Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2761-2775.doi: 10.3864/j.issn.0578-1752.2023.14.011

• HORTICULTURE • Previous Articles     Next Articles

Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization

GAO ZiYuan1(), HU JingAng2(), ZHANG BeiBei1, GONG Biao1()   

  1. 1 State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong
    2 Zhengzhou Vegetable Research Institute, Zhengzhou 450015
  • Received:2022-10-17 Accepted:2023-05-10 Online:2023-07-16 Published:2023-07-21
  • Contact: GONG Biao

Abstract:

【Objective】Phosphorus is a non-renewable resource, and the uptake and utilization efficiency of soil phosphorus by plants is low. It is of great economic and ecological value to improve the efficiency of phosphorus absorption and utilization by grafting. The aim of this study was to screen the varieties of grafting tomato rootstocks with efficient use of phosphorus and to establish a light, simple and efficient evaluation technology system, which had theoretical and practical guiding effects on the breeding, demonstration and promotion of new rootstocks with efficient use of phosphorus.【Method】The scion tomato varieties of Qinglove No.1 were grafted on 25 rootstocks (G1-G25) or self-grafted (G0). The experiment was conducted in tomato seedling stage and whole growth stage. In the seedling stage test, the grafted seedlings were treated with normal phosphorus (Hoagland nutrient solution, NP) and low phosphorus (Hoagland nutrient solution with 10% phosphorus content, LP) by hydroponics. 15 days later, 16 indexes were measured, including growth and development, phosphorus absorption and utilization efficiency of grafted seedlings. In the whole growth period experiment, the grafted seedlings were still used as the test material. The phosphorus application level of the control group was set at 1 272 kg∙hm-2, and that of the LP treatment group was 50% of that of the control group. Nine indexes such as fresh weight of stem and leaf, yield and fruit quality were determined. Then, the correlation analysis, principal component analysis, membership function value analysis, cluster analysis, multiple regression analysis and other mathematical analysis models were used to screen the test materials with phosphorus efficient utilization type grafting tomato rootstock and to evaluate them comprehensively.【Result】The average coefficient of variation of indexes at seedling stage and whole growth stage under NP treatment was 9.74% and 2.85%, respectively, and the average coefficient of variation of indexes at seedling stage and whole growth stage under LP treatment was 16.10% and 5.84%, respectively. The variation coefficient of each index under LP treatment was generally higher than that under NP treatment, indicating that the difference of influence of rootstock genotype on grafted tomato was amplified under LP condition. Correlation analysis showed that yield (I-17) under NP condition was positively correlated with stem and leaf dry weight (I-1), stem diameter (I-5), stem and leaf P mass fraction (I-7), stem and leaf P absorption efficiency (I-9), whole plant P absorption efficiency (I-11), and stem and leaf P transport efficiency (I-12); under the LP condition, the tomato yield (I-17) was positively correlated with stem and leaf dry weight (I-1), root dry weight (I-2), stem diameter (I-5), strong seedling index (I-6), stem and leaf P mass fraction (I-7), stem and leaf P absorption efficiency (I-9), root and leaf P absorption efficiency (I-10), whole plant P absorption efficiency (I-11), and stem and leaf P transport efficiency (I-12). The ranking of principal component and membership function values showed that the ranking rules of the two analysis methods were basically consistent, and both of them were consistent with the performance pattern of cluster analysis. However, there were slight differences in the ranking of individual rootstock varieties, so this paper used the comprehensive average performance of the two rankings as the final ranking, and calculated the top five grafting combinations (G24, G1, G8, G3, and G25). Through multiple regression analysis, the seedling stage evaluation indexes suitable for low phosphorus tolerance of tomato rootstock were obtained, and the regression equations of key seedling stage indexes affecting yield and quality were established: YI-17=1354.630-5.552XI-4, YI-20=2.956XI-5-7.949XI-14+2.927, and YI-23=48.807+0.005XI-11.【Conclusion】In this study, a set of simple, objective and relatively objective technology system for screening and comprehensive evaluation of tomato rootstock with efficient utilization of phosphorus was established. Three rootstocks, including Korean rootstock No. 1, Jinpeng Rootstock No. 1 and Western Tomato rootstock, were identified to have comprehensive advantages of efficient utilization of phosphorus fertilizer.

Key words: tomato, grafting, rootstock, variety screening

Table 1

Tomato variety information"

编号
No.
材料
Material
来源
Origin
G0 青恋1号 Qing Lian No.1 郑州市蔬菜研究所 Zhengzhou City Vegetable Research Institute
G1 金棚砧木一号 Jin Peng Zhen Mu No.1 西安金鹏种苗有限公司 Xi'an Jinpeng Seedling Corporation
G2 倍盈 Bei Ying 先正达农业有限公司 Syngenta Agricultural Corporation
G3 果砧1号 Guo Zhen No.1 国家蔬菜工程技术研究中心 Chinese National Engineering Research Center of Vegetables
G4 豪砧三抗 Hao Zhen San Kang 山东豪达农业科技有限公司 Shandong Haoda Agricultural Corporation
G5 青抗1号 Qing Kang No.1 湖南省蔬菜研究所 Hunan Vegetable Research Institute
G6 锦砧052 Jin Zhen 052 锦州克粒思丰农业科技有限公司 Jinzhou Kelasifeng Agricultural Corporation
G7 阿拉姆 Alamu 寿光市丽林种业有限公司 Shoulguang Lilin Seed Corporation
G8 西方番茄砧木 Xi Fang Fan Qie Zhen Mu 瑞克斯旺种苗集团公司 Rijk Zwaan Seed Group Corporation
G9 西大砧木1号 Xi Da Zhen Mu No.1 广西大学 Guangxi University
G10 山农番砧1号 Shan Nong Fan Zhen No.1 山东农业大学 Shandong Agricultural University
G11 山农番砧2号 Shan Nong Fan Zhen No.2 山东农业大学 Shandong Agricultural University
G12 山农番砧3号 Shan Nong Fan Zhen No.3 山东农业大学 Shandong Agricultural University
G13 家得乐番砧一号 Jia De Le Fan Zhen No.1 广西田阳家得乐农业开发有限公司 Guangxi Tianyang Jiadele Agricultural Development Co., Ltd.
G14 家得乐番砧二号 Jia De Le Fan Zhen No.2 广西田阳家得乐农业开发有限公司 Guangxi Tianyang Jiadele Agricultural Development Co., Ltd.
G15 乾德番砧 Qian De Fan Zhen 上海乾德种业有限公司 Shanghai Qiande seed Corporation
G16 乾德番砧2号 Qian De Fan Zhen No.2 上海乾德种业有限公司 Shanghai Qiande seed Corporation
G17 乾德番砧3号 Qian De Fan Zhen No.3 上海乾德种业有限公司 Shanghai Qiande seed Corporation
G18 番砧1号 Fan Zhen No.1 北京多又奇科贸有限公司 Duoyouqi Tech Trade Corporation
G19 无敌F1 Wu Di F1 北京多又奇科贸有限公司 Duoyouqi Tech Trade Corporation
G20 强力 Qiang Li 北京多又奇科贸有限公司 Duoyouqi Tech Trade Corporation
G21 坂砧1号 Ban Zhen No.1 日本坂田种苗株式会社 Sakata Seed Corporation
G22 坂砧2号 Ban Zhen No.2 日本坂田种苗株式会社 Sakata Seed Corporation
G23 坂砧18号 Ban zhen No.18 日本坂田种苗株式会社 Sakata Seed Corporation
G24 韩国砧木1号 Han Guo Zhen Mu No.1 韩国 South Korea
G25 韩国砧木2号 Han Guo Zhen Mu No.2 韩国 South Korea

Table 2

Effects of grafting and phosphorus level on agronomic characters and phosphorus uptake and utilization efficiency of tomato plants"

指标
Index
指标编号
No.
处理
Treatment
最大值
Max. value
最小值
Min. value
平均值
Ave. value
标准差
SD
变异系数
CV (%)
苗期
Seedling stage
茎叶干重
Shoot dry weight (g)
I-1 NP 16.58 12.44 14.42 1.21 8.40
LP 11.95 6.33 9.43 1.75 18.54
根干重
Root dry weight (g)
I-2 NP 4.44 3.86 4.18 0.17 4.08
LP 3.86 1.86 3.04 0.63 20.67
根冠比
Root-shoot ratio
I-3 NP 0.35 0.24 0.29 0.02 8.38
LP 0.37 0.28 0.32 0.02 7.03
株高
Plant height (cm)
I-4 NP 52.57 41.80 47.85 2.53 5.29
LP 45.88 35.69 42.09 2.47 5.87
茎粗
Stem diameter (cm)
I-5 NP 0.41 0.29 0.37 0.04 7.21
LP 0.36 0.25 0.32 0.05 8.61
壮苗指数
Seedling index
I-6 NP 6.12 5.15 5.64 0.27 4.81
LP 5.37 2.48 4.18 0.91 21.70
茎叶P质量分数
Shoot P concentration (mg∙g-1)
I-7 NP 10.63 6.94 8.47 1.01 11.91
LP 9.16 5.52 7.23 0.88 12.16
根P质量分数
Root P concentration (mg∙g-1)
I-8 NP 4.43 3.01 3.73 0.34 9.15
LP 2.65 1.22 1.94 0.34 17.53
茎叶P吸收效率
Shoot P absorption efficiency (mg/plant)
I-9 NP 176.29 94.07 123.12 23.92 19.43
LP 109.47 36.94 69.56 20.09 28.88
根P吸收效率
Root P absorption efficiency (mg/plant)
I-10 NP 17.70 12.44 15.55 1.29 8.33
LP 8.51 3.64 5.81 1.31 22.48
整株P吸收效率
Whole plant P absorption efficiency (mg/plant)
I-11 NP 192.05 108.97 138.67 24.03 17.33
LP 117.98 40.92 75.37 21.00 27.86
茎叶P转运效率
Shoot P transport efficiency (%)
I-12 NP 0.92 0.85 0.88 0.02 2.31
LP 0.95 0.88 0.92 0.02 1.93
根P转运效率
Root P transfer efficiency (%)
I-13 NP 0.15 0.08 0.12 0.02 17.79
LP 0.12 0.05 0.08 0.02 22.13
茎叶P利用效率
Shoot P utilization efficiency (g∙mg-1)
I-14 NP 0.14 0.09 0.12 0.01 11.51
LP 0.18 0.11 0.14 0.02 12.75
根P利用效率
Root P utilization efficiency (g∙mg-1)
I-15 NP 0.33 0.23 0.27 0.03 9.35
LP 0.82 0.38 0.53 0.10 18.87
整株P利用效率
Whole plant P utilization efficiency (g∙mg-1)
I-16 NP 0.16 0.11 0.14 0.01 10.52
LP 0.21 0.13 0.17 0.02 10.52
全生长期
Whole growth stage
单株产量
Yield (g/plant)
I-17 NP 1637.35 1581.58 1603.92 15.03 0.94
LP 1154.32 1098.72 1120.92 15.03 1.34
茎叶鲜重
Shoot fresh weight (g/plant)
I-18 NP 889.53 849.29 867.52 11.07 1.28
LP 702.36 66.56 662.01 119.78 18.09
可溶性固形物
Soluble solids (%)
I-19 NP 5.81 5.70 5.75 0.03 0.60
LP 4.51 4.39 4.46 0.03 0.76
可溶性糖
Soluble sugar (%)
I-20 NP 5.41 4.33 5.14 0.24 4.74
LP 3.82 2.46 3.41 0.30 8.70
可滴定酸
Titratable acid (%)
I-21 NP 0.49 0.44 0.46 0.01 2.60
LP 0.46 0.37 0.42 0.02 5.90
糖酸比
Sugar acid Ratio
I-22 NP 12.00 8.84 11.11 0.75 6.77
LP 10.22 5.35 8.23 1.13 13.78
番茄红素
Lycopene (μg∙g-1)
I-23 NP 62.88 61.11 61.98 0.53 0.85
LP 48.61 48.18 48.40 0.12 0.24
Vc含量
Vc content (mg∙g-1)
I-24 NP 16.72 13.30 14.45 1.02 7.08
LP 13.42 12.39 12.72 0.31 2.47
可溶性蛋白
Soluble protein (mg∙g-1)
I-25 NP 0.96 0.93 0.95 0.01 0.83
LP 0.89 0.85 0.87 0.01 1.28

Fig. 1

Correlation analysis of grafting and phosphorus level on agronomic characters and phosphorus uptake and utilization efficiency of tomato plants The lower left part of the red and blue colored circle represents each index of LP treatment group; The upper right part of the red and green colored circles represent the indexes of the NP-treated group"

Table 3

Principal component analysis on agronomic traits and phosphorus uptake and utilization efficiency of tomato plants by grafting under low phosphorus condition"

主成分
PC
特征值
E
贡献率
CR (%)
累积贡献率
ACR (%)
1 18.05 72.20 72.20
2 3.59 14.37 86.57
3 1.35 5.43 92.01
4 0.69 2.78 94.79
5 0.32 1.30 100.00

Table 4

Load values and eigenvectors of each factor based on principal component analysis"

指标编号
No.
主成分1 CP1 主成分2 CP2
载荷值 LV 特征向量 EV 载荷值 LV 特征向量 EV
I-1 0.954 0.225 -0.104 -0.055
I-2 0.969 0.228 0.014 0.007
I-3 0.429 0.101 0.338 0.178
I-4 -0.967 -0.228 -0.091 -0.048
I-5 0.921 0.217 -0.014 -0.007
I-6 0.964 0.227 0.038 0.020
I-7 0.963 0.227 0.047 0.025
I-8 -0.37 -0.087 0.908 0.479
I-9 0.982 0.231 -0.021 -0.011
I-10 0.687 0.162 0.705 0.372
I-11 0.983 0.231 0.023 0.012
I-12 0.654 0.154 -0.747 -0.394
I-13 -0.654 -0.154 0.747 0.394
I-14 -0.959 -0.226 -0.005 -0.003
I-15 0.307 0.072 -0.926 -0.489
I-16 -0.953 -0.224 -0.094 -0.050
I-17 0.887 0.209 0.173 0.091
I-18 0.46 0.108 0.063 0.033
I-19 0.944 0.222 0.043 0.023
I-20 0.916 0.216 0.064 0.034
I-21 -0.903 -0.213 -0.129 -0.068
I-22 0.959 0.226 0.114 0.060
I-23 -0.988 -0.233 0.001 0.001
I-24 0.849 0.200 0.279 0.147
I-25 0.949 0.223 0.06 0.032

Table 5

Ranking results based on principal component analysis"

主成分分析 PCA 隶属函数分析 SFA 综合排名
Comprehensive ranking
F1 F2 F 排名 Ranking 隶属函数值 SFV 排名 Ranking
G0 -7.95 -0.24 -6.67 26 0.24 26 26
G1 6.13 1.04 5.29 2 0.70 2 2
G2 -0.15 0.82 0.01 15 0.51 12 14
G3 4.46 1.83 4.02 4 0.67 4 4
G4 1.21 -4.66 0.24 14 0.46 15 15
G5 -5.23 0.71 -4.24 23 0.36 23 23
G6 0.87 -1.46 0.48 12 0.50 13 12
G7 -2.04 -1.39 -1.93 18 0.39 20 19
G8 5.34 1.2 4.65 3 0.67 3 3
G9 -3.38 -2.24 -3.19 21 0.36 21 21
G10 3.44 1.04 3.04 6 0.63 6 6
G11 0.15 -3.19 -0.40 16 0.46 16 16
G12 -1.68 1.16 -1.21 17 0.45 18 17
G13 2.5 -1.09 1.90 10 0.59 7 8
G14 0.42 0.22 0.39 13 0.50 14 13
G15 2.53 -0.47 2.03 7 0.58 8 7
G16 1.67 -2.58 0.96 11 0.51 11 11
G17 -4.66 1.4 -3.65 22 0.36 22 22
G18 -7.65 -0.75 -6.50 25 0.28 25 25
G19 2.62 -1.52 1.93 8 0.56 10 10
G20 2.31 -0.09 1.91 9 0.58 9 9
G21 -3.27 3.74 -2.11 19 0.45 17 18
G22 -3.23 2.06 -2.35 20 0.40 19 20
G23 -6.16 1.69 -4.86 24 0.34 24 24
G24 7.34 2.25 6.50 1 0.73 1 1
G25 4.42 0.51 3.77 5 0.67 5 5

Fig. 2

Clustering analysis on agronomic traits and phosphorus uptake and utilization efficiency of tomato plants by grafting under low phosphorus condition"

Table 6

Assessment accuracy analysis of the regression equations"

编号
No.
产量
Production
可溶性糖含量
Soluble sugar content
番茄红素含量
Lycopene content
G0 99.81 87.66 99.91
G1 99.77 99.08 99.33
G2 99.67 97.99 99.70
G3 99.53 98.76 99.39
G4 99.04 96.58 99.64
G5 99.43 95.48 99.99
G6 99.63 97.79 99.62
G7 99.37 97.51 99.76
G8 99.03 99.51 99.35
G9 99.81 95.69 99.89
G10 99.84 98.23 99.41
G11 99.12 98.19 99.58
G12 99.70 98.84 99.78
G13 99.99 96.76 99.49
G14 98.88 97.71 99.58
G15 99.75 99.70 99.49
G16 98.97 98.80 99.54
G17 99.90 92.97 99.93
G18 99.22 93.55 99.97
G19 99.76 99.40 99.58
G20 99.73 97.56 99.56
G21 99.85 98.63 99.85
G22 99.81 96.72 99.89
G23 99.37 94.67 99.99
G24 99.79 99.56 99.21
G25 99.67 98.40 99.43
[1]
FAO. https://www.fao.org/home/en/, 2018.
[2]
魏丹, 李艳, 秦程程, 金梁, 丁建莉, 杨帆, 崔勇, 李涛, 邹洪涛, 王丽英. 环渤海地区设施蔬菜土壤障碍与治理措施. 中国土壤与肥料, 2021(5): 303-309.
WEI D, LI Y, QIN C C, JIN L, DING J L, YANG F, CUI Y, LI T, ZOU H T, WANG L Y. Soil barrier and countermeasure of protected vegetable in the Bohai Rim. Soils and Fertilizers Sciences in China, 2021(5): 303-309. (in Chinese)
[3]
许秀美, 邱化蛟, 周先学, 于瑞忠, 冷寿慈. 植物对磷素的吸收、运转和代谢. 山东农业大学学报(自然科学版), 2001, 32(3): 397-400.
XU X M, QIU H J, ZHOU X X, YU R Z, LENG S C. The absorption, translocation and metabolism of phosphorus of plant. Journal of Shandong Agricultural University, 2001, 32(3): 397-400. (in Chinese)
[4]
胡宁, 袁红, 蓝家程, 袁道先, 傅瓦利, 文志林. 岩溶石漠化区不同植被恢复模式土壤无机磷形态特征及影响因素. 生态学报, 2014, 34(24): 7393-7402.
HU N, YUAN H, LAN J C, YUAN D X, FU W L, WEN Z L. Factors influencing the distribution of inorganic phosphorus fractions in different vegetation restoration areas in karst rocky desertification area. Acta Ecologica Sinica, 2014, 34 (24): 7393-7402. (in Chinese)
[5]
范杰英, 邢世通, 周奕含, 王云鹏, 邢少辰. 植物嫁接-古老技术焕发新活力. 分子植物育种: 1-9[2023-02-07].
FAN J Y, XING S T, ZHOU Y H, WANG Y P, XING S C. Plant grafting-An ancient technology with new vitality. Molecular Plant Breeding: 1-9 [2013-02-07]. (in Chinese)
[6]
郑楠, 王美玲, 王洪涛, 艾希珍. 嫁接对低温弱光下甜椒幼苗光合作用的影响. 应用生态学报, 2009, 20(3): 591-596.
ZHENG N, WANG M L, WANG H T, AI X Z. Effects of grafting on photosynthesis of sweet pepper seedlings under low temperature and weak light intensity. Chinese Journal of Applied Ecology, 2009, 20(3): 591-596. (in Chinese)
[7]
刘德兴, 荆鑫, 焦娟, 魏珉, 隋申利, 赵利华, 李艳玮, 赵娜, 巩彪, 史庆华. 嫁接对番茄产量、品质及耐盐性影响的综合评价. 园艺学报, 2017, 44(6): 1094-1104.

doi: 10.16420/j.issn.0513-353x.2016-0947
LIU D X, JING X, JIAO J, WEI M, SUI S L, ZHAO L H, LI Y W, ZHAO N, GONG B, SHI Q H. Comprehensive evaluation of yield, quality and salt stress tolerance in grafting tomato. Acta Horticulturae Sinica, 2017, 44(6): 1094-1104. (in Chinese)
[8]
田茂燕, 向婷颖, 钟川, 王鹏, 阳燕娟, 于文进. 番茄砧木耐热性评价及热胁迫生理响应研究. 中国蔬菜, 2021(5): 39-47.
TIAN M Y, XIANG T Y, ZHONG C, WANG P, YANG Y J, YU W J. Evaluation of tomato rootstock heat resistance and studies on its physiological response to heat stress. China Vegetables, 2021(5): 39-47. (in Chinese)
[9]
胡容平, 范中菡, 陈庆华, 廖慧苹, 李洪浩, 陈松, 林立金. 不同倍性龙葵砧木嫁接对树番茄幼苗硒积累的影响. 中国农学通报, 2021, 37(2): 43-47.

doi: 10.11924/j.issn.1000-6850.casb2020-0285
HU R P, FAN Z H, CHEN Q H, LIAO H P, LI H H, CHEN S, LIN L J. Effects of Solanum nigrum rootstock with different ploidies grafting on selenium accumulation of Cyphomandra betacea seedlings. Chinese Journal of Agronomy, 2021, 37(2): 43-47. (in Chinese)
[10]
高鑫, 原红红, 孙梨宗, 高天晗, 翁莉萍, 台培东. 嫁接诱导植物镉富集性状的改变. 生态学杂志, 2019, 38(1): 181-187.
GAO X, YUAN H H, SUN L Z, GAO T H, WENG L P, TAI P D. Grafting induced the changes of cadmium accumulation in plants. Chinese Journal of Ecology, 2019, 38(1): 181-187. (in Chinese)
[11]
陈同强, 张天柱. 玻璃温室嫁接樱桃番茄苗三干与双干整枝育苗技术. 北方园艺, 2020, 44(3): 173-176.
CHEN T Q, ZHANG T Z. Grafting of cherry tomato seedlings with three stems and two stems in glass greenhouse. North Horticulture, 2020, 44(3): 173-176. (in Chinese)
[12]
袁亭亭, 宋小艺, 王忠宾, 杨建平, 徐坤. 嫁接与施肥对番茄产量及氮、磷、钾吸收利用效率的影响. 植物营养与肥料学报, 2011, 17(1): 131-136.
YUAN T T, SONG X Y, WANG Z B, YANG J P, XU K. Effect of grafting cultivation and fertilization on the yield,NPK uptake and utilization of tomatoes. Plant Nutrition and Fertilizer Science, 2011, 17(1): 131-136. (in Chinese)
[13]
孙艳, 黄炜, 田霄鸿, 吴瑛, 丁勤, 周存田. 黄瓜嫁接苗生长状况、光合特性及养分吸收特性的研究. 植物营养与肥料学报, 2002, 8(2): 181-185, 209.
SUN Y, HUANG W, TIAN X H, WU Y, DING Q, ZHOU C T. Study on growth situation, photosynthetic characteristics and nutrient absorption characteristics of grafted cucumber seedlings. Plant Nutrition and Fertilizer Science, 2002, 8(2): 181-185, 209. (in Chinese)
[14]
孙胜, 田永生, 冷丹丹, 李先得, 袁世连, 邢国明. 不同砧木对嫁接西瓜经济产量及叶片矿质营养含量的影响. 植物营养与肥料学报, 2010, 16(1): 179-184.
SUN S, TIAN Y S, LENG D D, LI X D, YUAN S L, XING G M. Effects of different kinds of rootstocks on economic yields and mineral nutrition contents of leaves of grafted watermelon seedlings. Plant Nutrition and Fertilizer Science, 2010, 16(1): 179-184. (in Chinese)
[15]
HUANG Y, ZHAO L Q, KONG Q S, CHENG F, NIU M L, XIE J J, MUHAMMAD A N, BIE Z L. Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticultural Plant Journal, 2016, 2(2): 105-113.

doi: 10.1016/j.hpj.2016.06.003
[16]
RAIESI T, MORADI B. Young navel orange rootstock improves phosphorus absorption from poorly soluble pools through rhizosphere processes. Rhizosphere, 2021, 17: 100316.

doi: 10.1016/j.rhisph.2021.100316
[17]
邢宏燕, 王二明, 李滨, 李继云, 李振声. 有效利用土壤磷的小麦种质筛选方法研究. 作物学报, 2000, 26(6): 839-844.
XING H Y, WANG E M, LI B, LI J Y, LI Z S. Studies on wheat germplasm screening method for efficient utilization of soil phosphorus. Acta Agronomica Sinica, 2000, 26(6): 839-844. (in Chinese)
[18]
万延慧, 朱龙英, 杨志杰, 朱为民. 低磷胁迫对不同番茄基因型苗期影响的研究. 农业工程学报, 2005(S2): 57-59.
WAN Y H, ZHU L Y, YANG Z J, ZHU W M. Study on the effect of low phosphorus stress on the seedling stage of different tomato genotypes. Transactions of CSAE, 2005(S2): 57-59. (in Chinese)
[19]
李熹, 王丽英, 张彦才, 刘明分, 李巧云, 陈丽莉, 翟彩霞. 低温胁迫下磷肥对日光温室番茄苗期生长及生理活性的影响. 华北农学报, 2007, 22(5): 142-146.

doi: 10.7668/hbnxb.2007.05.035
LI X, WANG L Y, ZHANG Y C, LIU M F, LI Q Y, CHEN L L, ZHAI C X. Effects of low temperature stress of phosphate fertilizer on heliogreenhouse tomato seedlings growth and physiological activity. Acta Agriculturae Boreali-Sinica, 2007, 22(5): 142-146. (in Chinese)

doi: 10.7668/hbnxb.2007.05.035
[20]
GONG B, LI X, VANDENLANGENBERG K M, WEN D, SUN S S, WEI M, LI Y, YANG F J, SHI Q H, WANG X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal, 2014, 12(6): 694-708.

doi: 10.1111/pbi.12173 pmid: 24605920
[21]
赵现伟, 孙丽萍, 厉苏宁, 赵朝森, 王瑞珍, 郭兵福. 江西省春大豆品种及其骨干亲本的磷吸收和利用效率解析. 植物遗传资源学报, 2022, 23(2): 541-552.

doi: 10.13430/j.cnki.jpgr.20211106001
ZHAO X W, SUN L P, LI S N, ZHAO C S, WANG R Z, GUO B F. Analysis of phosphorus absorption and use efficiency in spring soybean cultivars and their foundation parents from Jiangxi province. Journal of Plant Genetic Resources, 2022, 23(2): 541-552. (in Chinese)
[22]
牛英, 范七君, 刘冰浩, 陈传武, 刘萍, 丁萍. 柑桔果汁可溶性固形物含量测定的影响因素及优化. 现代园艺, 2021, 44(7): 3-6.
NIU Y, FAN Q J, LIU B H, CHEN C W, LIU P, DING P. Influencing factors and optimization of determination of soluble solid content in citrus juice. Xiandai Horticulture, 2021, 44(7): 3-6. (in Chinese)
[23]
谷端银, 王秀峰, 杨凤娟, 焦娟, 魏珉, 史庆华. 纯化腐植酸对低氮胁迫下黄瓜幼苗生长及养分吸收的影响. 应用生态学报, 2016, 27(8): 2535-2542.

doi: 10.13287/j.1001-9332.201608.016
GU D Y, WANG X F, YANG F J, JIAO J, WEI M, SHI Q H. Effects of purified humic acid on growth and nutrient absorption of cucumber (Cucumis sativus) seedlings under low nitrogen stress. Chinese Journal of Applied Ecology, 2016, 27(8): 2535-2542. (in Chinese)
[24]
聂继云, 李志霞, 李海飞, 李静, 王昆, 毋永龙, 徐国锋, 闫震, 吴锡, 覃兴. 苹果理化品质评价指标研究. 中国农业科学, 2012, 45(14): 2895-2903. doi: 10.3864/j.issn.0578-1752.2012.14.012.

doi: 10.3864/j.issn.0578-1752.2012.14.012
NIE J Y, LI Z X, LI H F, LI J, WANG K, WU Y L, XU G F, YAN Z, WU X, QIN X. Evaluation indices for apple physicochemical quality. Scientia Agricultura Sinica, 2012, 45(14): 2895-2903. doi: 10.3864/j.issn.0578-1752.2012.14.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.14.012
[25]
高方胜, 王磊, 徐坤. 砧木与嫁接番茄产量品质关系的综合评价. 中国农业科学, 2014, 47(3): 605-612.

doi: 10.3864/j.issn.0578-1752.2014.03.020
GAO F S, WANG L, XU K. Comprehensive evaluation of relationship between rootstocks and yield and quality in grafting tomato. Scientia Agricultura Sinica, 2014, 47(3): 605-612. (in Chinese)
[26]
张钧恒, 马乐乐, 李建明. 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响. 中国农业科学, 2018, 51(14): 2788-2798. doi: 10.3864/j.issn.0578-1752.2018.14.015.

doi: 10.3864/j.issn.0578-1752.2018.14.015
ZHANG J H, MA L L, LI J M. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018, 51(14): 2788-2798. doi: 10.3864/j.issn.0578-1752.2018.14.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.14.015
[27]
赵英永, 戴云, 崔秀明, 张文斌, 马妮. 考马斯亮蓝G-250染色法测定草乌中可溶性蛋白质含量. 云南民族大学学报(自然科学版), 2006, 15(3): 235-237.
ZHAO Y Y, DAI Y, CUI X M, ZHANG W B, MA N. Determination of protein contents of Radix aconiti kusnezoffii using coomassie brillant blue G-250 dye binding. Journal of Yunnan Nationalities University (Natural Sciences Edition), 2006, 15(3): 235-237. (in Chinese)
[28]
龙海涛, 李丽梅, 谢泽虹, 刘帅, 李晓云, 邓斌, 刘海燕, 李玲. 综合隶属函数法评价花生品种抗旱性与AhNCED1基因表达的关系. 植物学报, 2015, 50(6): 706-712.

doi: 10.11983/CBB15001
LONG H T, LI L M, XIE Z H, LIU S, LI X Y, DENG B, LIU H Y, LI L. Relationship between drought resistance evaluated by comprehensive subordinate function values and AhNCED1 expression in peanut varieties. Chinese Bulletin of Botany, 2015, 50 (6): 706-712. (in Chinese)
[29]
付丽军, 李聪晓, 苏胜宇, 李玉华, 周禹. 黄瓜苗期耐热种质筛选与耐热性评价体系构建. 植物生理学报, 2020, 56(7): 1593-1604.
FU L J, LI C X, SU S Y, LI Y H, ZHOU Y. Screening of heat-resistant germplasm in cucumber seedling stage and construction of heat- resistant evaluation system. Plant Physiology Journal, 2020, 56(7): 1593-1604. (in Chinese)
[30]
赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应. 作物学报, 2021, 47(9): 1824-1833.

doi: 10.3724/SP.J.1006.2021.04212
ZHAO J, MENG F G, YU D B, QIU Q, ZHANG M H, RAO D M, CONG B T, ZHANG W, YAN X Y. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean. Acta Agronomica Sinica, 2021, 47(9): 1824-1833. (in Chinese)

doi: 10.3724/SP.J.1006.2021.04212
[31]
孟翔翔, 李文凤, 沈仁芳, 兰平. 不同磷效率基因型小麦应对缺磷胁迫的表型及相关基因表达的研究. 植物营养与肥料学报, 2021, 27(11): 1883-1893.
MENG X X, LI W F, SHEN R F, LAN P. Time-course response of phenotype and the expression of Pi-starvation responsive genes in high and low Pi-efficient wheat genotypes to Pi starvation. Plant Nutrition and Fertilizer Science, 2021, 27(11): 1883-1893. (in Chinese)
[32]
贺鑫, 齐冰洁, 王敏, 孙艳楠. 低磷胁迫下燕麦不同磷效率品种生物量及磷素营养的差异. 分子植物育种, 2019, 17(22): 7482-7487.
HE X, QI B J, WANG M, SUN Y N. Differences in biomass and phosphorus nutrition of oats with different phosphorus efficiency under low phosphorus stress. Molecular Plant Breeding, 2019, 17(22): 7482-7487. (in Chinese)
[33]
韩利芳, 曹志平, 董道峰, 王秀徽. 番茄砧木及品种对南方根结线虫的抗性鉴定. 园艺学报, 2006, 33(5): 1099-1102.
HAN L F, CAO Z P, DONG D F, WANG X H. Resistance evaluation of tomato rootstocks and cultivars (Lycopersicon esculentum) to southern root-knot nematodes (Meloidogyne incognita). Acta Horticulturae Sinica, 2006, 33(5): 1099-1102. (in Chinese)
[34]
张志焕, 韩敏, 张逸, 王允, 徐坤. 番茄砧木苗期耐旱性鉴定评价. 生态学杂志, 2016, 35(3): 719-725.
ZHANG Z H, HAN M, ZHANG Y, WANG Y, XU K. Identification and evaluation of tomato rootstock seedlings for drought tolerance. Chinese Journal of Ecology, 2016, 35(3): 719-725. (in Chinese)
[35]
贾双双, 高荣广, 徐坤. 番茄砧木对南方根结线虫抗性鉴定. 中国农业科学, 2009, 42(12): 4301-4307. doi: 10.3864/j.issn.0578-1752.2009.12.023.

doi: 10.3864/j.issn.0578-1752.2009.12.023
JIA S S, GAO R G, XU K. Screening and evaluation of tomato rootstocks for resistance to Meloidogyne incognita. Scientia Agricultura Sinica, 2009, 42(12): 4301-4307. doi: 10.3864/j.issn.0578-1752.2009.12.023. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2009.12.023
[36]
苏华, 徐坤, 刘伟, 徐立功. 不同大葱品种耐寒性鉴定与越冬栽培效果. 应用生态学报, 2006, 17(10): 1889-1893.
SU H, XU K, LIU W, XU L G. Cold tolerance and wintering cultivation effect of different Welsh onion varieties. Chinese Journal of Applied Ecology, 2006, 17(10): 1889-1893. (in Chinese)
[37]
张文娥, 王飞, 潘学军. 应用隶属函数法综合评价葡萄种间抗寒性. 果树学报, 2007, 24(6): 849-853.
ZHANG W E, WANG F, PAN X J. Comprehensive evaluation on cold hardiness of Vitis species by Subordinate Function (SF). Journal of Fruit Science, 2007, 24(6): 849-853. (in Chinese)
[38]
高青海, 徐坤, 高辉远, 吴燕. 不同茄子砧木幼苗抗冷性的筛选. 中国农业科学, 2005, 38(5): 1005-1010.
GAO Q H, XU K, GAO H Y, WU Y. Screening on chilling tolerance of different eggplant rootstock seedlings. Scientia Agricultura Sinica, 2005, 38(5): 1005-1010. (in Chinese)
[39]
冯玉龙, 姜淑梅. 番茄对高根温引起的叶片水分胁迫的适应. 生态学报, 2001, 21(5): 747-751.
FENG Y L, JIANG S M. The adaptation to leaf water stress caused by high root temperature in tomato. Acta Ecologica Sinica, 2001, 21(5): 747-751. (in Chinese)
[40]
孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价. 作物学报, 2023, 49(4): 1132-1139.

doi: 10.3724/SP.J.1006.2023.21021
SUN X J, JIANG Q Y, HU Z, LI H B, PANG B S, ZHANG F T, ZHANG S Q, ZHANG H. Identification and evaluation of wheat germplasm resources at seedling stage. Acta Agronomica Sinica, 2023, 49(4): 1132-1139. (in Chinese)
[41]
陶维旭, 程生海, 冀俊超, 艾治勇. 水稻品种资源耐盐性综合评价及耐盐指标筛选. 江苏农业科学, 2022, 50(18): 180-187.
TAO W X, CHENG S H, JI J C, AI Z Y. Comprehensive evaluation of salt tolerance of rice variety resources and screening of salt tolerance indexes. Jiangsu Agricultural Sciences, 2022, 50(18): 180-187. (in Chinese)
[42]
WANG B, GAO Z Y, SHI Q H, GONG B. SAMS1 stimulates tomato root growth and P availability via activating polyamines and ethylene synergetic signaling under low-P condition. Environmental and Experimental Botany, 2022, 197: 104844.

doi: 10.1016/j.envexpbot.2022.104844
[43]
郭孝宇, 路强, 张宇涵, 李玲子, 宋红霞. 喷施磷肥对樱桃番茄品质和营养元素含量的影响. 山东农业科学, 2022, 54(5): 120-127.
GUO X Y, LU Q, ZHANG Y H, LI L Z, SONG H X. Effects of spraying phosphate fertilizer on quality and nutrient content of cherry tomato. Shandong Agricultural Sciences, 2022, 54(5): 120-127. (in Chinese)
[1] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[2] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[3] CHANG JiaYue, MA XiaoLong, WU YanLi, LI JianMing. Effects of Row Spacing and Irrigation Amount on Canopy Light Interception and Photosynthetic Capacity, Matter Accumulation and Fruit Quality of Tomato [J]. Scientia Agricultura Sinica, 2023, 56(11): 2141-2157.
[4] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[5] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[6] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[7] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[8] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[9] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[10] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[11] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[12] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[13] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[14] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[15] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!