 15N during winter wheat growing stages. Acta Pedologica Sinica, 2010, 47(5): 905-912. (in Chinese)
[28]
AZAM F, LODHI A, ASHRAF M. Interaction of 15N-labelled ammonium nitrogen with native soil nitrogen during incubation and growth of maize (Zea mays L.). Soil Biology and Biochemistry, 1991, 23(5): 473-477.

doi: 10.1016/0038-0717(91)90012-9
[29]
吴永成, 王志敏, 周顺利.15N标记和土柱模拟的夏玉米氮肥利用特性研究. 中国农业科学, 2011, 44(12): 2446-2453. doi: 10.3864/ j.issn.0578-1752.2011.12.005.
WU Y C, WANG Z M, ZHOU S L.Studies on the characteristics of nitrogen fertilizer utilization in summer maize based on techniques of soil column and 15N-label. Scientia Agricultura Sinica, 2011, 44(12): 2446-2453. doi: 10.3864/j.issn.0578-1752.2011. 12.005. (in Chinese)
[30]
山楠, 杜连凤, 毕晓庆, 安志装, 赵丽平, 赵同科. 用15N肥料标记法研究潮土中玉米氮肥的利用率与去向. 植物营养与肥料学报, 2016, 22(4): 930-936.
SHAN N, DU L F, BI X Q, AN Z Z, ZHAO L P, ZHAO T K. Nitrogen use efficiency and behavior studied with 15N labeled fertilizer in maize in fluvo-aquic soils. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 930-936. (in Chinese)
[31]
彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华. 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响. 中国农业科学, 2018, 51(18): 3614-3624. doi: 10.3864/j.issn.0578-1752.2018.18.017.
PENG W F, W S, HUANG S, ZENG Y J, PAN X H, SHI Q H. Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624. doi: 10.3864/j.issn.0578-1752.2018.18.017. (in Chinese)
[1] PEI ShuYao, CAO HongXia, ZHANG ZeYu, ZHAO FangYang, LI ZhiJun. Physiological Response of Potted Tomatoes to NaCl and Na2SO4 Brackish Water Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(3): 570-583.
[2] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[3] YIN ZiHe, YANG ChengCheng, ZHAO YuHui, ZHAO Li, LÜ XiuRong, YANG ZhenChao, WU YongJun. Sequencing and Functional Analysis of Tomato circRNA During Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4288-4303.
[4] TENG YunFei, SHANG Bin, TAO XiuPing. Nutritional Effects of Liquid Digestate on Tomatoes Grown in Facility Substrates [J]. Scientia Agricultura Sinica, 2023, 56(19): 3869-3878.
[5] LIU Lei, SHI JianShuo, ZHANG GuoYin, GAO Jing, LI Pin, REN Yanli, WANG LiYing. Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil [J]. Scientia Agricultura Sinica, 2023, 56(18): 3615-3628.
[6] GAO ZiYuan, HU JingAng, ZHANG BeiBei, GONG Biao. Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization [J]. Scientia Agricultura Sinica, 2023, 56(14): 2761-2775.
[7] CHANG JiaYue, MA XiaoLong, WU YanLi, LI JianMing. Effects of Row Spacing and Irrigation Amount on Canopy Light Interception and Photosynthetic Capacity, Matter Accumulation and Fruit Quality of Tomato [J]. Scientia Agricultura Sinica, 2023, 56(11): 2141-2157.
[8] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[9] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[10] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[11] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[12] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[13] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[14] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[15] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!