Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4433-4444.doi: 10.3864/j.issn.0578-1752.2022.22.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato

LIU Hao1(),PANG Jie1,LI HuanHuan1,QIANG XiaoMan1,ZHANG YingYing1,SONG JiaWen1,2   

  1. 1Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, Henan
    2College of Water Conservancy and Architecture Engineering, Tarim University, Alaer 843300, Xinjiang
  • Received:2021-09-22 Accepted:2022-10-29 Online:2022-11-16 Published:2022-12-14

Abstract:

【Objective】 Both exogenous selenium and soil moisture can affect crop growth and quality properties. It is very important to clarify the influences of exogenous selenium coupled with soil moisture on the tomato yield and quality, which maybe provide a theoretical basis on the water use for production of selenium-enriched tomato. 【Method】Three foliar-spraying selenium concentrations, such as 0 (S0), 5 (S5) and 10 mg·L-1 (S10), were considered with sodium selenite (Na2SeO3) as the selenium source by using pot experiment in this paper. Each selenium concentration was associated with two irrigation levels, which were scheduled to irrigate the crop as soon as the soil water moisture decreased to 50% (W1) and 75% (W2) of the field capacity, respectively. The effects of the different treatments on the selenium content, plant growth, yield and quality of tomato were studied.【Result】The different soil moistures had no significant impact on the selenium contents in soil, leaf and fruit (P>0.05). Although the different selenium concentrations had no marked influence on the soil selenium content for each irrigation level, the increasing selenium concentration led to an significant (P<0.01) increase in selenium content of leaves and fruits. Compared with S0 over the two irrigation levels, selenium-treated fruits increased the average selenium content with 2-4 fold. Drought stress significantly reduced plant height and stem diameter. The foliar-spraying selenium moderately alleviated the inhibition effect on plant height when crop suffered drought stress, whlie no significant effect was found on stem diameter. The drought stress gave a significant reduction in yield by 39.5% compared with the sufficient soil water applied. The foliar-spraying selenium had an increase in fruit number, but tended to decrease fruit weight under the drought stress conditions, thus no noticeable difference in yield was investigated between different foliar-spraying selenium. Compared with the sufficient soil water applied, the drought stress gave a significant increase in soluble sugar (SSC), organic acid (OA), vitamin C, and total soluble solid content (TSS) by 28.7%, 24.3%, 18.7%, and 24.0%, respectively. The foliar-spraying selenium improved SSC, whereas there was no noticeable difference in SSC between different selenium concentrations when the soil moisture was the same. Foliar-spraying selenium significantly increased OA except for S5W2 treatment compared with the control, thus S5W2 had the highest sugar-acid ratio (SAR), while the lowest SAR was observed in S0W2 treatment. There was no marked effect of foliar-spraying selenium on TSS under sufficient soil water applied conditions, however, the TSS was increased firstly and then decreased with selenium concentration increasing under drought stress, indicating that a further increase in selenium concentration from 5 mg·L-1 did not give a noticeable increase in fruit quality. 【Conclusion】 The coupling effect of foliar-spraying selenium and soil moisture on tomato quality was obvious. The spraying sodium selenite at 5 mg·L-1 significantly increased SSC and TSS and thereby improved nutritional quality of fruit when the plant suffered drought stress, but promoted flavor quality of fruits with no yield decreasing and thereby achieved stable yield and high quality when the soil moisture applied was sufficient.

Key words: exogenous selenium, drought stress, tomato, yield, quality

Fig. 1

Arrangement of the drip irrigation system for each treatment"

Fig. 2

Experimental photograph in the field"

Table 1

The monthly meteorological data for the tomato growing seasons in greenhouse"

月份Month 辐射Solar radiation (MJ·m-2·d-1) 气温Temperature (℃) 空气饱和差Vapor pressure deficit (kPa)
3 7.57 18.49 0.40
4 10.77 20.09 0.49
5 13.69 23.16 0.81
6 10.91 28.42 1.19

Fig. 3

Selenium contents in soil, leaves (A) and fruits (B) under different treatments The letter (s) on the top of the bars represents significant difference (P<0.05) among the different treatments. The same as below"

Fig. 4

Plant height and stem diameter of tomato under different treatments"

Table 2

The influence of foliar-spraying selenium and soil moisture coupling on the tomato yield and yield components"

同列小写字母代表不同处理之间差异达5%显著水平。ns表示无显著差异;*和**分别表示差异达到5%和1%显著水平

Values followed by different small letters in table are significantly different among different treatments at 5% level. ns means insignificant; * and ** mean significant at P<0.05 and P<0.01, respectively

处理Treatment 单株坐果数Fruit number (No./plant) 平均单果质量Fruit weight (g) 单株产量Yield (kg/plant)
S10W2 14.4±1.3ab 143.2±9.0a 2.06±0.07b
S10W1 14.7±0.9ab 90.2±2.6b 1.32±0.10c
S5W2 14.9±0.5ab 153.1±14.7a 2.28±0.20ab
S5W1 14.1±0.7ab 97.8±4.0b 1.38±0.02c
S0W2 15.3±0.7a 156.2±8.7a 2.40±0.25a
S0W1 13.7±0.7b 100.9±2.7b 1.38±0.04c
S ns ns ns
W ** ** **
S×W * ns ns

Fig. 5

The effects of foliar-spraying selenium and soil moisture coupling on the soluble sugar, organic acid (A) and sugar-acid ratio (B) of tomato"

Fig. 6

The effects of foliar-spraying selenium and soil moisture coupling on the vitamin C (A) and total soluble solids content (B) of tomato"

[1] 汤超华, 赵青余, 张凯, 李爽, 秦玉昌, 张军民. 富硒农产品研究开发助力我国营养型农业发展. 中国农业科学, 2019, 52(18): 3122-3133. doi:10.3864/j.issn.0578-1752.2019.18.005.
doi: 10.3864/j.issn.0578-1752.2019.18.005.
TANG C H, ZHAO Q Y, ZHANG K, LI S, QIN Y C, ZHANG J M. Promoting the development of nutritionally-guided agriculture in research and development of selenium-enriched agri-products in China. Scientia Agricultura Sinica, 2019, 52(18): 3122-3133. doi:10.3864/j.issn.0578-1752.2019.18.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.18.005.
[2] RAYMAN M P. Selenium in cancer prevention: a review of the evidence and mechanism of action. The Proceedings of the Nutrition Society, 2005, 64(4): 527-542. doi:10.1079/pns2005467.
doi: 10.1079/pns2005467.
[3] SHANKER K, MISHRA S, SRIVASTAVA S, SRIVASTAVA R, DAAS S, PRAKASH S, SRIVASTAVA M M. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant and Soil, 1996, 183(2): 233-238. doi:10.1007/BF00011438.
doi: 10.1007/BF00011438.
[4] JARZYŃSKA G, FALANDYSZ J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)—Consequences to human health. Environment International, 2011, 37(5): 882-888. doi:10.1016/j.envint.2011.02.017.
doi: 10.1016/j.envint.2011.02.017.
[5] 穆婷婷, 杜慧玲, 张福耀, 景小兰, 郭琦, 李志华, 刘璋, 田岗. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50(1): 51-63. doi:10.3864/j.issn.0578-1752.2017.01.005.
doi: 10.3864/j.issn.0578-1752.2017.01.005.
MU T T, DU H L, ZHANG F Y, JING X L, GUO Q, LI Z H, LIU Z, TIAN G. Effects of exogenous selenium on the physiological activity, grain selenium content, yield and quality of foxtail millet. Scientia Agricultura Sinica, 2017, 50(1): 51-63. doi:10.3864/j.issn.0578-1752.2017.01.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.005.
[6] ZHU Z, CHEN Y L, ZHANG X J, LI M. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Scientia Horticulturae, 2016, 198: 304-310. doi:10.1016/j.scienta.2015.12.002.
doi: 10.1016/j.scienta.2015.12.002.
[7] NARVÁEZ-ORTIZ W, BECVORT-AZCURRA A, FUENTES-LARA L, BENAVIDES-MENDOZA A, VALENZUELA-GARCÍA J, GONZÁLEZ-FUENTES J. Mineral composition and antioxidant status of tomato with application of selenium. Agronomy, 2018, 8(9): 185. doi:10.3390/agronomy8090185.
doi: 10.3390/agronomy8090185.
[8] MOHTASHAMI R, MOVAHHEDI DEHNAVI M, BALOUCHI H, FARAJI H. Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agricultural Water Management, 2020, 232: 106046. doi:10.1016/j.agwat.2020.106046.
doi: 10.1016/j.agwat.2020.106046.
[9] LI H F, MCGRATH S P, ZHAO F J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. The New Phytologist, 2008, 178(1): 92-102. doi:10.1111/j.1469-8137.2007.02343.x.
doi: 10.1111/j.1469-8137.2007.02343.x.
[10] LIU H, DUAN A W, LI F S, SUN J S, WANG Y C, SUN C T. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China plain. Journal of Integrative Agriculture, 2013, 12(3):520-531. doi:10.1016/S2095-3119(13) 60253-1.
doi: 10.1016/S2095-3119(13)60253-1
[11] LIU H, LI H H, NING H F, ZHANG X X, LI S, PANG J, WANG G S, SUN J S. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agricultural Water Management, 2019, 226: 105787. doi:10.1016/j.agwat.2019.105787.
doi: 10.1016/j.agwat.2019.105787.
[12] LI H H, LIU H, GONG X W, LI S, PANG J, CHEN Z F, SUN J S. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agricultural Water Management, 2021, 245: 106570. doi:10.1016/j.agwat.2020.106570.
doi: 10.1016/j.agwat.2020.106570.
[13] WANG F, KANG S Z, DU T S, LI F S, QIU R J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 2011, 98(8): 1228-1238. doi:10.1016/j.agwat.2011.03.004.
doi: 10.1016/j.agwat.2011.03.004.
[14] RIPOLL J, URBAN L, BRUNEL B, BERTIN N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, 2016, 190: 26-35. doi:10.1016/j.jplph.2015.10.006.
doi: 10.1016/j.jplph.2015.10.006 pmid: 26629612
[15] MITCHELL J P, SHENNAN C, GRATTAN S R, MAY D M. Tomato fruit yields and quality under water deficit and salinity. Journal of the American Society for Horticultural Science, 1991, 116(2): 215-221. doi:10.21273/jashs.116.2.215.
doi: 10.21273/jashs.116.2.215.
[16] LAHOZ I, PÉREZ-DE-CASTRO A, VALCÁRCEL M, MACUA J I, BELTRÁN J, ROSELLÓ S, CEBOLLA-CORNEJO J. Effect of water deficit on the agronomical performance and quality of processing tomato. Scientia Horticulturae, 2016, 200: 55-65. doi:10.1016/j.scienta.2015.12.051.
doi: 10.1016/j.scienta.2015.12.051.
[17] ANDREJIOVÁ A, HEGEDŰSOVÁ A, MEZEYOVÁ I. Effect of genotype and selenium biofortification on content of important bioactive substances in tomato (Lycopersicon esculentum mill.) fruits. Agriculture & Food, 2016, 4(1): 8-18.
[18] RADY M M, BELAL H E E, GADALLAH F M, SEMIDA W M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 2020, 266: 109290. doi:10.1016/j.scienta.2020.109290.
doi: 10.1016/j.scienta.2020.109290.
[19] CHU J Z, YAO X Q, ZHANG Z N. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 2010, 136(3): 355-363. doi:10.1007/s12011-009-8542-3.
doi: 10.1007/s12011-009-8542-3 pmid: 19830391
[20] DJANAGUIRAMAN M, PRASAD P V V, SEPPANEN M. Selenium protects Sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 2010, 48(12): 999-1007. doi:10.1016/j.plaphy.2010.09.009.
doi: 10.1016/j.plaphy.2010.09.009.
[21] HASANUZZAMAN M, FUJITA M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 2011, 143(3): 1758-1776. doi:10.1007/s12011-011-8998-9.
doi: 10.1007/s12011-011-8998-9 pmid: 21347652
[22] PEZZAROSSA B, ROSELLINI I, BORGHESI E, TONUTTI P, MALORGIO F. Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Scientia Horticulturae, 2014, 165: 106-110. doi:10.1016/j.scienta.2013.10.029.
doi: 10.1016/j.scienta.2013.10.029.
[23] 刘浩, 段爱旺, 孙景生, 梁媛媛. 温室滴灌条件下土壤水分亏缺对番茄产量及其形成过程的影响. 应用生态学报, 2009, 20(11): 2699-2704.
LIU H, DUAN A W, SUN J S, LIANG Y Y. Effects of soil moisture regime on greenhouse tomato yield and its formation under drip irrigation. Chinese Journal of Applied Ecology, 2009, 20(11): 2699-2704. (in Chinese)
[24] 中华人民共和国农业部. 土壤质量重金属测定王水回流消解原子吸收法: NY/T 1613—2008. 北京: 中国标准出版社, 2008.
Ministry of Agriculture of the People’s Republic of China. Soil quality-Analysis of soil heavy metals-atomic absorption spectrometry with aqua regia digestion: NY/T 1613—2008. Beijing: Standards Press of China, 2008. (in Chinese)
[25] 中华人民共和国国家卫生和计划生育委员会. 食品中多元素的测定: GB 5009. 268—2016. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission of the People's Republic of China. Determination of multiple elements in food: GB 5009. 268—2016. Beijing: Standards Press of China, 2016. (in Chinese)
[26] 蔡立梅, 王硕, 温汉辉, 罗杰, 蒋慧豪, 何明皇, 穆桂珍, 王秋爽, 王涵植. 土壤硒富集空间分布特征及影响因素研究. 农业工程学报, 2019, 35(10): 83-90. doi:10.11975/j.issn.1002-6819.2019.10.011.
doi: 10.11975/j.issn.1002-6819.2019.10.011.
CAI L M, WANG S, WEN H H, LUO J, JIANG H H, HE M H, MU G Z, WANG Q S, WANG H Z. Enrichment spatial distribution characteristics of soil selenium and its influencing factors. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 83-90. doi:10.11975/j.issn.1002-6819.2019.10.011. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.10.011.
[27] DIMA S O, NEAMȚU C, DESLIU-AVRAM M, GHIUREA M, CAPRA L, RADU E, STOICA R, FARAON V A, ZAMFIROPOL- CRISTEA V, CONSTANTINESCU-ARUXANDEI D, OANCEA F. Plant biostimulant effects of baker's yeast vinasse and selenium on tomatoes through foliar fertilization. Agronomy, 2020, 10(1): 133. doi:10.3390/agronomy10010133.
doi: 10.3390/agronomy10010133.
[28] 中华人民共和国国家卫生和计划生育委员会. 中国居民膳食营养素参考摄入量第3部分:微量元素(WS/T 578.3—2017). 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission of the People's Republic of China. Reference Intake of Dietary Nutrients for Chinese Residents, part 3, trace elements (WS/T 578.3—2017) Beijing: Standards Press of China, 2017. (in Chinese)
[29] 杨会芳, 梁新安, 常介田, 秦娜. 叶面喷施硒肥对不同蔬菜硒富集及产量的影响. 北方园艺, 2014(11): 158-161.
YANG H F, LIANG X A, CHANG J T, QIN N. Effects of foliar spraying of selenium fertilizer on selenium enrichment of different vegetables and yield. Northern Horticulture, 2014(11): 158-161. (in Chinese)
[30] 张洁, 李天来, 徐晶. 昼间亚高温对日光温室番茄生长发育、产量及品质的影响. 应用生态学报, 2005, 16(6): 1051-1055.
ZHANG J, LI T L, XU J. Effects of daytime sub-high temperature on greenhouse tomato growth, development, yield and quality. Chinese Journal of Applied Ecology, 2005, 16(6): 1051-1055. (in Chinese)
[31] 赵玉萍, 邹志荣, 白鹏威, 任雷, 李鹏飞. 不同温度对温室番茄生长发育及产量的影响. 西北农业学报, 2010, 19(2): 133-137. doi:10.3969/j.issn.1004-1389.2010.02.027.
doi: 10.3969/j.issn.1004-1389.2010.02.027.
ZHAO Y P, ZOU Z R, BAI P W, REN L, LI P F. Effect of different temperature on the growth and yield of tomato in greenhouse. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(2): 133-137. doi:10.3969/j.issn.1004-1389.2010.02.027. (in Chinese)
doi: 10.3969/j.issn.1004-1389.2010.02.027.
[32] ROSALES M A, CERVILLA L M, SÁNCHEZ-RODRÍGUEZ E, RUBIO-WILHELMI M D M, BLASCO B, RÍOS J J, SORIANO T, CASTILLA N, ROMERO L, RUIZ J M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91(1): 152-162. doi:10.1002/jsfa.4166.
doi: 10.1002/jsfa.4166 pmid: 20853276
[33] 李乐. 外源硒对番茄生物效应和硒累积的影响[D]. 银川: 宁夏大学, 2020.
LI L. Effects of exogenous selenium on tomato biological effects and selenium accumulation[D]. Yinchuan: Ningxia University, 2020. (in Chinese)
[34] 余琼, 张翔, 司贤宗, 索炎炎, 李亮, 毛家伟. 硒在农作物方面的研究进展. 山西农业科学, 2018, 46(12): 2122-2126. doi:10.3969/j.issn.1002-2481.2018.12.40.
doi: 10.3969/j.issn.1002-2481.2018.12.40.
YU Q, ZHANG X, SI X Z, SUO Y Y, LI L, MAO J W. Research progress of selenium in crops. Journal of Shanxi Agricultural Sciences, 2018, 46(12): 2122-2126. doi:10.3969/j.issn.1002-2481.2018.12.40. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2018.12.40.
[35] PUCCINELLI M, MALORGIO F, PEZZAROSSA B. Selenium enrichment of horticultural crops. Molecules (Basel Switzerland), 2017, 22(6): 933. doi:10.3390/molecules22060933.
doi: 10.3390/molecules22060933.
[36] 李瑜. 安康富硒土壤中不同农作物富硒能力比较研究. 陕西农业科学, 2015, 61(11): 13-14, 46. doi:10.3969/j.issn.0488-5368.2015.11.003.
doi: 10.3969/j.issn.0488-5368.2015.11.003.
LI Y. Comparative of selenium enrichment ability on different crops in selenium-rich soil in Ankang. Shaanxi Journal of Agricultural Sciences, 2015, 61(11): 13-14, 46. doi:10.3969/j.issn.0488-5368.2015.11.003. (in Chinese)
doi: 10.3969/j.issn.0488-5368.2015.11.003.
[37] TALBI S, ROMERO-PUERTAS M C, HERNÁNDEZ A, TERRÓN L, FERCHICHI A, SANDALIO L M. Drought tolerance in a Saharian plant Oudneya Africana: role of antioxidant defences. Environmental and Experimental Botany, 2015, 111: 114-126. doi:10.1016/j.envexpbot.2014.11.004.
doi: 10.1016/j.envexpbot.2014.11.004.
[38] TOPCU S, KIRDA C, DASGAN Y, KAMAN H, CETIN M, YAZICI A, BACON M A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. European Journal of Agronomy, 2007, 26(1): 64-70. doi:10.1016/j.eja.2006.08.004.
doi: 10.1016/j.eja.2006.08.004.
[39] GUICHARD S, BERTIN N, LEONARDI C, GARY C. Tomato fruit quality in relation to water and carbon fluxes. Agronomie, 2001, 21(4): 385-392. doi:10.1051/agro:2001131.
doi: 10.1051/agro:2001131.
[40] CHEN J L, KANG S Z, DU T S, QIU R J, GUO P, CHEN R Q. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 2013, 129: 152-162. doi:10.1016/j.agwat.2013.07.011.
doi: 10.1016/j.agwat.2013.07.011.
[41] RODRIGUEZ-ORTEGA W M, MARTINEZ V, RIVERO R M, CAMARA-ZAPATA J M, MESTRE T, GARCIA-SANCHEZ F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural Water Management, 2017, 183: 158-168. doi:10.1016/j.agwat.2016.07.014.
doi: 10.1016/j.agwat.2016.07.014.
[42] KADER A A. Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 2008, 88(11): 1863-1868. doi:10.1002/jsfa.3293.
doi: 10.1002/jsfa.3293.
[43] CHEN J L, KANG S Z, DU T S, GUO P, QIU R J, CHEN R Q, GU F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agricultural Water Management, 2014, 146: 131-148. doi:10.1016/j.agwat.2014.07.026.
doi: 10.1016/j.agwat.2014.07.026.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[13] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!