Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 519-528.doi: 10.3864/j.issn.0578-1752.2023.03.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions

LIU MingHui1(), TIAN HongYu2, LIU ZhiGuang2, GONG Biao1()   

  1. 1College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
    2College of Recourses and Environment, Shandong Agricultural University/National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai’an 271018, Shandong
  • Received:2022-04-06 Accepted:2022-06-06 Online:2023-02-01 Published:2023-02-14
  • Contact: GONG Biao E-mail:liuminghuiaq@163.com;gongbiao@sdau.edu.cn

Abstract:

【Objective】Melatonin has multiple beneficial effects on plants. However, its active chemical properties limit its application in agricultural production. In this study, urea slow-release functional fertilizer containing melatonin (hereinafter referred to as functional fertilizer) was prepared by coating technology, and its effects on tomato growth, yield, and quality as well as phosphorus use efficiency were studied, so as to provide the theoretical basis for melatonin application with high use efficiency and reducing fertilizer rate on tomato.【Method】 The release rate of melatonin in functional fertilizer was studied by water bubble method. Then the effects of melatonin-functional fertilizer on the growth of tomato seedlings were studied by plug seedling. Finally, a pot experiment was conducted to study the effects of functional fertilizer on plant growth and dry matter distribution, root growth, phosphorus absorption and distribution, phosphorus utilization rate and fertilizer yield contribution rate, root phosphatase activity, and fruit yield and quality. Four treatments were set, namely, phosphorus application (+P), non-phosphorus application (-P), urea slow-release fertilizer and functional fertilizer (-P+M and +P+M).【Result】The real melatonin content after coating was 35% of the total melatonin concentration when coating. When water bubbled to 60 d, the amount of melatonin residue in functional fertilizer was 6.61%. The application of functional fertilizer in conventional tomato seedlings could significantly promote seedling growth, and the seedling index was increased by 70.2% compared with the control. The pot experiment showed that the biomass of tomato roots, stems, leaves and fruits under -P treatment decreased by 19.64%, 18.51%, 28.99% and 28.73% compared with that under +P treatment, respectively. The dry matter distribution ratios of roots and stems increased by 10.03% and 11.63%, respectively, while the dry matter distribution ratios of leaves and fruits decreased by 2.74% and 2.39%, respectively. The application of functional fertilizer could significantly increase the biomass accumulation of all tissues under the two phosphorus treatments. The dry matter distribution ratio of root under the condition of increasing +P was 12.14%, the dry matter distribution ratio of stem and leaf under the condition of reducing -P was 6.00% and 5.90%, and the dry matter distribution ratio of fruit increased by 9.06%. -P treatment reduced the total length, total surface area and total volume of roots, and increased the number of root tips. The application of functional fertilizer could increase the total length, total surface area, total volume and number of root tips under two phosphorus levels. -P treatment significantly reduced the phosphorus content in roots, stems, leaves and fruits of tomato plants, increased the phosphorus distribution in roots, stems and leaves, and reduced the phosphorus distribution ratio in fruits. The application of functional fertilizer could significantly increase the phosphorus content of all tissues under the two P treatments, increase the phosphorus distribution ratio of roots under +P treatments, decrease the phosphorus distribution ratio of stems and leaves under -P treatment, and increase the phosphorus distribution ratio of fruits. The application of functional fertilizer could significantly improve phosphatase activity, whole plant phosphorus uptake, fertilizer utilization rate and fertilizer yield contribution rate. -P treatment reduced tomato yield, but application of melatonin functional fertilizer significantly increased yield under -P treatment reduced the tomato yield by 17.57%, but the application of functional fertilizer under -P treatment increased the yield by 21.32%, and had no significant effect on the yield under +P treatment. In addition, the application of functional fertilizer could comprehensively improve the quality of tomato fruits under -P or partial +P conditions.【Conclusion】The application of melatonin coated in slow-release fertilizer could significantly reduce the amount of melatonin, improve the growth quality of tomato seedlings and plants in the whole growth period, increase the utilization efficiency of phosphorus fertilizer, and finally improve the yield and fruit quality.

Key words: tomato, urea slow-release functional fertilizer containing melatonin, phosphate fertilizer treatment, growth, yield and quality, phosphorus utilization rate

Table 1

Physical and chemical properties of the field soil"

土壤质地分类
Soil textural class
酸碱度
pH
砂粒
Sand (%)
粉砂粒
Silt (%)
黏粒
Clay (%)
有机质
Organic matter (g∙kg-1)
氮N
(g∙kg-1)
磷P
(g∙kg-1)
钾K
(g∙kg-1)
壤土Loam 6.4 46 41 13 10.16 0.53 0.49 19.81

Fig. 1

Melatonin release rate in functional fertilizer"

Table 2

Effect of functional fertilizer on the growth of tomato seedling"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
茎叶生物量
Shoot biomass (g)
根系生物量
Root biomass (g)
根冠比
Root/Shoot ratio
壮苗指数
Seedling index
CK 15.36b 2.66b 0.76b 0.21b 0.28b 0.44b
M 21.61a 3.11a 1.05a 0.39a 0.37a 0.74a

Table 3

Effect of functional fertilizer on dry matter accumulation and allocation in tomato under different phosphorus levels"

处理
Treatment
根Root 茎Stem 叶Leaf 果Fruit 总生物量
TB
DW AR DW AR DW AR DW AR
-P 10.64d 4.17a 41.61d 16.32a 105.82d 41.51b 96.82d 37.98c 254.89d
-P+M 12.10c 4.18a 44.45c 15.34b 113.15c 39.06c 119.97c 41.42a 289.67c
+P 13.24b 3.79b 51.06b 14.62c 149.03b 42.68a 135.85b 38.91b 349.18b
+P+M 15.73a 4.25a 54.44a 14.73c 157.91a 42.73a 141.45a 38.28bc 369.53a

Fig. 2

Effects of functional fertilizer on root development of tomato during the whole growth period Different lowercase letters indicate significant difference (P<0.05). The same as below"

Table 4

Effects of functional fertilizer on phosphorus utilization of tomato during the whole growth period"

处理
Treatment
根Root 茎Stem 叶Leaf 果Fruit 吸收量
U
肥料利用率
FU
肥料产量贡献率
CFY
C AR C AR C AR C AR
-P 0.56c 4.44b 0.59c 18.29a 0.44c 34.70a 0.59c 42.57c 134.19d
-P+M 0.67b 4.30b 0.65b 15.33b 0.48bc 28.81c 0.81b 51.56a 188.49c
+P 0.71b 4.03c 0.66b 14.44c 0.52b 33.21b 0.83b 48.32b 233.35b 11.14b 28.73b
+P+M 0.84a 4.52a 0.78a 14.54c 0.61a 32.98b 0.99a 47.95b 292.04a 17.73a 31.55a

Fig. 3

Effect of functional fertilizer on root phosphatase activity of tomato in whole growth period"

Table 5

Effects of functional fertilizer on tomato quality in the whole growth period"

处理
Treatment
单株产量
Yield
(kg/plant)
单果重
Fruit weight (g)
第1穗果坐果至
果实转色的时间
Mature period (d)
可溶性固形物
Soluble solid (%)
可溶性糖
Soluble sugar (%)
可滴定酸
Titratable acid (%)
糖酸比
Sugar/acid ratio
维生素C
Vc
(mg∙kg-1)
-P 2.58c 172c 36.4b 5.19c 2.86d 0.91a 3.14d 144c
-P+M 3.13b 209b 34.5c 6.45a 3.02c 0.86b 3.51c 213a
+P 3.39ab 226ab 38.6a 6.03b 3.29ab 0.83c 3.96b 169b
+P+M 3.64a 243a 35.7b 6.62a 3.49a 0.82c 4.26a 221a
[1] 许秀美, 邱化蛟, 周先学, 于瑞忠, 冷寿慈. 植物对磷素的吸收、运转和代谢. 山东农业大学学报(自然科学版), 2001, 32(3): 397-400. doi: 10.3969/j.issn.1000-2324.2001.03.031.
doi: 10.3969/j.issn.1000-2324.2001.03.031
XU X M, QIU H J, ZHOU X X, YU R Z, LENG S C. The absorption, translocation and metabolism of phosphorus of plant. Journal of Shandong Agricultural University, 2001, 32(3): 397-400. doi: 10.3969/j.issn.1000-2324.2001.03.031. (in Chinese)
doi: 10.3969/j.issn.1000-2324.2001.03.031
[2] 胡宁, 袁红, 蓝家程, 袁道先, 傅瓦利, 文志林. 岩溶石漠化区不同植被恢复模式土壤无机磷形态特征及影响因素. 生态学报, 2014, 34(24): 7393-7402. doi: 10.5846/stxb201303190452.
doi: 10.5846/stxb201303190452
HU N, YUAN H, LAN J C, YUAN D X, FU W L, WEN Z L. Factors influencing the distribution of inorganic phosphorus fractions in different vegetation restoration areas in Karst rocky desertification areas. Acta Ecologica Sinica, 2014, 34(24): 7393-7402. doi: 10.5846/stxb201303190452. (in Chinese)
doi: 10.5846/stxb201303190452
[3] 巩彪, 史庆华. 园艺作物褪黑素的研究进展. 中国农业科学, 2017, 50(12): 2326-2337. doi: 10.3864/j.issn.0578-1752.2017.12.013.
doi: 10.3864/j.issn.0578-1752.2017.12.013
GONG B, SHI Q H. Review of melatonin in horticultural crops. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337. doi: 10.3864/j.issn.0578-1752.2017.12.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.013
[4] ARNAO M B, J HERNÁNDEZ-RUIZ. Melatonin against environmental plant stressors: A review. Current Protein and Peptide Science, 2021, 22(5): 413-429.
doi: 10.2174/1389203721999210101235422 pmid: 33397256
[5] CRNMBEZ H, MOTTE H, BEECKMAN T. Tackling plant phosphate starvation by the roots. Developmental Cell, 2019, 48(5): 599-615.
doi: S1534-5807(19)30002-4 pmid: 30861374
[6] RAMÓN, PELAGIO-FLORES, EDITHh, MUOZ-PARRA, RANDY, ORTIZ-CASTRO, JOEÉ, LÓPEZ-BUCIO. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. Journal of Pineal Research, 2012, 53(3): 279-288.
doi: 10.1111/j.1600-079X.2012.00996.x
[7] WEN D, GONG B, SUN S S, LIU S Q, WANG X F, WEI M, YANG F J, LI Y, SHI Q H. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science, 2016, 7: 718.
[8] REN S X, RUTTO L, KATUURAMU D, OONO Y. Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE, 2019, 14(8): e0221687.
doi: 10.1371/journal.pone.0221687
[9] XU Y, SHI Q H, GONG B. Characterization of COMT1-mediated low phosphorus resistance mechanism by metabolomics in tomato plants. Environmental and Experimental Botany, 2020, 179: 104187.
doi: 10.1016/j.envexpbot.2020.104187
[10] ZHANG M R, SUN Y K, WEN J, LIU Z Y, YAN S. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. Journal of Pineal Research, 2017, 62(4): e12403.
doi: 10.1111/jpi.12403
[11] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响. 作物杂志, 2022(1): 174-178.
DU X, LI B, MAO L X, CHEN W, ZHANG Y X, CAO L. Effects of melatonin on yield and AsA-GSH cycle in soybean under drought stress. Crops, 2022(1): 174-178. (in Chinese)
[12] WANG P, SUN X, LI C, WEI Z W, LIANG D, MA F W. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 2012, 54(3): 292-302.
doi: 10.1111/jpi.12017
[13] GONG B, YAN Y Y, WEN D, SHI Q H. Hydrogen peroxide produced by NADPH oxidase: A novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 2017, 160(4): 396-409.
doi: 10.1111/ppl.12581
[14] SUN Q Q, ZHANG N, WANG J F, ZHANG H J, LI D B, SHI J, LI R, WEEDA S, ZHAO B, REN S X, GUO Y D. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 2015, 66(3): 657-668. doi: 10.1093/jxb/eru332.
doi: 10.1093/jxb/eru332 pmid: 25147270
[15] 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展. 植物学报, 2022, 57(1): 111-126. doi: 10.11983/CBB21146.
doi: 10.11983/CBB21146
LIU D S, YAO L, XU W R, FENG M, YAO W K. Research progress of melatonin in plant stress resistance. Bulletin of Botany, 2022, 57(1): 111-126. doi: 10.11983/CBB21146. (in Chinese)
doi: 10.11983/CBB21146
[16] 杨相东, 曹一平, 江荣风, 张福锁. 几种包膜控释肥氮素释放特性的评价. 植物营养与肥料学报, 2005, 11(4): 501-507. doi: 10.3321/j.issn:1008-505X.2005.04.012.
doi: 10.3321/j.issn:1008-505X.2005.04.012
YANG X D, CAO Y P, JIANG R F, ZHANG F S. Evaluation of nutrients release feature of coated controlled-release fertilizer. Plant Nutrition and Fertilizer Science, 2005, 11(4): 501-507. doi: 10.3321/j.issn:1008-505X.2005.04.012. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2005.04.012
[17] YAN Y Y, JING X, TANG H, LI X, GONG B, SHI Q H. Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant and Cell Physiology, 2019, 60(9): 2051-2064.
doi: 10.1093/pcp/pcz126
[18] 张彦才, 李若楠, 王丽英, 刘孟朝, 武雪萍, 吴会军, 李银坤. 磷肥对日光温室番茄磷营养和产量及土壤酶活性的影响. 植物营养与肥料学报, 2008, 14(6): 1193-1199. doi: 10.3321/j.issn:1008-505X. 2008.06.026.
doi: 10.3321/j.issn:1008-505X. 2008.06.026
ZHANG Y C, LI R N, WANG L Y, LIU M C, WU X P, WU H J, LI Y K. Effect of phosphorus fertilization on tomato phosporous nutrition, yield and soil enzyme activities. Plant Nutrition and Fertilizer Science, 2008, 14(6): 1193-1199. doi: 10.3321/j.issn:1008-505X.2008.06.026. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2008.06.026
[19] 王秀峰. 蔬菜栽培学各论:北方本. 4版. 北京: 中国农业出版社, 2011.
WANG X F. Various Theories of Vegetable Cultivation:Northern Edition. 4th ed. Beijing: China Agriculture Press, 2011. (in Chinese)
[20] 李恺, 张丽丽, 邵长勇, 仲崇山, 曹逼力, 史庆华, 巩彪. 亚高温下冷等离子体处理番茄种子对幼苗生长和光能利用的影响. 园艺学报, 2021, 48(11): 2286-2298. doi: 10.16420/j.issn.0513-353x.2020-0698.
doi: 10.16420/j.issn.0513-353x.2020-0698
LI K, ZHANG L L, SHAO C Y, ZHONG C S, CAO B L, SHI Q H, GONG B. Effects of cold plasma seed treatment on tomato seedling growth and light energy utilization under daytime sub-high temperature environment. Acta Horticulturae Sinica, 2021, 48(11): 2286-2298. doi: 10.16420/j.issn.0513-353x.2020-0698. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0698
[21] 丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48(5): 872-881. doi: 10.3864/j.issn.0578-1752.2015.05.05.
doi: 10.3864/j.issn.0578-1752.2015.05.05
DING H, ZHANG Z M, DAI L X, YANG J S, CI D W, QIN F F, SONG W W, WAN S B. Effects of water and nitrogen interaction on peanut root growth and yield. Scientia Agricultura Sinica, 2015, 48(5): 872-881. doi: 10.3864/j.issn.0578-1752.2015.05.05. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.05.05
[22] 张丽丽, 刘德兴, 史庆华, 巩彪. 黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用. 中国农业科学, 2018, 51(8): 1547-1555. doi: 10.3864/j.issn.0578-1752.2018.08.012.
doi: 10.3864/j.issn.0578-1752.2018.08.012
ZHANG L L, LIU D X, SHI Q H, GONG B. Physiological regulatory effects of fulvic acid on stress tolerance of tomato seedlings against phosphate deficiency. Scientia Agricultura Sinica, 2018, 51(8): 1547-1555. doi: 10.3864/j.issn.0578-1752.2018.08.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.08.012
[23] 张丽丽, 史庆华, 巩彪. 中、碱性土壤条件下黄腐酸与磷肥配施对番茄生育和磷素利用率的影响. 中国农业科学, 2020, 53(17): 3567-3575. doi: 10.3864/j.issn.0578-1752.2020.17.013.
doi: 10.3864/j.issn.0578-1752.2020.17.013
ZHANG L L, SHI Q H, GONG B. Application of fulvic acid and phosphorus fertilizer on tomato growth, development, and phosphorus utilization in neutral and alkaline soil. Scientia Agricultura Sinica, 2020, 53(17): 3567-3575. doi: 10.3864/j.issn.0578-1752.2020.17.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.17.013
[24] WANG B, GAO Z Y, SHI Q H, GONG B. SAMS1 stimulates tomato root growth and P availability via activating polyamines and ethylene synergetic signaling under low-P condition. Environmental and Experimental Botany, 2022, 197: 104844.
doi: 10.1016/j.envexpbot.2022.104844
[25] HARDELAND R. Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 2015, 66(3): 627-646. doi: 10.1093/jxb/eru386.
doi: 10.1093/jxb/eru386 pmid: 25240067
[26] MADEBO M P, LUO S M, WANG L, ZHENG Y H, JIN P. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit. Journal of Integrative Agriculture, 2021, 20(11): 3060-3074.
doi: 10.1016/S2095-3119(20)63485-2
[27] 陈开, 唐瑭, 张冬平, 陈云, 吕冰. 生长素和细胞分裂素参与构建水稻根系的研究进展. 植物生理学报, 2020, 56(12): 2495-2509. doi: 10.13592/j.cnki.ppj.2020.0398.
doi: 10.13592/j.cnki.ppj.2020.0398
CHEN K, TANG T, ZHANG D P, CHEN Y, LÜ B. Recent advances in auxin-cytokinin interactions involved in shaping architecture of rice root system. Plant Physiology Journal, 2020, 56(12): 2495-2509. doi: 10.13592/j.cnki.ppj.2020.0398. (in Chinese)
doi: 10.13592/j.cnki.ppj.2020.0398
[28] 高利娟, 张猛, 魏建林, 刘冬梅, 丁效东. 磷肥减施对设施番茄根系形态、磷吸收及土壤微生物量磷含量的影响. 天津农业科学, 2019, 25(8): 16-22. doi: 10.3969/j.issn.1006-6500.2019.08.004.
doi: 10.3969/j.issn.1006-6500.2019.08.004
GAO L J, ZHANG M, WEI J L, LIU D M, DING X D. Effects of phosphorus fertilizer reduction on phosphorus uptake, root morphology, and microbial biomass phosphorus content in rhizosphere soil of tomato. Tianjin Agricultural Sciences, 2019, 25(8): 16-22. doi: 10.3969/j.issn.1006-6500.2019.08.004. (in Chinese)
doi: 10.3969/j.issn.1006-6500.2019.08.004
[29] 臧祎娜, 张德闪, 李海港, 程凌云, 张朝春, 申建波. 褪黑素调控根系生长和根际互作的机制研究进展. 植物营养与肥料学报, 2019, 25(4): 671-682. doi: 10.11674/zwyf.18401.
doi: 10.11674/zwyf.18401
ZANG Y N, ZHANG D S, LI H G, CHENG L Y, ZHANG C C, SHEN J B. Progress in mechanism of melatonin regulation of root growth and rhizosphere interactions. Plant Nutrition and Fertilizer Science, 2019, 25(4): 671-682. doi: 10.11674/zwyf.18401. (in Chinese)
doi: 10.11674/zwyf.18401
[30] ZIA S F, BERKOWITZ O, BEDON F, WHELAN J, FRANKS A E, PLUMME K M. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biology, 2019, 19: 567.
doi: 10.1186/s12870-019-2158-3
[31] YANG L, YOU J, LI J Z, WANG Y P, CHAN Z L. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. Journal of Experimental Botany, 2021, 72(15): 5599-5611. doi: 10.1093/jxb/erab196.
doi: 10.1093/jxb/erab196
[32] BOZZO G G, DUNN E L, PLAXTON W C. Differential synthesis of phosphate-starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings. Plant Cell & Environment, 2010, 29: 303-313.
[33] ZHANG Z X, HU Q, LIU Y N, CHENG P L, CHENG H, LIU W X, XING X J, GUAN Z Y, FANG W M, CHEN S M, JIANG J F, CHEN F D. Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner. Journal of Pineal Research, 2019, 67(7): e12582.
[34] ZHU X F, ZHU C Q, WANG C, DONG X Y, SHEN R F. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice. Journal of Experimental Botany, 2017, 68(3): 753-760. doi: 10.1093/jxb/erw480.
doi: 10.1093/jxb/erw480 pmid: 28064177
[1] LU Meng, HU FengMing, TU Yan, DIAO QiYu. Effects of Anemoside B4 on Growth Performance, Nutrition Digestion and Rumen Fermentation of Calves [J]. Scientia Agricultura Sinica, 2023, 56(4): 754-765.
[2] REN GuoDong, HAO XiaoYan, ZHANG XuanZi, LIU Sen, ZHANG HongXiang, TIAN GuangYuan, ZHANG JianXin. Effects of Guanidinoacetic Acid and Betaine Supplementation on Growth Performance, Rumen Fermentation and Blood Metabolites in Lambs [J]. Scientia Agricultura Sinica, 2023, 56(4): 766-778.
[3] WANG XiuJuan, GAO Han, LI HaiPeng, GAO Xue, SUN BaoZhong, CHENG Qiang, XU Lei, ZHANG YaPeng, LEI YuanHua, WEI Meng, LI SanLu, HU JunWei, ZHANG ChangQing, GAO HuiJiang, LI JunYa, ZHANG LuPei, CHEN Yan. Analysis of Growth Performance as well as Carcass and Meat Quality Traits in Pingliang Red Cattle [J]. Scientia Agricultura Sinica, 2023, 56(3): 559-571.
[4] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[5] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[6] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[7] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[8] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[9] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[10] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[11] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[12] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[13] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[14] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[15] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!