Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 365-377.doi: 10.3864/j.issn.0578-1752.2022.02.011
• HORTICULTURE • Previous Articles Next Articles
CUI QingQing1,2(),MENG XianMin1,DUAN YunDan1,ZHUANG TuanJie1,DONG ChunJuan1,GAO LiHong2,SHANG QingMao1(
)
[1] | HUANG Y, KONG Q S, CHEN F, BIE Z L. The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 2015, 1086:31-39. |
[2] |
FLORES F B, SANCHEZ-BEL P, ESTAN M T, MARTINEZ- RODRIGUEZ M M, MOYANO E, MORALES B, CAMPOS J F, GARCIA-ABELLÁN J O, EGEA M I, FERNÁNDEZ-GARCIA N, ROMOJARO F, BOLARÍN M C. The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 2010, 125(3):211-217.
doi: 10.1016/j.scienta.2010.03.026 |
[3] | 王希波, 张祺恺, 张金亮, 张伟丽. 番茄双断根双头嫁接育苗关键技术. 中国蔬菜, 2019(6):98-100. |
WANG X B, ZHANG Q K, ZHANG J L, ZHANG W L. Key technology of tomato seedling cultivation by double-root-cutting and double-head grafting. China Vegetables, 2019(6):98-100. (in Chinese) | |
[4] | 高丽红, 陈义, 田永强. 番茄一苗双头嫁接育苗关键技术. 农业工程技术, 2020, 40(4):22-24. |
GAO L H, CHEN Y, TIAN Y Q. Key technology of tomato seedling with double head grafting. Applied Engineering Technology, 2020, 40(4):22-24. (in Chinese) | |
[5] |
NOTAGUCHI M, KUROTANI K I, SATO Y, TABATA R, KAWAKATSU Y, OKAYASU K, YU S W, OKADA R, ASAHINA M, ICHIHASHI Y, SHIRASU K, SUZUKI T, NIWA M, HIGASHIYAMA T. Cell-cell adhesion in plant grafting is facilitated by β-1, 4- glucanases. Science, 2020, 369(6504):698-702.
doi: 10.1126/science.abc3710 |
[6] |
MIAO L, LI Q, SUN T S, CHAI S, WANG C L, BAI L Q, SUN M T, LI Y S, QIN X, ZHANG Z H, YU X C. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research, 2021, 8(1):146.
doi: 10.1038/s41438-021-00580-5 |
[7] | YEOMAN M M, KILPATRICK D C, MIEDZYBRODZKA M B, GOULD A R. Cellular interactions during graft formation in plants, a recognition phenomenon? Symposia of the Society for Experimental Biology, 1978, 32:139-160. |
[8] |
ALONI B, COHEN R, KARNI L, AKTAS H, EDELSTEIN M. Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae, 2010, 127(2):119-126.
doi: 10.1016/j.scienta.2010.09.003 |
[9] |
LOUGH T J, LUCAS W J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology, 2006, 57:203-232.
doi: 10.1146/arplant.2006.57.issue-1 |
[10] | 谢露露, 尚庆茂. 嫁接体植株中核酸与蛋白质的砧穗交流. 西北农业学报, 2019, 28(1):1-7. |
XIE L L, SHANG Q M. Interflows of nucleic acids and proteins between scion and stock in grafted plants. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(1):1-7. (in Chinese) | |
[11] |
ASAHINA M, AZUMA K, PITAKSARINGKARN W, YAMAZAKI T, MITSUDA N, OHME-TAKAGI M, YAMAGUCHI S, KAMIYA Y, OKADA K, NISHIMURA T, KOSHIBA T, YOKOTA T, KAMADA H, SATOH S. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue Reunion in Arabidopsis. PNAS, 2011, 108(38):16128-16132.
doi: 10.1073/pnas.1110443108 |
[12] |
PITAKSARINGKARN W, MATSUOKA K, ASAHINA M, MIURA K, SAGE-ONO K, ONO M, YOKOYAMA R, NISHITANI K, ISHII T, IWAI H, SATOH S. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. The Plant Journal, 2014, 80(4):604-614.
doi: 10.1111/tpj.12654 |
[13] |
MELNYK C W, SCHUSTER C, LEYSER O, MEYEROWITZ E M. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology, 2015, 25(10):1306-1318.
doi: 10.1016/j.cub.2015.03.032 |
[14] | MATSUMOTO-KITANO M, KUSUMOTO T, TARKOWSKI P, KINOSHITA-TSUJIMURA K, VACLAVÍKOVA K, MIYAWAKI K, KAKIMOTO T. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 105(50):20027-20031. |
[15] |
BISHOPP A, HELP H, EL-SHOWK S, WEIJERS D, SCHERES B, FRIML J, BENKOVÁ E, MÄHÖNEN A P, HELARIUTTA Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current Biology, 2011, 21(11):917-926.
doi: 10.1016/j.cub.2011.04.017 |
[16] |
MURARO D, MELLOR N, POUND M P, HELP H, LUCAS M, CHOPARD J, BYRNE H M, GODIN C, HODGMAN T C, KING J R, PRIDMORE T P, HELARIUTTA Y, BENNETT M J, BISHOPP A. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. PNAS, 2014, 111(2):857-862.
doi: 10.1073/pnas.1221766111 |
[17] |
DE RYBEL B, MÄHÖNEN A P, HELARIUTTA Y, WEIJERS D. Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 2015, 17:30.
doi: 10.1038/nrm.2015.6 |
[18] |
LU S F, SONG Y R. Relation between phytohormone level and vascular bridge differentiation in graft union of explanted internode autografting. Chinese Science Bulletin, 1999, 44(20):1874-1878.
doi: 10.1007/BF02886344 |
[19] |
CUI Q Q, XIE L L, DONG C J, GAO L H, SHANG Q M. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Science, 2021, 304:110803.
doi: 10.1016/j.plantsci.2020.110803 |
[20] |
XIE L L, DONG C J, SHANG Q M. Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC Plant Biology, 2019, 19(1):373.
doi: 10.1186/s12870-019-1976-7 |
[21] |
KÖSE C, GÜLERYÜZ M. Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zealand Journal of Crop and Horticultural Science, 2006, 34(2):145-150.
doi: 10.1080/01140671.2006.9514399 |
[22] | MOGHADAM A R L, ARDEBILI Z O, REZAIE L. Effect of indole butyric acid on micrografting of cactus. African Journal of Biotechnology, 2012, 11(24):6484-6493. |
[23] |
WANG J, JIN Z, YIN H, YAN B, REN Z Z, XU J, MU C J, ZHANG Y, WANG M Q, LIU H. Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting. Russian Journal of Plant Physiology, 2014, 61(5):688-696.
doi: 10.1134/S102144371405015X |
[24] |
SARAVANA KUMAR R M, GAO L X, YUAN H W, XU D B, LIANG Z, TAO S C, GUO W B, YAN D L, ZHENG B S, EDQVIST J. Auxin enhances grafting success in Carya cathayensis (Chinese hickory). Planta, 2018, 247(3):761-772.
doi: 10.1007/s00425-017-2824-3 |
[25] | 赵渊渊, 董春娟, 尚庆茂. 夜温对番茄套管嫁接苗愈合的影响. 西北植物学报, 2015, 35(3):493-499. |
ZHAO Y Y, DONG C J, SHANG Q M. Healing responses of tube grafted tomato plug seedlings under different night temperatures. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3):493-499. (in Chinese) | |
[26] | 蒋欣梅, 王波, 于锡宏, 吴凤芝, 张修国, 杨光鹏, 王欣. 双断根套管嫁接方法对番茄苗愈合及根系再生的影响. 东北农业大学学报, 2017, 48(9):21-27. |
JIANG X M, WANG B, YU X H, WU F Z, ZHANG X G, YANG G P, WANG X. Effect of both-root-cut tube grafting method on coalescence responses and root regenerated of tomato seeding. Journal of Northeast Agricultural University, 2017, 48(9):21-27. (in Chinese) | |
[27] | 张雨欣, 王波, 刘在民, 于锡宏, 蒋欣梅. 双断根嫁接对番茄生长及果实产量、品质的影响. 长江蔬菜, 2018(14):57-59. |
ZHANG Y X, WANG B, LIU Z M, YU X H, JIANG X M. Effects of double root-cutting grafting on growth, fruit yield and quality of tomato. Journal of Changjiang Vegetables, 2018(14):57-59. (in Chinese) | |
[28] | ZHAO Y D. Auxin biosynthesis. The Arabidopsis Book, 2014, 12:e0173. |
[29] |
MELNYK C W, GABEL A, HARDCASTLE T J, ROBINSON S, MIYASHIMA S, GROSSE I, MEYEROWITZ E M. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. PNAS, 2018, 115(10):E2447-E2456.
doi: 10.1073/pnas.1718263115 |
[30] |
BILYEU K D, COLE J L, LASKEY J G, RIEKHOF W R, ESPARZA T J, KRAMER M D, MORRIS R O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiology, 2001, 125(1):378-386.
doi: 10.1104/pp.125.1.378 |
[1] | LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155. |
[2] | SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789. |
[3] | WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718. |
[4] | HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. |
[5] | LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444. |
[6] | LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154. |
[7] | FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. |
[8] | LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. |
[9] | XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028. |
[10] | MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642. |
[11] | WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276. |
[12] | YE Di,SHI Jiang,GAO ShuangCheng,WANG ZhanYing,SHI GuoAn. Correlation Analysis of Auxin Involved in the Process of Petal Abscission of Tree Peony Luoyanghong Cut Flowers by Ethylene Promoting [J]. Scientia Agricultura Sinica, 2021, 54(23): 5097-5109. |
[13] | SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420. |
[14] | WU ShiYang,YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei. Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology [J]. Scientia Agricultura Sinica, 2021, 54(18): 3805-3817. |
[15] | LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857. |
|