Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 707-718.doi: 10.3864/j.issn.0578-1752.2022.04.007

• PLANT PROTECTION • Previous Articles     Next Articles

Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato

WANG MengRui1,2(),LIU ShuMei1(),HOU LiXia1,WANG ShiHui1,LÜ HongJun1,SU XiaoMei1()   

  1. 1Institute of Vegetables, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory for Biology of Greenhouse Vegetables/Shandong Branch of National Improvement Center for Vegetables/Huanghuai Region Scientific Observation and Experimental Station of Vegetables (Shandong), Ministry of Agriculture and Rural Affairs, Ji’nan 250100
    2College of Horticulture, China Agricultural University, Beijing 100193
  • Received:2021-07-23 Accepted:2021-08-28 Online:2022-02-16 Published:2022-02-23
  • Contact: XiaoMei SU E-mail:wangmr151@qq.com;lsmei78@126.com;sxm198846@126.com

Abstract:

【Objective】The objective of this study is to explore the resistance identification technology of Fusarium crown and root rot (FCRR), carry out the resistance identification and analysis of tomato germplasm resources and varieties, enrich the available tomato resources resistant to FCRR, and to lay the foundation for the cultivation of tomato varieties that resistant to FCRR. 【Method】In the present study, four parameters that influence the inoculation effect including inoculum concentration, seedlings stage, environmental temperature and inoculation methods were studied using susceptible line Heinz 1706 infected with Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Subsequently, 100 tomato materials were identified through artificial inoculation at seedling stage as well as the molecular markers linked to the resistance gene. 【Result】The disease incidence and disease index of FCRR increased in a certain range along with the increase of inoculum concentration, and the actual levels of plant resistance could be revealed with the inoculum of 107spores/mL, for which the disease incidence and disease index were 100% and 89.2, respectively. The disease index was not significantly different among different seedling ages when the host was inoculated at 2 to 5 leaf stage. The effects of different environmental temperatures after inoculation on the disease index of FCRR were significantly different and the lower temperature (20℃) condition was more favorable to the occurrence of FCRR. The incidence and disease index were higher and the effect was stable using root dipping and root irrigation methods, which were significantly better than stem injection. The result of inoculation identification suggested that 38 materials showed resistance to FCRR among 100 tomato materials, which could be used for breeding or production in tomato for FCRR resistance. In addition, among the reported markers linked to Frl, SCARFrl has the lowest accuracy of 51%, while C2-25 has the accuracy of 59% and the accuracy of PNU-D4 is 83%, which is expected to be used in marker-assisted selection (MAS) for FCRR resistance. 【Conclusion】The established assessment system can identify levels of the resistance to FCRR in tomato seedlings, which can be used for identification and screening of tomato materials.

Key words: tomato, Fusarium crown and root rot (FCRR), resistance identification, molecular marker

Fig. 1

Rating scale of tomato resistance to FCRR"

Table 1

Molecular markers of FCRR-resistance gene (Frl)"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
物理位置
Physical position (Mb)
参考文献
Reference
C2-25 (Apo I) F: GTCATCCACATTCGTACTTC 5.5 STANIASZEK et al.[18]
R: AATTTAGAGCACGTTTCATA
PNU-D4 (Mbo I) F: CAGCTGAAAGATGTCACCCA 6.1 KIM et al.[20]
R: TGATCATTTACAAGGCGGCA
Tm-2 (Dde I) F: TATGTCACTATCCCAAGCAA 13.6 /
R: TAACGGTAGAATTGGACACTC
SCARFrl F: GTAACAAGTGAAGTTAAAAATGCT 61.8 MUTLU et al.[19]
R: GTGTGGATTTGGGTTCAATTCC

Table 2

Effect of different inoculation treatments on the identification efficiency"

接种方法
Inoculation method
菌液浓度
Inoculum concentration (个/mL)
苗龄
Seedling stage
环境温度
Environmental temperature (℃)
发病率
Disease incidence
(%)
病情指数
Disease index
浸根法
Root dipping
106 2—3叶期2-3 leaf 20 90±0.1aA 66.7±1.4cC
107 100±0aA 89.2±1.4bB
108 100±0aA 96.7±1.4aA
107 2—3叶期2-3 leaf 20 100±0aA 91.7±3.8aA
3—4叶期3-4 leaf 100±0aA 90.8±2.9aA
4—5叶期4-5 leaf 100±0aA 89.2±1.4aA
107 2—3叶期2-3 leaf 20 100±0aA 91.7±2.9aA
25 100±0aA 80.8±2.9bB
30 100±0aA 71.7±1.4cC
107 2—3叶期2-3 leaf 20 100±0aA 97.5±2.5aA
灌根法Root irrigation 100±0aA 96.7±1.4aA
茎注射法Stem injection 100±0aA 81.7±11.5bA

Table 3

The results of artificial inoculation and molecular detection of tomato germplasms"

编号
Number
材料
Material
世代
Generation
材料来源
Source
病情分级 DSS 病情指数
DI
抗级
RT
分子标记Molecular marker
0级 1级 2级 3级 4级 C2-25 PNU-D4 Tm-2 SCARFrl
1 VF-36 自交系IL TGRC 0/0 0/0 0/0 4/0 4/8 93.8±8.8 HS S S S S
2 Moneymaker 自交系IL TGRC 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S S S
3 M82 自交系IL TGRC 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S S S
4 Hawaii 7998 自交系IL TGRC 0/0 0/0 0/0 2/0 6/8 96.9±4.4 HS S S S S
5 LA2711 自交系IL TGRC 0/0 0/0 1/0 4/1 3/7 89.1±11.0 HS S S S S
6 LA3008 自交系IL TGRC 0/0 0/0 0/0 4/2 4/6 90.6±4.4 HS S S S S
7 Micro-Tom 自交系IL TGRC 0/0 0/0 1/0 2/2 5/6 90.6±4.4 HS S S S S
8 E-6203 自交系IL TGRC 0/0 1/0 1/0 1/1 5/7 89.1±11.0 HS S S S S
9 Ailsa Craig 自交系IL TGRC 0/0 0/0 1/0 1/1 6/7 93.8±4.4 HS S S S S
10 KR2/9706 自交系IL 中国农业科学院
CAAS
0/0 0/0 0/0 1/1 7/7 96.9±0 HS S S R R
11 Momotaro yoku 自交系IL TGRC 0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S R R
12 LA1589 自交系IL TGRC 0/0 0/0 0/0 1/2 7/6 95.3±2.2 HS S S S S
13 TS-40 自交系IL TGRC 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S R R
14 TS-52 自交系IL TGRC 0/0 0/0 0/0 4/0 4/8 93.8±8.8 HS R S R R
15 TS-151 自交系IL TGRC 0/0 0/0 0/0 3/1 5/7 93.8±4.4 HS S S S S
16 TS-175 自交系IL TGRC 0/0 0/0 0/0 3/0 5/8 95.3±6.6 HS S S R R
17 TS-211 自交系IL TGRC 0/0 0/0 0/0 4/1 4/7 92.2±6.6 HS R R R R
18 Heinz1706 自交系IL TGRC 0/0 0/0 0/0 1/2 7/6 95.3±2.2 HS S S S S
19 TS-272 自交系IL TGRC 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS R R R R
20 ZM-4 自交系IL 山东省农业科学院
SAAS
7/6 1/2 0/0 0/0 0/0 4.7±2.2 HR S R R R
21 ZM-6 自交系IL 山东省农业科学院
SAAS
8/8 0/0 0/0 0/0 0/0 0 I S R S S
22 ZM-7 自交系IL 山东省农业科学院
SAAS
8/8 0/0 0/0 0/0 0/0 0 I S R S S
23 12g-60 自交系IL 中国农业科学院
CAAS
8/8 0/0 0/0 0/0 0/0 0 I R R R R
24 LA1791a 自交系IL TGRC 8/8 0/0 0/0 0/0 0/0 0 I R R R R
25 LA2829a 自交系IL TGRC 8/8 0/0 0/0 0/0 0/0 0 I R R R R
26 LA3273a 自交系IL TGRC 8/8 0/0 0/0 0/0 0/0 0 I R R R R
27 LA3292a 自交系IL TGRC 8/8 0/0 0/0 0/0 0/0 0 I S R R R
28 LA3471a 自交系IL TGRC 8/8 0/0 0/0 0/0 0/0 0 I R R R R
29 强丰
Qiangfeng
自交系IL 中国农业科学院CAAS 0/0 0/0 0/0 2/0 6/8 96.9±4.4 HS S S S S
30 SD-1 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 3/1 5/7 93.8±4.4 HS S S R R
31 SD-2 自交系IL 山东省农业科学院
SAAS
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S R S S
32 SD-3 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 2/0 6/8 96.9±4.4 HS S S S S
编号
Number
材料
Material
世代
Generation
材料来源
Source
病情分级 DSS 病情指数
DI
抗级
RT
分子标记Molecular marker
0级 1级 2级 3级 4级 C2-25 PNU-D4 Tm-2 SCARFrl
33 SD-4 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/1 0/3 8/4 92.2±11.0 HS S S R R
34 SD-5 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H H
35 SD-6 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S R S
36 SD-7 自交系IL 山东省农业科学院
SAAS
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S R R R
37 SD-8 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H H
38 SD-9 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S R R
39 SD-10 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S S S
40 SD-11 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H H
41 SD-12 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S R R
42 SD-13 自交系IL 山东省农业科学院SAAS 0/0 0/0 1/0 2/0 5/8 93.8±8.8 HS S S S S
43 SD-14 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S R R
44 SD-15 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S R R
45 SD-16 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 1/1 7/7 96.9±0 HS R R R R
46 SD-17 自交系IL 山东省农业科学院SAAS 5/3 3/5 0/0 0/0 0/0 12.5±4.4 R S R S S
47 SD-18 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S R R
48 SD-19 自交系IL 山东省农业科学院
SAAS
0/0 0/0 0/0 4/1 4/7 92.2±6.6 HS R S S S
49 SD-20 自交系IL 山东省农业科学院SAAS 0/0 0/0 0/0 3/0 5/8 95.3±6.6 HS S S R R
50 Ah2001 杂交种
Hybrid
宛东番茄(公司)
WDT
0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS H H H H
51 Ah2002 杂交种
Hybrid
宛东番茄(公司)
WDT
0/0 0/0 1/0 2/1 5/7 92.2±6.6 HS S S H H
52 Ah2003 杂交种
Hybrid
宛东番茄(公司)
WDT
0/0 0/0 0/0 2/1 6/7 95.3±2.2 HS H H R R
53 Ah2004 杂交种
Hybrid
宛东番茄(公司)
WDT
8/8 0/0 0/0 0/0 0/0 0 I R R R R
54 Ah2005 杂交种
Hybrid
宛东番茄(公司)
WDT
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S H H H
55 Ah2006 杂交种
Hybrid
宛东番茄(公司)
WDT
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S H H H
56 Ah2007 杂交种
Hybrid
宛东番茄(公司)
WDT
8/8 0/0 0/0 0/0 0/0 0 I H H H H
57 Ah2008 杂交种
Hybrid
宛东番茄(公司)
WDT
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S H H H
编号
Number
材料
Material
世代
Generation
材料来源
Source
病情分级 DSS 病情指数
DI
抗级
RT
分子标记Molecular marker
0级 1级 2级 3级 4级 C2-25 PNU-D4 Tm-2 SCARFrl
58 Ah2009 杂交种
Hybrid
宛东番茄(公司)
WDT
5/3 1/2 2/1 0/0 0/2 26.6±15.5 MR S H H H
59 Ah2010 杂交种
Hybrid
宛东番茄(公司)
WDT
8/8 0/0 0/0 0/0 0/0 0 I S H H S
60 Ah2011 杂交种
Hybrid
宛东番茄(公司)
WDT
7/6 0/1 0/1 1/0 0/0 9.4±0 HR S H H H
61 Ah2012 杂交种
Hybrid
宛东番茄(公司)
WDT
8/8 0/0 0/0 0/0 0/0 0 I S H H S
62 Ah2013 杂交种
Hybrid
宛东番茄(公司)
WDT
0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS R R R R
63 Ah2014 杂交种
Hybrid
宛东番茄(公司)
WDT
8/8 0/0 0/0 0/0 0/0 0 I S R S S
64 Ah2015 杂交种
Hybrid
宛东番茄(公司)
WDT
8/4 0/4 0/0 0/0 0/0 6.3±8.8 HR S R S S
65 Ah2016 杂交种
Hybrid
宛东番茄(公司)
WDT
8/8 0/0 0/0 0/0 0/0 0 I S R S S
66 Ah2017 杂交种
Hybrid
宛东番茄(公司)
WDT
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S R R
67 Ah2018 杂交种
Hybrid
宛东番茄(公司)
WDT
8/6 0/2 0/0 0/0 0/0 3.1±4.4 HR S H H S
68 金棚砧木一号
Jinpengzhenmu-1
杂交种
Hybrid
伟丽种苗
WLS
8/6 0/2 0/0 0/0 0/0 3.1±4.4 HR H H R R
69 浙砧5号Zhezhen-5 杂交种
Hybrid
伟丽种苗
WLS
0/0 0/0 0/0 2/2 6/6 93.8±0 HS H S S S
70 砧木一号
Zhenmu-1
杂交种
Hybrid
伟丽种苗
WLS
8/8 0/0 0/0 0/0 0/0 0 I S H R R
71 萨瓦Sawa 杂交种
Hybrid
伟丽种苗
WLS
0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S S S S
72 千叶Qianye 杂交种
Hybrid
伟丽种苗
WLS
8/8 0/0 0/0 0/0 0/0 0 I S H R R
73 久绿Jiulv 杂交种
Hybrid
伟丽种苗
WLS
8/8 0/0 0/0 0/0 0/0 0 I H H H H
74 育正泰Yuzhengtai 杂交种
Hybrid
伟丽种苗
WLS
8/8 0/0 0/0 0/0 0/0 0 I H R R R
75 天正1567 Tianzheng1567 杂交种
Hybrid
山东鲁蔬
Shandong Lushu
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S H H H
76 鲁蔬1907
Lushu1907
杂交种
Hybrid
山东鲁蔬
Shandong Lushu
0/0 0/0 0/0 2/2 6/6 93.8±0 HS S H H H
77 金棚8号
Jinpeng-8
杂交种
Hybrid
西安金棚
Xi’an Jinpeng
0/0 0/0 0/0 0/0 8/8 100.0±0 HS H H H H
78 飞天Feitian 杂交种
Hybrid
海泽拉
Hazera
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H H
79 飞跃Feiyue 杂交种
Hybrid
海泽拉
Hazera
0/0 0/0 0/0 4/0 4/8 93.8±8.8 HS H H R R
80 罗拉Luolab 杂交种
Hybrid
海泽拉
Hazera
8/8 0/0 0/0 0/0 0/0 0 I S H H H
81 圣罗兰3690 Shengluolan3690b 杂交种
Hybrid
海泽拉
Hazera
8/6 0/2 0/0 0/0 0/0 3.1±4.4 HR S H H H
82 安纳西Annaxib 杂交种
Hybrid
海泽拉
Hazera
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S S H H
编号
Number
材料
Material
世代
Generation
材料来源
Source
病情分级 DSS 病情指数
DI
抗级
RT
分子标记Molecular marker
0级 1级 2级 3级 4级 C2-25 PNU-D4 Tm-2 SCARFrl
83 桃乐丝Taolesib 杂交种
Hybrid
海泽拉
Hazera
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR R R H H
84 瓯秀806 Ouxiu806 杂交种
Hybrid
温州市农业科学
研究院WAAS
0/0 0/0 0/0 2/0 6/8 96.9±4.4 HS H H H H
85 瑞星大宝 Ruixingdabao 杂交种
Hybrid
上海菲图
Shanghai Feitu
0/0 0/0 0/0 3/2 5/6 92.2±2.2 HS S S H H
86 瑞星5号
Ruixing-5
杂交种
Hybrid
上海菲图
Shanghai Feitu
0/0 0/0 2/0 4/1 2/7 85.9±15.5 HS S S H H
87 法拉利
Falali
杂交种
Hybrid
纽内姆
Nunhems
0/0 0/0 0/0 2/0 6/8 96.9±4.4 HS S S H S
88 粉宴1号
Fenyan-1
杂交种
Hybrid
纽内姆
Nunhems
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H S
89 齐达利
Qidali
杂交种
Hybrid
先正达
Syngenta
0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS H S H H
90 戴安娜
Daianna
杂交种
Hybrid
寿光旺林
Shouguang Wanglin
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR S S H H
91 保罗塔
Baoluota
杂交种
Hybrid
先正达
Syngenta
0/0 0/0 0/0 2/0 6/8 96.9±4.4 HS S S H H
92 百利
Baili
杂交种
Hybrid
瑞克斯旺
Rijk Zwaan
0/0 0/0 0/0 3/1 5/7 93.8±4.4 HS H H H H
93 SV4224TH 杂交种
Hybrid
圣尼斯
Seminis
8/8 0/0 0/0 0/0 0/0 0 I S H H H
94 欧盾
Oudun
杂交种
Hybrid
圣尼斯
Seminis
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H H
95 103 杂交种
Hybrid
/ 0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS S H H H
96 天禄1号
Tianlu-1
杂交种
Hybrid
沈阳谷雨
Shenyang Guyu
0/0 0/0 0/0 2/1 6/7 95.3±2.2 HS H H R R
97 安特莱斯
Antelaisi
杂交种
Hybrid
/ 8/6 0/2 0/0 0/0 0/0 3.1±4.4 HR H H R R
98 普罗旺斯
Puluowangsi
杂交种
Hybrid
荷兰德奥特
De Ruiter
8/7 0/1 0/0 0/0 0/0 1.6±2.2 HR H H R R
99 粉太郎
Fentailang
杂交种
Hybrid
日本坂田
Sakata
0/0 0/0 0/0 0/0 8/8 100.0±0 HS S S H S
100 传奇
Chuanqi
杂交种
Hybrid
日本坂田
Sakata
0/0 0/0 0/0 1/0 7/8 98.4±2.2 HS H H H R

Fig. 2

Amplification results of molecular markers C2-25 (A), PNU-D4 (B), Tm-2 (C) and SCARFrl (D) in parts of the tomato germplasms"

[1] JARVIS W R, SHOEMAKER R A. Taxonomic status of Fusarium oxysporum causing foot and root rot of tomato. Phytopathology, 1978, 68:1679-1680.
doi: 10.1094/Phyto-68-1679
[2] SZCZECHURA W, STANIASZEK M, HABDAS H. Fusarium oxysporum f. sp. radicis-lycopersici——The cause of Fusarium crown and root rot in tomato cultivation. Journal of Plant Protection Research, 2013, 53(2):172-176.
doi: 10.2478/jppr-2013-0026
[3] SONODA R M. The occurrence of a Fusarium root rot of tomatoes in South Florida. Plant Disease Reporter, 1976, 60(3):271-274.
[4] KRIKUN J, NACHMIAS A, COHN R, LAHKIM-TSROR L. The occurrence of Fusarium crown and root rot of tomato in Israel. Phytoparasitica, 1982, 10(2):113-115.
doi: 10.1007/BF02981135
[5] BRAMMALL R. Occurrence of Fusarium crown and root rot of tomato in New Brunswick, Canada. Plant Disease, 1990, 74(12):24-28.
[6] MCGOVERN R J, VAVRINA C S, NOLING J W, DATNOFF L A, YONCE H D. Evaluation of application methods of metam sodium for management of Fusarium crown and root rot in tomato in Southwest Florida. Plant Disease, 1998, 82(8):919-923.
doi: 10.1094/PDIS.1998.82.8.919
[7] CAN C, YUCEL S, KOROLEV N, KATAN T. First report of Fusarium crown and root rot of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici in Turkey. Plant Pathology, 2004, 53(6):814.
doi: 10.1111/ppa.2004.53.issue-6
[8] MALATTRAKIS N E. Tomato crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici in Greece. Plant Pathology, 1985, 34(3):438-439.
doi: 10.1111/ppa.1985.34.issue-3
[9] JARVIS W R, THORPE H J, MELOCHE R B. Survey of greenhouse management practices in Essex County, Ontario, in relation to Fusarium foot and root rot of tomato. Plant Disease, 1983, 67(1):38-40.
doi: 10.1094/PD-67-38
[10] KIM J T, PARK I H, HAHM Y, YU S H. Crown and root rot of greenhouse tomato caused by Fusarium oxysporum f. sp. radices- lycopersici in Korea. Plant Pathology Journal, 2001, 17(5):290-294.
[11] 耿丽华, 李常保, 迟胜起, 王丽君, 柴敏. 番茄颈腐根腐病病原鉴定及不同条件对其生长的影响. 植物病理学报, 2012, 42(5):449-455.
GENG L H, LI C B, CHI S Q, WANG L J, CHAI M. Identification of the pathogen causing Fusarium crown and root rot of tomato and its growth affecting factors. Acta Phytopathologica Sinica, 2012, 42(5):449-455. (in Chinese)
[12] 程琳, 张生, 李艳青, 陈福东, 程斐, 张晓艳, 董甜, 国家进. 番茄颈腐根腐病病原菌鉴定与抗病种质材料的筛选. 园艺学报, 2016, 43(4):781-788.
CHENG L, ZHANG S, LI Y Q, CHEN F D, CHENG F, ZHANG X Y, DONG T, GUO J J. Pathogen identification of Fusarium crown root rot and screening for resistant sources in tomato. Acta Horticulturae Sinica, 2016, 43(4):781-788. (in Chinese)
[13] 张尚卿, 韩晓清, 缪作清, 吴志会, 张立娇. 番茄颈腐根腐病病原鉴定及2种接种方法的评价. 华北农学报, 2017, 32(5):124-129.
ZHANG S Q, HAN X Q, MIU Z Q, WU Z H, ZHANG L J. Pathogen identification and two inoculation methods of Fusarium crown and root rot. Acta Agriculturae Boreali-Sinica, 2017, 32(5):124-129. (in Chinese)
[14] 李潇, 李雪萍, 漆永红, 郭成, 李敏权. 番茄颈腐根腐病病原鉴定及其品种抗性鉴定. 甘肃农业大学学报, 2019, 54(5):121-127.
LI X, LI X P, QI Y H, GUO C, LI M Q. Identification and variety resistance of the pathogen of tomato crown and root rot. Journal of Gansu Agricultural University, 2019, 54(5):121-127. (in Chinese)
[15] 王家哲, 任平, 张锋, 洪波, 常青, 刘晨, 杨艺炜, 王远征, 李英梅, 付博. 温室大棚番茄颈腐根腐病病原菌的分离鉴定//中国植物保护学会2019年学术年会论文集, 2019: 68-73.
WANG J Z, REN P, ZHANG F, HONG B, CHANG Q, LIU C, YANG Y W, WANG Y Z, LI Y M, FU B. Isolation and identification of the pathogen of Fusarium crown and root rot of tomato in greenhouse// Proceedings of the 2019 Annual Meeting of the Chinese Society of Plant Protection, 2019: 68-73. (in Chinese)
[16] VAKALOUNAKIS D J, LATERROT H, MORETTI A, LIGOXIGAKIS E K, SMARDAS K. Linkage between Frl (Fusarium oxysporum f. sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Annals of Applied Biology, 1997, 130(2):319-323.
doi: 10.1111/aab.1997.130.issue-2
[17] FAZIO G, STEVENS M R, SCOTT J W. Identification of RAPD markers linked to Fusarium crown and root rot resistance (Frl) in tomato. Euphytica, 1999, 105(3):205-210.
doi: 10.1023/A:1003497719705
[18] STANIASZEK M, SZCZECHURA W, MARCZEWSKI W. Identification of a new molecular marker C2-25 linked to the Fusarium oxysporum f. sp. radicis-lycopersici resistance Frl gene in tomato. Czech Journal of Genetics and Plant Breeding, 2014, 50(4):285-287.
doi: 10.17221/CJGPB
[19] MUTLU N, DEMIRELLI A, ILBI H, IKTEN C. Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theoretical and Applied Genetics, 2015, 128(9):1791-1798.
doi: 10.1007/s00122-015-2547-4
[20] KIM B, KIM N, KIM J Y, KIM B S, JUNG H J, HWANG I, NOUA I S, SIM S C, PARK Y. Development of a high-resolution melting marker for selecting Fusarium crown and root rot resistance in tomato. Genome, 2016, 59(3):173-183.
doi: 10.1139/gen-2015-0115
[21] DEVRAN Z, KAHCECI E, HONG Y, STUDHOLME D J, TOR M. Identifying molecular markers suitable for Frl selection in tomato breeding. Theoretical and Applied Genetics, 2018, 131(10):2099-2105.
doi: 10.1007/s00122-018-3136-0
[22] 刘蕾, 王辉. 番茄颈腐根腐病病原菌及抗病育种研究进展. 长江蔬菜, 2016(6):35-37.
LIU L, WANG H. Research progress of tomato Fusarium crown and root rot pathogen and resistance breeding. Journal of Changjiang Vegetables, 2016(6):35-37. (in Chinese)
[23] 李景富, 孙亚莉, 赵婷婷, 姜景彬, 许向阳. 番茄颈腐根腐病菌分离鉴定与生物学特性研究. 东北农业大学学报, 2018, 49(2):22-30.
LI J F, SUN Y L, ZHAO T T, JIANG J B, XU X Y. Separation identification and biological characteristics of pathogen causing Fusarium crown and root rot of tomato. Journal of Northeast Agricultural University, 2018, 49(2):22-30. (in Chinese)
[24] 刘蕾, 王辉, 李文丽, 王富. 与番茄颈腐根腐病抗病基因Frl连锁的标记及应用. 江苏农业科学, 2018, 46(16):91-93.
LIU L, WANG H, LI W L, WANG F. Application of the linkage markers with the Frl gene conferring resistance to Fusarium crown and root rot in tomato. Jiangsu Agricultural Sciences, 2018, 46(16):91-93. (in Chinese)
[25] 杜建峰, 吴伟, 张晓英, 李洋, 丁新华. 番茄颈腐根腐病的发生及其防治研究进展. 生物技术通报, 2020, 36(10):200-206.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0260
DU J F, WU W, ZHANG X Y, LI Y, DING X H. Research progress on the occurrence and control of Fusarium crown and root rot of tomato. Biotechnology Bulletin, 2020, 36(10):200-206. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0260
[26] 姜景彬, 许向阳, 孙亚莉, 李景富, 张贺, 杨欢欢, 赵婷婷. 一种番茄茎腐根腐病苗期快速接种鉴定方法: CN108841916A[P] (2018-11-20) [2021-07-23].
JIANG J B, XU X Y, SUN Y L, LI J F, ZHANG H, YANG H H, ZHAO T T. A method for rapid inoculation identification of Fusarium crown and root rot in tomato seedlings: CN108841916A[P](2018-11- 20) [2021-07-23]. (in Chinese)
[27] MENZIES J G, KOVH C, SEYWERD F. Additions to the host range of Fusarium oxysporum f. sp. radicis-lycopersici. Plant Disease, 1990, 74(8):569-572.
doi: 10.1094/PD-74-0569
[28] LIN T, ZHU G, ZHANG J, XU X, YU Q, ZHENG Z, ZHANG Z, LUN Y, LI S, WANG X, et al. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46(11):1220-1226.
doi: 10.1038/ng.3117
[29] SEAH S, YAGHOOBI J, ROSSI M, GLEASON C A, WILLIAMSON V M. The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theoretical and Applied Genetics, 2004, 108(8):1635-1642.
doi: 10.1007/s00122-004-1594-z
[30] JI Y, SCHUSTER D J, SCOTT J W. Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 2007, 20(3):271-284.
doi: 10.1007/s11032-007-9089-7
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[3] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[6] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[7] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[8] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[9] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[10] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[13] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[14] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[15] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!