Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 365-377.doi: 10.3864/j.issn.0578-1752.2022.02.011

• HORTICULTURE • Previous Articles     Next Articles

Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato

CUI QingQing1,2(),MENG XianMin1,DUAN YunDan1,ZHUANG TuanJie1,DONG ChunJuan1,GAO LiHong2,SHANG QingMao1()   

  1. 1Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081
    2College of horticulture, China Agricultural University/Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Beijing 100193
  • Received:2021-03-17 Accepted:2021-08-10 Online:2022-01-16 Published:2022-01-26
  • Contact: QingMao SHANG E-mail:cuiqq_caas@163.com;shangqingmao@caas.cn

Abstract:

【Objective】The root-cutting grafting seedlings and top-pinching double-stem grafting seedlings or multi-stem grafting seedlings have been widely used in tomato cultivation, which have significant effects on high yield. Understanding the mechanism of root-cutting and top-pinching on tomato graft healing could provide the theoretical basis for tomato grafting production. 【Method】Using ‘YingFen No. 8’ as scion and ‘ZhenAi No. 1’ as rootstock, the grafting healing process, survival rate and xylem connectivity of tomato after root-cutting and top-cutting were observed, and the contents of auxin and cytokinin as well as the expressions of healing related genes in the grafted part were measured. 【Result】Root-cutting and top-pinching inhibited the expression of xylem differentiation gene VND7 above the graft union, and significantly delayed xylem remodeling. The root-cutting treatment significantly decreased the contents of trans-Zeatin riboside (tZR) and trans-Zeatin (tZ) at 12 and 72 hours after grafting, as well as the contents of indole-3-acetic acid (IAA), methyl indole-3-acetate (ME-IAA) and indole-3-carboxaldehyde (ICAld) at 12 hours after grafting. The contents of IAA and ME-IAA at 12 hours after top-pinching grafting were significantly lower than those of the control and root-cutting treatment, and the expression level of the phloem differentiation related gene NEN4 at 3 and 12 hours after grafting was down-regulated. Root-cutting or top-pinching down-regulated the expression levels of cell division related genes Histone H4 and SlcycB1-4 above the graft union at 3-48 hours after grafting. Under root-cutting and top-pinching treatment, the contents of IAA and ME-IAA in grafting union were significantly lower than those under root-cutting treatment, and the contents of tZR and tZ and xylem connectivity were significantly lower than those under top-pinching treatment. The application of 10 mmol∙L -1 IAA and 10 mmol∙L-1 6-BA at the grafted union after top-pinching and root-cutting could significantly promote the xylem remodeling of grafted seedlings. 【Conclusion】In conclusion, root-cutting and top-pinching could reduce the accumulation of cytokinin and auxin, down-regulate the expression of genes related to healing, reduce xylem transduction capacity, and delay the process of tomato grafting healing.

Key words: tomato, graft, top-pinching, root-cutting, auxin, cytokinin

Table 1

Primer sequences for the Real-time PCR"

基因 Gene 登录号 Accession No. 引物序列(5′-3′) Primer sequence
SlIAA1 Solyc09g083280 SlIAA1-F: TGGATGGTGCCCCTTATCTA
SlIAA1-R: ACAAGAAGACATAAACATTTCCCAA
SlPIN1 Solyc03g118740 SlPIN1-F: GGCAATTGTACAGGCAGCTC
SlPIN1-R: CCAATGTAATCGGCAACGCA
SlHP1 Solyc01g080540 SlHP1-F: CAAGTGGAAATGGTGGGGAA
SlHP1-R: ACCATCCAAGAATCCCTCACG
VND7 Solyc06g065410 VND7-F: ACAACAATGAAGATGATCGTGGCG
VND7-R: CTGGGAAGCACTCAAGCAAATGG
NEN4 Solyc04g054720 NEN4-F: AACTGTCAAGGCACAACCAGC
NEN4-R: CCCAAGCTCTGTCTTGCATAAG
PXY Solyc03g093330 PXY-F: CTTATGGCTACATCGCACCTGAATA
PXY-R: TTCCATCGCCAAATCCTGGT
Histone H4 Solyc11g066160 Histone H4-F: GGGAGGCAAAGGATTAGGCA
Histone H4-R: GAACCCCACGAGTTTCCTCA
SlcycB1-4 Solyc01g009040 SlcycB1-4-F: AGAGGCGGGGAATAGTCGTC
SlcycB1-4-R: ACAGCAGGAGCAATCACAAGG
Actin41 Solyc04g011500 SlActin-F: CTTCCAGCAGATGTGGATTGC
SlActin-R: GCATCTCTGGTCCAGTAGGAAA

Fig. 1

Morphological observation of grafting seedlings after root-cutting and top-pinching CK: Control; P: Top-pinching; C: Root-cutting; PC: Scion top-pinching and rootstock root-cutting. The same as below"

Fig. 2

Effects of root-cutting and top-pinching on dry and fresh weight of tomato grafting seedlings Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 2

Effects of root-cutting and top-pinching on survival rate and wilting rate of tomato grafting seedlings"

处理
Treatment
成活率
Survival rate (%)
萎蔫率 Wilting rate (%)
6 d 7 d 8 d
CK 100±0.00a 2.78±0.03b 0.00±0.00b 0.00±0.00a
P 100±0.00a 8.33±0.00ab 2.78±0.03ab 0.00±0.00a
C 97.22±0.03a 11.11±0.06ab 5.56±0.03ab 2.78±0.03a
PC 94.44±0.03a 16.67±0.05a 11.11±0.03a 5.56±0.03a

Fig. 3

Healing process of tomato grafting after root-cutting and top-pinching Dashed box indicates the position of the graft union, with the scion (Sc) above the graft union and the rootstock (St) below the graft union. Pc, Co and Vb are short for parenchyma cell, cortex and vascular bundle, respectively"

Fig. 4

Improved effects of exogenous application of IAA and 6-BA on xylem remodeling in tomato grafting after root-cutting and top-pinching A: Xylem transport ability at 72 hours after grafting; dashed lines indicate the position of the cut, with the scion above the cut and the rootstock below the cut, and Vb is short for vascular bundle. B: Xylem transport ability at 120 hours after grafting. P0: Top-pinching; P1: Top-pinching + 10 mM IAA applied to the cut surfaces; P2: Top-pinching + 100 mmol∙L-1 IAA applied to the cut surfaces; P3: Top-pinching + foliar spray 10 mmol∙L-1 IAA; C0: Root-cutting; C1: Root-cutting + 1 mmol∙L-1 6-BA applied to the cut surfaces; C2: Root-cutting + 10 mmol∙L-1 6-BA applied to the cut surfaces; C3: Root-cutting + the hypocotyls were dipped in 0.1 mmol∙L-1 6-BA for 30 min"

Fig. 5

Changes of auxin content in graft union after root-cutting and top-pinching"

Fig. 6

Changes of cytokinin content in graft union after root-cutting and top-pinching"

Fig. 7

Expression of auxin and cytokinin response genes in graft union after root-cutting and top-pinching U: Above the graft union; D: Below the graft union. * indicate significant differences among various treatments and control (CK) at P<0.05. The same as below"

Fig. 8

Expression of genes related to grafting healing after root-cutting and top-pinching"

[1] HUANG Y, KONG Q S, CHEN F, BIE Z L. The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 2015, 1086:31-39.
[2] FLORES F B, SANCHEZ-BEL P, ESTAN M T, MARTINEZ- RODRIGUEZ M M, MOYANO E, MORALES B, CAMPOS J F, GARCIA-ABELLÁN J O, EGEA M I, FERNÁNDEZ-GARCIA N, ROMOJARO F, BOLARÍN M C. The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 2010, 125(3):211-217.
doi: 10.1016/j.scienta.2010.03.026
[3] 王希波, 张祺恺, 张金亮, 张伟丽. 番茄双断根双头嫁接育苗关键技术. 中国蔬菜, 2019(6):98-100.
WANG X B, ZHANG Q K, ZHANG J L, ZHANG W L. Key technology of tomato seedling cultivation by double-root-cutting and double-head grafting. China Vegetables, 2019(6):98-100. (in Chinese)
[4] 高丽红, 陈义, 田永强. 番茄一苗双头嫁接育苗关键技术. 农业工程技术, 2020, 40(4):22-24.
GAO L H, CHEN Y, TIAN Y Q. Key technology of tomato seedling with double head grafting. Applied Engineering Technology, 2020, 40(4):22-24. (in Chinese)
[5] NOTAGUCHI M, KUROTANI K I, SATO Y, TABATA R, KAWAKATSU Y, OKAYASU K, YU S W, OKADA R, ASAHINA M, ICHIHASHI Y, SHIRASU K, SUZUKI T, NIWA M, HIGASHIYAMA T. Cell-cell adhesion in plant grafting is facilitated by β-1, 4- glucanases. Science, 2020, 369(6504):698-702.
doi: 10.1126/science.abc3710
[6] MIAO L, LI Q, SUN T S, CHAI S, WANG C L, BAI L Q, SUN M T, LI Y S, QIN X, ZHANG Z H, YU X C. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research, 2021, 8(1):146.
doi: 10.1038/s41438-021-00580-5
[7] YEOMAN M M, KILPATRICK D C, MIEDZYBRODZKA M B, GOULD A R. Cellular interactions during graft formation in plants, a recognition phenomenon? Symposia of the Society for Experimental Biology, 1978, 32:139-160.
[8] ALONI B, COHEN R, KARNI L, AKTAS H, EDELSTEIN M. Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae, 2010, 127(2):119-126.
doi: 10.1016/j.scienta.2010.09.003
[9] LOUGH T J, LUCAS W J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology, 2006, 57:203-232.
doi: 10.1146/arplant.2006.57.issue-1
[10] 谢露露, 尚庆茂. 嫁接体植株中核酸与蛋白质的砧穗交流. 西北农业学报, 2019, 28(1):1-7.
XIE L L, SHANG Q M. Interflows of nucleic acids and proteins between scion and stock in grafted plants. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(1):1-7. (in Chinese)
[11] ASAHINA M, AZUMA K, PITAKSARINGKARN W, YAMAZAKI T, MITSUDA N, OHME-TAKAGI M, YAMAGUCHI S, KAMIYA Y, OKADA K, NISHIMURA T, KOSHIBA T, YOKOTA T, KAMADA H, SATOH S. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue Reunion in Arabidopsis. PNAS, 2011, 108(38):16128-16132.
doi: 10.1073/pnas.1110443108
[12] PITAKSARINGKARN W, MATSUOKA K, ASAHINA M, MIURA K, SAGE-ONO K, ONO M, YOKOYAMA R, NISHITANI K, ISHII T, IWAI H, SATOH S. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. The Plant Journal, 2014, 80(4):604-614.
doi: 10.1111/tpj.12654
[13] MELNYK C W, SCHUSTER C, LEYSER O, MEYEROWITZ E M. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology, 2015, 25(10):1306-1318.
doi: 10.1016/j.cub.2015.03.032
[14] MATSUMOTO-KITANO M, KUSUMOTO T, TARKOWSKI P, KINOSHITA-TSUJIMURA K, VACLAVÍKOVA K, MIYAWAKI K, KAKIMOTO T. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 105(50):20027-20031.
[15] BISHOPP A, HELP H, EL-SHOWK S, WEIJERS D, SCHERES B, FRIML J, BENKOVÁ E, MÄHÖNEN A P, HELARIUTTA Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current Biology, 2011, 21(11):917-926.
doi: 10.1016/j.cub.2011.04.017
[16] MURARO D, MELLOR N, POUND M P, HELP H, LUCAS M, CHOPARD J, BYRNE H M, GODIN C, HODGMAN T C, KING J R, PRIDMORE T P, HELARIUTTA Y, BENNETT M J, BISHOPP A. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. PNAS, 2014, 111(2):857-862.
doi: 10.1073/pnas.1221766111
[17] DE RYBEL B, MÄHÖNEN A P, HELARIUTTA Y, WEIJERS D. Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 2015, 17:30.
doi: 10.1038/nrm.2015.6
[18] LU S F, SONG Y R. Relation between phytohormone level and vascular bridge differentiation in graft union of explanted internode autografting. Chinese Science Bulletin, 1999, 44(20):1874-1878.
doi: 10.1007/BF02886344
[19] CUI Q Q, XIE L L, DONG C J, GAO L H, SHANG Q M. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Science, 2021, 304:110803.
doi: 10.1016/j.plantsci.2020.110803
[20] XIE L L, DONG C J, SHANG Q M. Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC Plant Biology, 2019, 19(1):373.
doi: 10.1186/s12870-019-1976-7
[21] KÖSE C, GÜLERYÜZ M. Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zealand Journal of Crop and Horticultural Science, 2006, 34(2):145-150.
doi: 10.1080/01140671.2006.9514399
[22] MOGHADAM A R L, ARDEBILI Z O, REZAIE L. Effect of indole butyric acid on micrografting of cactus. African Journal of Biotechnology, 2012, 11(24):6484-6493.
[23] WANG J, JIN Z, YIN H, YAN B, REN Z Z, XU J, MU C J, ZHANG Y, WANG M Q, LIU H. Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting. Russian Journal of Plant Physiology, 2014, 61(5):688-696.
doi: 10.1134/S102144371405015X
[24] SARAVANA KUMAR R M, GAO L X, YUAN H W, XU D B, LIANG Z, TAO S C, GUO W B, YAN D L, ZHENG B S, EDQVIST J. Auxin enhances grafting success in Carya cathayensis (Chinese hickory). Planta, 2018, 247(3):761-772.
doi: 10.1007/s00425-017-2824-3
[25] 赵渊渊, 董春娟, 尚庆茂. 夜温对番茄套管嫁接苗愈合的影响. 西北植物学报, 2015, 35(3):493-499.
ZHAO Y Y, DONG C J, SHANG Q M. Healing responses of tube grafted tomato plug seedlings under different night temperatures. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3):493-499. (in Chinese)
[26] 蒋欣梅, 王波, 于锡宏, 吴凤芝, 张修国, 杨光鹏, 王欣. 双断根套管嫁接方法对番茄苗愈合及根系再生的影响. 东北农业大学学报, 2017, 48(9):21-27.
JIANG X M, WANG B, YU X H, WU F Z, ZHANG X G, YANG G P, WANG X. Effect of both-root-cut tube grafting method on coalescence responses and root regenerated of tomato seeding. Journal of Northeast Agricultural University, 2017, 48(9):21-27. (in Chinese)
[27] 张雨欣, 王波, 刘在民, 于锡宏, 蒋欣梅. 双断根嫁接对番茄生长及果实产量、品质的影响. 长江蔬菜, 2018(14):57-59.
ZHANG Y X, WANG B, LIU Z M, YU X H, JIANG X M. Effects of double root-cutting grafting on growth, fruit yield and quality of tomato. Journal of Changjiang Vegetables, 2018(14):57-59. (in Chinese)
[28] ZHAO Y D. Auxin biosynthesis. The Arabidopsis Book, 2014, 12:e0173.
[29] MELNYK C W, GABEL A, HARDCASTLE T J, ROBINSON S, MIYASHIMA S, GROSSE I, MEYEROWITZ E M. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. PNAS, 2018, 115(10):E2447-E2456.
doi: 10.1073/pnas.1718263115
[30] BILYEU K D, COLE J L, LASKEY J G, RIEKHOF W R, ESPARZA T J, KRAMER M D, MORRIS R O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiology, 2001, 125(1):378-386.
doi: 10.1104/pp.125.1.378
[1] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[2] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[3] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[4] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[5] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[6] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[7] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[8] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[9] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[10] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[11] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[12] YE Di,SHI Jiang,GAO ShuangCheng,WANG ZhanYing,SHI GuoAn. Correlation Analysis of Auxin Involved in the Process of Petal Abscission of Tree Peony Luoyanghong Cut Flowers by Ethylene Promoting [J]. Scientia Agricultura Sinica, 2021, 54(23): 5097-5109.
[13] SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420.
[14] WU ShiYang,YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei. Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology [J]. Scientia Agricultura Sinica, 2021, 54(18): 3805-3817.
[15] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!