Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (14): 2740-2751.doi: 10.3864/j.issn.0578-1752.2022.14.005
• PLANT PROTECTION • Previous Articles Next Articles
FANG HanMo1(),HU ZhangJian1,MA QiaoMei1,DING ShuTing1,WANG Ping1,WANG AnRan1,SHI Kai1,2(
)
[1] |
OJIAMBO P S, YUEN J, BOSCH F, MADDEN L V. Epidemiology: Past, present, and future impacts on understanding disease dynamics and improving plant disease management—A summary of focus issue articles. Phytopathology, 2017, 107(10): 1092-1094.
doi: 10.1094/PHYTO-07-17-0248-FI |
[2] |
SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3(3): 430-439.
doi: 10.1038/s41559-018-0793-y |
[3] |
JUROSZEK P, RACCA P, LINK S, FARHUMAND J, KLEINHENZ B. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 2020, 69(2): 179-193.
doi: 10.1111/ppa.13119 |
[4] | 李建鑫, 王文平, 胡璋健, 师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应. 中国农业科学, 2021, 54(8): 1728-1738. |
LI J X, WANG W P, HU Z J, SHI K. Effects of simulated acid rain conditions on plant photosynthesis and disease susceptibility in tomato and its alleviation of brassinosteroid. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. (in Chinese) | |
[5] | IPCC. Technical Summary. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: Working Group I, 2021: 47. |
[6] |
NOCTOR G, MHAMDI A. Climate change, CO2, and defense: The metabolic, redox, and signaling perspectives. Trends in Plant Science, 2017, 22(10): 857-870.
doi: 10.1016/j.tplants.2017.07.007 |
[7] |
ZHOU Y, VROEGOP-VOS I, VAN DIJKEN A, VAN DER DOES D, ZIPFEL C, PIETERSE C, VAN WEES S. Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta, 2020, 251: 75.
doi: 10.1007/s00425-020-03370-w |
[8] |
DIMARIO R, CLAYTON H, MUKHERJEE A, LUDWIG M, MORONEY J. Plant carbonic anhydrases: Structures, locations, evolution, and physiological roles. Molecular Plant, 2017, 10(1): 30-46.
doi: 10.1016/j.molp.2016.09.001 |
[9] |
MORONEY J V, BARTLETT S G, SAMUELSSON G. Carbonic anhydrases in plants and algae. Plant, Cell and Environment, 2001, 24(2): 141-153.
doi: 10.1111/j.1365-3040.2001.00669.x |
[10] |
TOBIN A J. Carbonic anhydrase from parsley leaves. The Journal of Biological Chemistry, 1970, 245(10): 2656-2666.
doi: 10.1016/S0021-9258(18)63120-5 |
[11] |
ENGINEER C, GHASSEMIAN M, ANDERSON J, PECK S, HU H, SCHROEDER J. Carbonic anhydrases, EPF2and a novel protease mediate CO2 control of stomatal development. Nature, 2014, 513(7517): 246-250.
doi: 10.1038/nature13452 |
[12] |
HU H, BOISSON-DERNIER A, ISRAELSSON-NORDSTROEM M, BOEHMER M, XUE S, RIES A, GODOSKI J, KUHN J, SCHROEDER J. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology, 2010, 12(1): 87-93.
doi: 10.1038/ncb2009 |
[13] |
KAVROULAKIS N, FLEMETAKIS E, AIVALAKIS G, KATINAKIS P. Carbon metabolism in developing soybean root nodules: The role of carbonic anhydrase. Molecular Plant-Microbe Interactions, 2000, 13(1): 14-22.
doi: 10.1094/MPMI.2000.13.1.14 |
[14] |
HUANG J, LI Z, BIENER G, XIONG E, MALIK S, EATON N, ZHAO C, RAICU V, KONG H, ZHAO D. Carbonic anhydrases function in anther cell differentiation downstream of the receptor-like kinase EMS1. The Plant Cell, 2017, 29(6): 1335-1356.
doi: 10.1105/tpc.16.00484 |
[15] |
KAWAMURA Y, UEMURA M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The Plant Journal, 2003, 36(2): 141-154.
doi: 10.1046/j.1365-313X.2003.01864.x |
[16] |
YU S, ZHANG X, GUAN Q, TAKANO T, LIU S. Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnology Letters, 2007, 29(1): 89-94.
doi: 10.1007/s10529-006-9199-z |
[17] | HAMMOND-KOSACK K, JONES J. Resistance gene-dependent plant defense responses. The Plant Cell, 1996, 8(10): 1773-1791. |
[18] |
DURNER J, SHAH J, KLESSIG D. Salicylic acid and disease resistance in plants. Trends in Plant Science, 1997, 2(7): 266-274.
doi: 10.1016/S1360-1385(97)86349-2 |
[19] | 严霞, 牛晓磊, 陶均. 病原菌诱发的植物先天免疫研究进展. 分子植物育种, 2018, 16(3): 821-831. |
YAN X, NIU X L, TAO J. Research advances on pathogen-induced plant innate immunity. Molecular Plant Breeding, 2018, 16(3): 821-831. (in Chinese) | |
[20] | SLAYMAKER D, NAVARRE D, CLARK D, DEL POZO O, MARTIN G, KLESSIG D. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11640-11645. |
[21] |
WANG Y Q, FEECHAN A, YUN B W, SHAFIEI R, HOFMANN A, TAYLOR P, XUE P, YANG F Q, XIE Z S, PALLAS J, CHU C C, LOAKE G. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. The Journal of Biological Chemistry, 2009, 284(4): 2131-2137.
doi: 10.1074/jbc.M806782200 |
[22] |
RESTREPO S, MYERS K, DEL POZO O, MARTIN G, HART A, BUELL C, FRY W, SMART C. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 2005, 18(9): 913-922.
doi: 10.1094/MPMI-18-0913 |
[23] |
QUINET M, ANGOSTO T, YUSTE-LISBONA F, BLANCHARD- GROS R, BIGOT S, MARTINEZ J P, LUTTS S. Tomato fruit development and metabolism. Frontiers in Plant Science, 2019, 10: 1554.
doi: 10.3389/fpls.2019.01554 |
[24] |
ZHANG S, LI X, SUN Z, SHAO S, HU L, YE M, ZHOU Y, XIA X, YU J, SHI K. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66(7): 1951-1963.
doi: 10.1093/jxb/eru538 |
[25] |
MANSFIELD J, GENIN S, MAGORI S, CITOVSKY V, SRIARIYANUM M, RONALD P, DOW M, VERDIER V, BEER S, MACHADO M, TOTH I, SALMOND G, FOSTER G. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012, 13(6): 614-629.
doi: 10.1111/j.1364-3703.2012.00804.x |
[26] |
WANG J, ZHENG C, SHAO X, HU Z, LI J, WANG P, WANG A, YU J, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 7: 209.
doi: 10.1038/s41438-020-00442-6 |
[27] | KOCH E, SLUSARENKO A. Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 1990, 2(5): 437-445. |
[28] |
DING S, SHAO X, LI J, AHAMMED G, YAO Y, DING J, HU Z, YU J, SHI K. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant, Cell and Environment, 2021, 44(5): 1596-1610.
doi: 10.1111/pce.14019 |
[29] |
LIVAK K, SCHMITTGEN T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[30] |
ZHANG H, HU Z, LEI C, ZHENG C, WANG J, SHAO S, LI X, XIA X, CAI X, ZHOU J, ZHOU Y, YU J, FOYER C, SHI K. A plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca2+ signaling in tomato. The Plant Cell, 2018, 30(3): 652-667.
doi: 10.1105/tpc.17.00537 |
[31] |
NIU Q, WANG T, LI J, YANG Q, QIAN M, TENG Y. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N'- phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia ‘Cuiguan’. Plant Growth Regulation, 2015, 76(3): 251-258.
doi: 10.1007/s10725-014-9995-8 |
[32] |
RUAN Y L. Signaling role of sucrose metabolism in development. Molecular Plant, 2012, 5(4): 763-765.
doi: 10.1093/mp/sss046 |
[33] |
SUN L, YANG D L, KONG Y, CHEN Y, LI X Z, ZENG L J, LI Q, WANG E T, HE Z H. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Molecular Plant Pathology, 2014, 15(2): 161-173.
doi: 10.1111/mpp.12078 |
[34] | ZHANG H, HONG Y, HUANG L, LIU S, TIAN L, DAI Y, CAO Z, HUANG L, LI D, SONG F. Virus-induced gene silencing-based functional analyses revealed the involvement of several putative trehalose-6-phosphate synthase/phosphatase genes in disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato. Frontiers in Plant Science, 2016, 7: 1176. |
[35] |
ZAMIOUDIS C, HANSON J, PIETERSE C. β-glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytologist, 2014, 204(2): 368-379.
doi: 10.1111/nph.12980 |
[36] |
LEE H J, PARK Y J, SEO P J, KIM J H, SIM H J, KIM S G, PARK C M. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. The Plant Cell, 2015, 27(12): 3425-3438.
doi: 10.1105/tpc.15.00371 |
[37] |
LI X, FAN S, HU W, LIU G, WEI Y, HE C, SHI H. Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Frontiers in Plant Science, 2017, 8: 2110.
doi: 10.3389/fpls.2017.02110 |
[38] |
LIM C, BAEK W, LIM S, HAN S W, LEE S. Expression and functional roles of the pepper pathogen-induced bZIP transcription factor CabZIP2 in enhanced disease resistance to bacterial pathogen infection. Molecular Plant-Microbe Interactions, 2015, 28(7): 825-833.
doi: 10.1094/MPMI-10-14-0313-R |
[39] | 熊二辉. β碳酸酐酶基因在拟南芥生长发育中的功能研究[D]. 郑州: 河南农业大学, 2016. |
XIONG E H. Functional studies of beta carbonic anhydrase gene family in Arabidopsis thaliana growth and development[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese) | |
[40] | MEDINA-PUCHE L, CASTELLO M, CANET J, LAMILLA J, COLOMBO M, TORNERO P. β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS ONE, 2017, 12(7): e0181820. |
[41] | 何亚飞, 李霞, 谢寅峰. 植物中糖信号及其对逆境调控的研究进展. 植物生理学报, 2016, 52(3): 241-249. |
HE Y F, LI X, XIE Y F. Research progress in sugar signal and its regulation of stress in plants. Plant Physiology Journal, 2016, 52(3): 241-249. (in Chinese) | |
[42] |
BOLOURI MOGHADDAM M, VAN DEN ENDE W. Sweet immunity in the plant circadian regulatory network. Journal of Experimental Botany, 2013, 64(6): 1439-1449.
doi: 10.1093/jxb/ert046 |
[43] |
THIBAUD M C, GINESTE S, NUSSAUME L, ROBAGLIA C. Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1- independent signaling pathway. Plant Physiology and Biochemistry, 2004, 42(1): 81-88.
doi: 10.1016/j.plaphy.2003.10.012 |
[44] | QIAN Y, TAN D X, REITER R, SHI H. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Scientific Reports, 2015, 5: 15815. |
[45] |
CHEN Q, ZHANG J, LI G. Dynamic epigenetic modifications in plant sugar signal transduction. Trends in Plant Science, 2022, 27(4): 379-390.
doi: 10.1016/j.tplants.2021.10.009 |
[46] |
BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J, SHEEN J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942.
doi: 10.1038/nature06069 |
[47] |
KIM C Y, VO K, AN G, JEON J S. A rice sucrose non-fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(5): 669-675.
doi: 10.1007/s13765-015-0089-8 |
[48] |
RUAN Y L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014, 65: 33-67.
doi: 10.1146/annurev-arplant-050213-040251 |
[49] |
NASEEM M, KUNZ M, DANDEKAR T. Plant-pathogen maneuvering over apoplastic sugars. Trends in Plant Science, 2017, 22(9): 740-743.
doi: 10.1016/j.tplants.2017.07.001 |
[1] | GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148. |
[2] | WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240. |
[3] | ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. |
[4] | DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130. |
[5] | BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628. |
[6] | LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154. |
[7] | ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167. |
[8] | ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522. |
[9] | LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571. |
[10] | Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308. |
[11] | ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954. |
[12] | YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770. |
[13] | YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. |
[14] | BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026. |
[15] | WANG BingWei, QIN JiaMing, SHI ChengQiao, ZHENG JiaXing, QIN YongAi, HUANG AnXia. QTL Mapping and Genetic Analysis of a Gene with High Resistance to Southern Corn Rust [J]. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041. |
|