Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2141-2157.doi: 10.3864/j.issn.0578-1752.2023.11.009

• HORTICULTURE • Previous Articles     Next Articles

Effects of Row Spacing and Irrigation Amount on Canopy Light Interception and Photosynthetic Capacity, Matter Accumulation and Fruit Quality of Tomato

CHANG JiaYue1(), MA XiaoLong1, WU YanLi2, LI JianMing1()   

  1. 1 School of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi
    2 Agricultural Technology Promotion Center, Huangling County, Yan’an City, Shaanxi Province, Yangling 712100, Shaanxi
  • Received:2022-07-18 Accepted:2022-09-29 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】Photosynthetically active radiation and photosynthetic physiological characteristics of leaves within the canopy were heterogeneous. The response to row spacing and irrigation amount of light interception and photosynthetic capacity of leaves in different parts of tomato canopy were explored in this study. The effects of row spacing and irrigation amount on photosynthetic productivity of tomato canopy were studied in detail, and the comprehensive quality of fruit was analyzed, which provided a theoretical basis for the setting of row spacing and irrigation amount in mechanized cultivation of tomato.【Method】Tomato, the test material, was cultivated in a wide and narrow row, with plant spacing of 35 cm. Small row spacing of 40 cm, and three large row spacing levels were set: 70 cm (P1), 120 cm (P2), and 170 cm (P3). Two irrigation levels were set: conventional irrigation (W1) and light deficit irrigation (W2). The experiment was a full factorial experiment with 6 treatments. The leaf area and light interception amount of each leaf position were measured. The canopy was divided into six parts, and the net photosynthetic rate (Pn), leaf mass per area (LMA), chlorophyll (Chl) and N, P, K content were measured. The canopy photosynthetic capacity under each treatment was comprehensively analyzed by taking the proportion of leaf area of each part to that of the whole plant or the proportion of leaf dry weight of each part to that of the whole plant as weights. The correlation of each index was analyzed by the Pearson correlation coefficient. The dry and fresh weight, yield per plant and fruit quality of the second ear were measured. The comprehensive quality of tomato was evaluated and ranked by PCA method and combined weighting-TOPSIS method based on game theory.【Result】The effects of increasing row spacing on canopy leaf area, light interception and photosynthetic capacity were mainly reflected in the middle and lower parts of the canopy. The leaf area in the mid canopy increased first and then decreased with the increase of the row spacing. The leaf area in the lower canopy and the light interception in the mid and lower canopy increased significantly from P1 to P2, but slightly increased from P2 to P3; the Pn in the mid and lower canopy showed that P2 increased by 8.06%-11.32% compared with P1, and P3 increased by 14.25%-24.40% compared with P2; the LMA showed that P2 increased by 1.31%-33.24% compared with P1, and P3 increased by 6.09%-17.86% compared with P2; the Chl content of P2 was 3.42%-6.81% higher than that of P1, and P3 was 3.19%-4.96% higher than that of P2; the N content of P2 was 13.89%-34.73% higher than that of P1, and P3 was 2.21%-19.74% higher than that of P2; the content of P and K had no obvious regularity. On the whole, the content of Pn, Chl and N increased with the increase of row spacing, and the LMA increased with the increase of row spacing under light deficit irrigation and showed P3>P1>P2 under conventional irrigation; under three row spacing levels, the LMA and N content under conventional irrigation were higher than those under light deficit irrigation, the Pn under conventional irrigation was higher than that under light deficit irrigation under P1 and P3, while the Pn under light deficiency irrigation was higher under P2; the Chl content under conventional irrigation was higher under P1, while the Chl content under light deficiency irrigation was higher under P2 and P3. With the increase of row spacing, the dry and fresh weight of the aboveground parts increased under conventional irrigation, and increased first and then decreased under light deficit irrigation; the aboveground dry and fresh weight of conventional irrigation was higher than that of light deficit irrigation. The yield per plant increased with the increase of row spacing under the two irrigation levels, and the increase from P1 to P2 was larger (compared with P1, P2 under conventional irrigation and light deficit irrigation increased by 33.75% and 24.32%, respectively.), while the yield per plant increased only slightly from P2 to P3 (compared with P2, P3 increased by 2.87% and 4.30% under conventional irrigation and light deficit irrigation, respectively.); the yield per plant under conventional irrigation was higher than that under light deficit irrigation. Increasing row spacing and reducing irrigation amount could optimize the comprehensive quality of fruit, and the top three comprehensive quality scores were P3W2, P2W2 and P3W1.【Conclusion】P3W1 was the highest in leaf Pn, LMA, N content, aboveground dry and fresh weight and yield per plant, and P3W2 was the highest in canopy light interception, Chl content and comprehensive quality score.

Key words: tomato, row spacing, irrigation amount, light interception, photosynthetic capacity, matter accumulation, comprehensive quality

Table 1

Test treatment and actual irrigation amount of each treatment"

处理
Treatment
操作行行距
Ridge distance (cm)
灌溉水平 Irrigation level 灌水量
Irrigation amount (kg/plant)
0—40 d 41 d—拉秧 41 d-Seedling pulling
P1W1 70 1.25 ET 1.50 ET 28.04
P1W2 1.00 ET 1.20 ET 22.44
P2W1 120 1.25 ET 1.50 ET 30.95
P2W2 1.00 ET 1.20 ET 24.76
P3W1 170 1.25 ET 1.50 ET 36.3
P3W2 1.00 ET 1.20 ET 29.04

Fig. 1

VPD and photosynthetically active radiation during the whole growth period in the greenhouse"

Table 2

Photosynthetically active radiation intensity and proportion of scattered light inside and outside the shed in sunny and cloudy days"

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
棚外PAR
PAR outside the shed
(μmol·m-2·s-1)
晴天
Sunny day
35.78 244.53 583.28 883.28 1085.37 1149.53 1032.03 802.87 516.62 210.37 57.03
多云天
Cloudy day
13.7 163.7 369.95 539.12 571.2 506.62 469.12 389.53 329.53 122.87 13.7
棚内PAR
PAR inside the shed
(μmol·m-2·s-1)
晴天
Sunny day
30.41 207.85 495.79 750.79 922.56 977.1 877.23 682.44 439.13 178.81 48.48
多云天
Cloudy day
11.64 139.14 314.46 458.25 485.52 430.63 398.75 331.1 280.1 104.44 11.64
散射光比例
The proportion of scattered light
晴天
Sunny day
1 0.69 0.47 0.42 0.36 0.42 0.55 0.71 0.89 1 1
多云天
Cloudy day
1 0.75 0.64 0.69 0.81 0.94 0.97 0.99 0.99 1 1

Fig. 2

Tomato canopy division SW: Upper outer side; SN: Upper inner side; ZW: Middle outer side; ZN: Middle inner side; XW: Lower outer side; XN: Lower inner side. The same as below"

Fig. 3

Effects of row spacing and irrigation amount on leaf area of different leaf positions and light interception of tomato leaves on sunny and cloudy days"

Fig. 4

Effects of row spacing and irrigation amount on leaf area of tomato canopy S: Upper part; Z: Middle part; X: Lower part.P: Row spacing; W: Irrigation quantity; P*W: The interaction between row spacing and irrigation quantity. *: Significant difference (P<0.05); **: Extremely significant difference (P<0.01); ***: Extremely significant (P<0.001); NS: No significant difference. The same as below"

Fig. 5

Effects of row spacing and irrigation amount on the light interception of tomato canopy on sunny and cloudy days"

Fig. 6

Effects of row spacing and irrigation amount on Pn, LMA, Chl and N, P, K content of leaves in different parts of tomato canopy"

Table 3

Effects of row spacing and irrigation amount on Pn, LMA, Chl and N, P, K content of tomato whole plant"

Pn
(µmol·m-2·s-1)
LMA
(mg·cm-2)
Chl含量
Chl content (mg·g-1)
N含量
N content (mg·g-1)
P含量
P content (mg·g-1)
K含量
K content (mg·g-1)
P1W1 13.26±0.15c 4.49±0.05b 1.52±0.01d 37.94±0.74c 7.56±0.10b 99.27±1.27b
P1W2 12.06±0.05d 3.59±0.13d 1.51±0.01d 35.86±0.51c 8.27±0.15a 114.74±1.46a
P2W1 13.95±0.10b 4.39±0.13bc 1.56±0.01c 45.16±0.30ab 6.87±0.19c 101.64±3.07b
P2W2 14.05±0.05b 3.81±0.04d 1.62±0.01b 44.16±1.05b 7.52±0.19b 104.23±1.55b
P3W1 15.56±0.09a 4.91±0.18a 1.60±0.01b 46.84±0.57a 8.42±0.17a 117.29±3.82a
P3W2 14.21±0.29b 4.23±0.05c 1.65±0.03a 45.25±1.14ab 7.12±0.14c 105.76±4.64b

Fig. 7

Correlation analysis of leaf area, light interception amount, Pn, LMA, Chl and N content"

Fig. 8

Effects of row spacing and irrigation amount on fresh and dry weight of plant shoot"

Fig. 9

Effects of row spacing and irrigation amount on fruit yield"

Table 4

Effects of row spacing and irrigation amount on tomato quality"

果形指数
Fruit shape index
果实硬度
Fruit firmness
(N)
单果重
Single fruit weight
(g)
果实含水量
Fruit moisture content (%)
可溶性固形物
Soluble
solids
(%)
有机酸
Organic
acid
(%)
固酸比
Solid acid ratio
可溶性蛋白
Soluble protein (mg∙g-1)
维生素C
Vitamin C (mg∙g-1)
番茄红素
Lycopene (mg/100 g)
P1W1 0.93±0.04ab 20.55±1.15b 81.21±1.75c 89.08±0.16a 4.63±0.04e 0.75±0.03c 6.22±0.21a 7.43±0.48c 6.93±0.68e 11.61±1.86c
P1W2 0.90±0.02bc 23.35±0.75ab 76.71±0.71d 88.01±0.45ab 6.43±0.13c 1.60±0.11a 4.03±0.22d 8.65±0.47bc 12.28±1.47c 15.52±1.00b
P2W1 0.86±0.01c 17.83±1.49c 109.77±2.41a 88.50±0.10a 4.98±0.04d 0.86±0.11c 5.91±0.78ab 8.78±0.39bc 10.15±1.23d 15.56±1.27b
P2W2 0.89±0.04bc 22.95±1.72b 96.09±1.72b 86.26±2.15b 6.60±0.00c 1.26±0.11b 5.28±0.46bc 9.89±0.84b 13.99±0.51c 20.30±2.39a
P3W1 0.90±0.02bc 21.78±2.25b 113.21±2.34a 89.22±0.01a 6.80±0.14b 1.33±0.09b 5.14±0.42bc 9.58±2.06bc 17.20±0.64b 15.77±0.55b
P3W2 0.96±0.02a 25.73±1.37a 99.78±0.94b 88.64±0.21a 7.95±0.15a 1.73±0.16a 4.64±0.51cd 17.54±0.44a 21.80±0.91a 17.29±0.61ab
P ** ** *** NS *** *** NS *** *** **
W NS *** *** * *** *** *** *** *** **
P*W * NS ** NS *** ** * *** NS NS

Table 5

Weight of each indicator"

X1 X2 X3 X4 X5 X6 X7 X8 X9
PCA -0.0247 0.2008 0.1215 0.2765 0.2241 -0.1686 0.2063 0.2813 0.3167
AHP 0.0168 0.0371 0.0259 0.1522 0.0418 0.2970 0.0961 0.1038 0.2294
熵权法 Entropy method 0.1025 0.111 0.1427 0.1066 0.1069 0.1011 0.1259 0.1046 0.0987
基于博弈论的组合赋权法
Combination weighting method based on game theory
0.0273 0.0462 0.0402 0.1466 0.0498 0.273 0.0998 0.1039 0.2134

Table 6

The comprehensive scores and rankings of the PCA method and the combination weighting based on game theory -TOPSIS method for each treatment"

处理
Treatment
PCA法
PCA method
基于博弈论的组合赋权-TOPSIS法
Combination weighting based on game theory-TOPSIS method
综合得分 Overall ratings 排序 Rank 综合得分 Overall ratings 排序 Rank
P1W1 -15.54 6 0.3925 5
P1W2 65.27 4 0.3411 6
P2W1 35.34 5 0.4572 4
P2W2 90.56 2 0.6035 2
P3W1 80.86 3 0.5137 3
P3W2 125.07 1 0.6176 1
[1]
KONNO Y. Feedback regulation of constant leaf standing crop in Sasa tsuboiana grasslands. Ecological Research, 2001, 16(3): 459-469.

doi: 10.1046/j.1440-1703.2001.00421.x
[2]
MAROIS J J, WRIGHT D L, WIATRAK P J, VARGAS M A. Effect of row width and nitrogen on cotton morphology and canopy microclimate. Crop Science, 2004, 44(3): 870.

doi: 10.2135/cropsci2004.8700
[3]
CONATY W C, MAHAN J R, NEILSEN J E, CONSTABLE G A. Vapour pressure deficit aids the interpretation of cotton canopy temperature response to water deficit. Functional Plant Biology, 2014, 41(5): 535-546.

doi: 10.1071/FP13223 pmid: 32481011
[4]
颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响. 作物学报, 2021, 47(9): 1654-1665.

doi: 10.3724/SP.J.1006.2021.04167
YAN W, LI F J, XU D Y, DU M W, TIAN X L, LI Z H. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humidity in cotton. Acta Agronomica Sinica, 2021, 47(9): 1654-1665. (in Chinese)
[5]
TANG L, XU Z J, CHEN W F. Advances and prospects of super rice breeding in China. Journal of Integrative Agriculture, 2017, 16(5): 984-991.

doi: 10.1016/S2095-3119(16)61604-0
[6]
肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51(22): 4264-4276. doi: 10.3864/j.issn.0578-1752.2018.22.005.

doi: 10.3864/j.issn.0578-1752.2018.22.005
XIAO J B, LIU Z, KONG F X, XIN Z X, WU H S. Effects of planting pattern and density on population structure and yield of Sorghum. Scientia Agricultura Sinica, 2018, 51(22): 4264-4276. doi: 10.3864/j.issn.0578-1752.2018.22.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.22.005
[7]
陈宗培, 薛佳欣, 李奔, 王贵彦. 玉米光合特性和冠层微环境对密度和行株距配置的响应. 作物杂志, 2020(1): 179-186.
CHEN Z P, XUE J X, LI B, WANG G Y. Response of photosynthetic characteristics and canopy micro-environment to planting density and row spacing of maize (Zea mays L.). Crops, 2020(1): 179-186. (in Chinese)
[8]
JIANG H, ZOU D H, LOU W Y, CHEN W Z, YANG Y F. Growth and photosynthesis by Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) in response to different stocking densities along Nan'ao Island coastal waters. Aquaculture, 2019, 501: 279-284.

doi: 10.1016/j.aquaculture.2018.11.047
[9]
YAO H S, ZHANG Y L, YI X P, ZUO W Q, LEI Z Y, SUI L L, ZHANG W F. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research, 2017, 203: 192-200.

doi: 10.1016/j.fcr.2016.12.018
[10]
熊淑萍, 曹文博, 张志勇, 张捷, 高明, 樊泽华, 沈帅杰, 王小纯, 马新明. 行距和播种量对冬小麦冠层光合有效辐射垂直分布、生物量和籽粒产量的影响. 应用生态学报, 2021, 32(4): 1298-1306.

doi: 10.13287/j.1001-9332.202104.026
XIONG S P, CAO W B, ZHANG Z Y, ZHANG J, GAO M, FAN Z H, SHEN S J, WANG X C, MA X M. Effects of row spacing and sowing rate on vertical distribution of photosynthetically active radiation, biomass, and grain yield in winter wheat canopy. Chinese Journal of Applied Ecology, 2021, 32(4): 1298-1306. (in Chinese)
[11]
闫春娟, 宋书宏, 王文斌, 王昌陵, 孙旭刚, 曹永强, 张立军, 李盛友, 董丽杰, 陈艳秋. 不同基因型大豆生理特性和产量对不同降雨条件的响应. 节水灌溉, 2021(5): 8-14.
YAN C J, SONG S H, WANG W B, WANG C L, SUN X G, CAO Y Q, ZHANG L J, LI S Y, DONG L J, CHEN Y Q. Response of physiological characteristics and yield of soybean with different genotypes to different rainfall conditions. Water Saving Irrigation, 2021(5): 8-14. (in Chinese)
[12]
WANG Y Q, XI W X, WANG Z M, WANG B, XU X X, HAN M K, ZHOU S L, ZHANG Y H. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain. Journal of Integrative Agriculture, 2016, 15(10): 2247-2256.

doi: 10.1016/S2095-3119(16)61408-9
[13]
杜兵杰, 曹红霞, 裴书瑶, 张泽宇, 李曼宁. 亏缺灌溉下温室番茄生长生理指标对生物炭的响应. 灌溉排水学报, 2021, 40(10): 43-51.
DU B J, CAO H X, PEI S Y, ZHANG Z Y, LI M N. The effects of deficit irrigation combined with biochar amendment on growth and physiological traits of greenhouse tomato. Journal of Irrigation and Drainage, 2021, 40(10): 43-51. (in Chinese)
[14]
DARIVA F D, PESSOA H P, COPATI M G F, DE ALMEIDA G Q, DE CASTRO FILHO M N, DE TOLEDO PICOLI E A, DA CUNHA F F, NICK C. Yield and fruit quality attributes of selected tomato introgression lines subjected to long-term deficit irrigation. Scientia Horticulturae, 2021, 289: 110426.

doi: 10.1016/j.scienta.2021.110426
[15]
CHANG T G, ZHAO H L, WANG N, SONG Q F, XIAO Y, QU M N, ZHU X G. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties. Journal of Experimental Botany, 2019, 70(9): 2479-2490.

doi: 10.1093/jxb/ery430
[16]
SHI Z, CHANG T G, CHEN G Y, SONG Q F, WANG Y J, ZHOU Z W, WANG M Y, QU M N, WANG B S, ZHU X G. Dissection of mechanisms for high yield in two elite rice cultivars. Field Crops Research, 2019, 241: 107563.

doi: 10.1016/j.fcr.2019.107563
[17]
SONG Q F, SRINIVASAN V, LONG S P, ZHU X G. Decomposition analysis on soybean productivity increase under elevated CO2 using 3D canopy model reveals synergestic effects of CO2 and light in photosynthesis. Annals of Botany, 2020, 126(4): 601-614.

doi: 10.1093/aob/mcz163
[18]
SONG Q F, ZHANG G L, ZHU X G. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2-A theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 2013, 40(2): 108.

doi: 10.1071/FP12056
[19]
SARLIKIOTI V, DE VISSER P H B, MARCELIS L F M. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Annals of Botany, 2011, 107(5): 875-883.

doi: 10.1093/aob/mcr006 pmid: 21355008
[20]
WIECHERS D, KAHLEN K, STÜTZEL H. Evaluation of a radiosity based light model for greenhouse cucumber canopies. Agricultural and Forest Meteorology, 2011, 151(7): 906-915.

doi: 10.1016/j.agrformet.2011.02.016
[21]
CHEN T W, NGUYEN T M N, KAHLEN K, STÜTZEL H. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model. Journal of Experimental Botany, 2014, 65(22): 6399-6410.

doi: 10.1093/jxb/eru356
[22]
PRADAL C, DUFOUR-KOWALSKI S, BOUDON F, FOURNIER C, GODIN C. OpenAlea: A visual programming and component-based software platform for plant modelling. Functional Plant Biology, 2008, 35(10): 751.

doi: 10.1071/FP08084 pmid: 32688829
[23]
PRADAL C, BOUDON F, NOUGUIER C, CHOPARD J, GODIN C. PlantGL: A Python-based geometric library for 3D plant modelling at different scales. Graphical Models, 2009, 71(1): 1-21.

doi: 10.1016/j.gmod.2008.10.001
[24]
马乐乐, 高宁, 杨百良, 任瑞丹, 范兵华, 李建明. 全有机营养模式下番茄综合品质评价及其对有机肥水耦合的响应. 西北农林科技大学学报(自然科学版), 2019, 47(6): 63-72.
MA L L, GAO N, YANG B L, REN R D, FAN B H, LI J M. Construction of integrated quality index of tomato with total organic nutrition and its response to organic fertilizer and water coupling. Journal of Northwest A&F University (Social Science Edition), 2019, 47(6): 63-72. (in Chinese)
[25]
杨乐琦, 仇淑芳, 唐菲, 黄丹枫, 唐东芹. 基于主成分分析的观赏生菜品质综合评价. 上海交通大学学报(农业科学版), 2015, 33(3): 53-60.
YANG L Q, QIU S F, TANG F, HUANG D F, TANG D Q. Comprehensive evaluation for ornamental lettuce based on principal component analysis. Journal of Shanghai Jiaotong University (Agricultural Science), 2015, 33(3): 53-60. (in Chinese)
[26]
ALBAYRAK E, ERENSAL Y C. Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. Journal of Intelligent Manufacturing, 2004, 15(4): 491-503.

doi: 10.1023/B:JIMS.0000034112.00652.4c
[27]
武兰芳, 欧阳竹. 不同播量与行距对小麦产量与辐射截获利用的影响. 中国生态农业学报, 2014, 22(1): 31-36.
WU L F, OUYANG Z. Effects of row spacing and seeding rate on radiation use efficiency and grain yield of wheat. Chinese Journal of Eco-Agriculture, 2014, 22(1): 31-36. (in Chinese)

doi: 10.3724/SP.J.1011.2014.30568
[28]
倪纪恒, 罗卫红, 李永秀, 戴剑锋, 金亮, 徐国彬, 陈永山, 陈春宏, 卜崇兴, 徐刚. 温室番茄叶面积与干物质生产的模拟. 中国农业科学, 2005, 38(8): 1629-1635.
NI J H, LUO W H, LI Y X, DAI J F, JIN L, XU G B, CHEN Y S, CHEN C H, BU C X, XU G. Simulation of leaf area and dry matter production in greenhouse tomato. Scientia Agricultura Sinica, 2005, 38(8): 1629-1635. (in Chinese)
[29]
MEDRANO H, POU A, TOMÁS M, MARTORELL S, GULIAS J, FLEXAS J, ESCALONA J M. Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine. Agricultural Water Management, 2012, 114: 4-10.

doi: 10.1016/j.agwat.2012.06.025
[30]
王虎兵, 曹红霞, 郝舒雪, 潘小燕. 温室番茄植株养分和光合对水肥耦合的响应及其与产量关系. 中国农业科学, 2019, 52(10): 1761-1771. doi: 10.3864/j.issn.0578-1752.2019.10.009.

doi: 10.3864/j.issn.0578-1752.2019.10.009
WANG H B, CAO H X, HAO S X, PAN X Y. Responses of plant nutrient and photosynthesis in greenhouse tomato to water-fertilizer coupling and their relationship with yield. Scientia Agricultura Sinica, 2019, 52(10): 1761-1771. doi: 10.3864/j.issn.0578-1752.2019.10.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.10.009
[31]
MUIR C D, HANGARTER R P, MOYLE L C, DAVIS P A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanums ect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant, Cell & Environment, 2014, 37(6): 1415-1426.
[32]
POORTER H, NIINEMETS Ü, POORTER L, WRIGHT I J, VILLAR R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 2009, 182(3): 565-588.

doi: 10.1111/nph.2009.182.issue-3
[33]
VILLAR R, ROBLETO J R, DE JONG Y, POORTER H. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant, Cell and Environment, 2006, 29(8): 1629-1643.

doi: 10.1111/pce.2006.29.issue-8
[34]
PUGLIELLI G, CRESCENTE M F, FRATTAROLI A R, GRATANI L. Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (poaceae): Analysis of morphological, anatomical and physiological leaf traits. Annales Botanici Fennici, 2015, 52(1/2): 135-143.

doi: 10.5735/085.052.0201
[35]
COBLE A P, CAVALERI M A. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia, 2015, 177(4): 1131-1143.

doi: 10.1007/s00442-015-3219-4 pmid: 25596955
[36]
COBLE A P, CAVALERI M A. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Tree Physiology, 2014, 34(2): 146-158.

doi: 10.1093/treephys/tpt126 pmid: 24531298
[37]
GUENDOUZ A, SEMCHEDDINE N, MOUMENI L, HAFSI M. The effect of supplementary irrigation on leaf area, specific leaf weight, grain yield and water use efficiency in durum wheat (Triticum durum Desf.) cultivars. Ekin Journal of Crop Breeding and Genetics, 2016, 2(1): 82-89.
[38]
王明泉. 不同种植密度对玉米生理性状、产量和品质影响的研究进展. 中国农学通报, 2014, 30(24): 6-10.
WANG M Q. Research progress of the effects of different density on the physiological characteristics, yield and quality of maize. Chinese Agricultural Science Bulletin, 2014, 30(24): 6-10. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2014-0015
[39]
郑英达. 杨树不同功能叶片叶绿素含量变化研究. 现代农业科技, 2020(13): 102-103.
ZHENG Y D. Study on changes of chlorophyll content of different functional poplar leaves. Modern Agricultural Science and Technology, 2020(13): 102-103. (in Chinese)
[40]
王臣, 尹娟, 赵彦波, 王顺, 张海军. 水氮调控对宁夏旱区马铃薯株高、叶绿素和产量的影响. 节水灌溉, 2020(5): 49-55, 61.
WANG C, YIN J, ZHAO Y B, WANG S, ZHANG H J. Effects of water and nitrogen regulation on potato plant height, chlorophyll and yield in arid regions of Ningxia. Water Saving Irrigation, 2020(5): 49-55, 61. (in Chinese)
[41]
刘瑞显, 王友华, 陈兵林, 郭文琦, 周治国. 花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响. 作物学报, 2008, 34(4): 675-683.
LIU R X, WANG Y H, CHEN B L, GUO W Q, ZHOU Z G. Effects of nitrogen levels on photosynthesis and chlorophyll fluorescence characteristics under drought stress in cotton flowering and boll- forming stage. Acta Agronomica Sinica, 2008, 34(4): 675-683. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00675
[42]
HOSSEINZADEH S R, AMIRI H, ISMAILI A. Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture, 2018, 17(11): 2426-2437.

doi: 10.1016/S2095-3119(17)61874-4
[43]
常佳悦, 马小龙, 吴故燃, 李广毅, 李建明. 基质栽培下行距和灌水量对塑料大棚番茄光能和水分利用的影响. 西北农林科技大学学报(自然科学版), 2023, 51(3): 111-120, 154.
CHANG J Y, MA X L, WU G R, LI G Y, LI J M. Effects of row spacing and irrigation amount on light energy and water utilization of tomato in plastic greenhouse under substrate cultivation. Journal of Northwest A&F University (Natural Science Edition), 2023, 51(3): 111-120, 154. (in Chinese)
[44]
CECHIN I, DE FÁTIMA FUMIS T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science, 2004, 166(5): 1379-1385.

doi: 10.1016/j.plantsci.2004.01.020
[45]
刘冰, 白子裕, 徐晨, 历艳璐, 王俊鹏, 陈展宇, 张治安. 大豆冠层不同部位叶片氮含量及氮素光合效率的分析. 分子植物育种, 2020, 18(12): 4060-4066.
LIU B, BAI Z Y, XU C, LI Y L, WANG J P, CHEN Z Y, ZHANG Z A. Analysis of nitrogen content and nitrogen photosynthetic efficiency in different parts of soybean canopy leaves. Molecular Plant Breeding, 2020, 18(12): 4060-4066. (in Chinese)
[46]
李佳帅, 杨再强, 王明田, 韦婷婷, 赵和丽, 江梦圆, 孙擎, 黄琴琴. 水氮耦合对苗期葡萄叶片氮素代谢酶活性的影响. 中国农业气象, 2019, 40(6): 368-379.
LI J S, YANG Z Q, WANG M T, WEI T T, ZHAO H L, JIANG M Y, SUN Q, HUANG Q Q. Effect of water and nitrogen coupling on nitrogen metabolism enzyme activities in grapevine seedling leaves. Chinese Journal of Agrometeorology, 2019, 40(6): 368-379. (in Chinese)
[47]
张昊, 林涛, 汤秋香, 崔建平, 郭仁松, 王亮, 郑子漂. 种植模式对机采棉冠层光能利用与产量形成的影响. 农业工程学报, 2021, 37(12): 54-63.
ZHANG H, LIN T, TANG Q X, CUI J P, GUO R S, WANG L, ZHENG Z P. Effects of planting pattern on canopy light utilization and yield formation in machine-harvested cotton field. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 54-63. (in Chinese)
[48]
AL-HARBI A R, AL-OMRAN A M, EL-ADGHAM F I. Effect of drip irrigation levels and emitters depth on okra (Abelmoschus esculentus) growth. Journal of Applied Sciences, 2008, 8(15): 2764-2769.

doi: 10.3923/jas.2008.2764.2769
[49]
ISA M M, IBRAHIM J, BAH S U. Effect of nitrogen fertilizer and inter row spacing on herbage yield and some yield components (number of leaves and number of tillers per plant) of Rhodes grass (Chloris gayana Tan) in the dry sub humid zone of sokoto Nigeria. Asian Journal of Advanced Research and Reports, 2020: 10-21.
[50]
吴宣毅, 曹红霞, 王虎兵, 郝舒雪. 不同种植行距和灌水量对中国西北地区日光温室短季节栽培番茄品质的交互影响. 中国农业科学, 2018, 51(5): 940-951. doi: 10.3864/j.issn.0578-1752.2018.05.012.

doi: 10.3864/j.issn.0578-1752.2018.05.012
WU X Y, CAO H X, WANG H B, HAO S X. Effect of planting row spacing and irrigation amount on comprehensive quality of short- season cultivation tomato in solar greenhouse in northwest China. Scientia Agricultura Sinica, 2018, 51(5): 940-951. doi: 10.3864/j.issn.0578-1752.2018.05.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.05.012
[1] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[2] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[5] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[6] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[7] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[8] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[9] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[10] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[11] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[12] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[13] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[14] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[15] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!