Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3144-3154.doi: 10.3864/j.issn.0578-1752.2022.16.007

• PLANT PROTECTION • Previous Articles     Next Articles

Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot

LI YiMei1(),WANG Jiao1(),WANG Ping1,SHI Kai1,2()   

  1. 1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058
    2Hainan Institute of Zhejiang University, Sanya 572025, Hainan
  • Received:2022-02-22 Accepted:2022-03-19 Online:2022-08-16 Published:2022-08-11
  • Contact: Kai SHI E-mail:liyimei@zju.edu.cn;11616046@zju.edu.cn;kaishi@zju.edu.cn

Abstract:

【Background】In recent years, tomato diseases occur frequently in open field and protected cultivation due to the suboptimal environmental conditions. Tomato bacterial leaf spot caused by Pseudomonas syringae pv. tomato (Pst) is a common bacterial disease, which severely affects the yield and quality of tomato. Sugar is an important signaling molecule as well as nutrient substance in plants. When plants are subjected to pathogen attack, sugar not only functions as a signal to regulate the plant defense, but also provides energy for immune responses as a main carbon source. Sugar transport protein (STP) family is responsible for the sugar transport, and plays an important role in plant growth, development and defense. 【Objective】The objective of this study is to clarify whether STP family is involved in the regulation of plant defense against bacterial leaf spot. 【Method】CR (Solanum lycopersicum cv. Condine Red) was used as the wild-type (WT) background in this study. The responses of STP gene family to Pst DC3000 were determined by Pst DC3000 inoculation. The SlSTP2, which was up-regulated most significantly after Pst DC3000 inoculation, was selected for further investigation. The Slstp2 homozygous mutant and overexpression materials were generated. To explore the role of SlSTP2 in plant defense against bacterial leaf spot, WT and Slstp2 mutants, OE:SlSTP2 plants were inoculated with Pst DC3000, then the disease symptoms were assessed by disease-associated cell death and bacterial growth as well as the photochemical efficiency. In order to explore the potential mechanism of SlSTP2 in the disease resistance, the interacting proteins were screened by bimolecular fluorescence complementary (BiFC) assay. The mutant and overexpression materials of candidate interacting protein were generated and inoculated with Pst DC3000 to investigate its role in plant defense against bacterial leaf spot. 【Result】After inoculation with Pst DC3000 on tomato plants, the expressions of SlSTP1 and SlSTP2 were up-regulated. SlSTP2 was up-regulated most significantly, so it was selected for further investigation and its mutant and overexpression materials were generated. WT and Slstp2 mutants, OE:SlSTP2 plants were subjected to Pst DC3000 inoculation. Compared with WT plants, Slstp2 mutants showed significantly increased susceptibility, as evidenced by more severe disease symptoms, increased disease-associated cell death, an enhanced bacterial population and a decreased photochemical efficiency in the leaves. On the contrary, OE:SlSTP2 plants showed enhanced defense against Pst DC3000 compared with WT plants. It was further found that SlSTP2 interacted with the G protein β subunit SlAGB1 using BiFC assay. Similar to the Slstp2 mutants, the Slagb1 mutants also showed significantly increased susceptibility to Pst DC3000 compared with WT plants, and OE:SlAGB1 plants showed enhanced defense against Pst DC3000 as OE:SlSTP2 plants. 【Conclusion】SlSTP2 is significantly induced by Pst DC3000 inoculation, and positively regulates the defense against bacterial leaf spot in tomato. SlSTP2 interacts with SlAGB1, which also plays a positive role in defense against bacterial leaf spot, suggesting that SlSTP2 associated with SlAGB1 regulate tomato resistance to bacterial leaf spot.

Key words: tomato (Solanum lycopersicum), sugar transport protein (STP), SlSTP2, bacterial leaf spot, disease resistance

Table 1

Primers used in this study"

引物名称
Primer name
基因编号
Accession number
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
用途
Amplification
CRISPR-SlSTP2 Solyc09g075820 GATTGTAACGGAGGCACGCATTTCG AAACCGAAATGCGTGCCTCCGTTAC CRISPR/Cas9载体构建
CRISPR/Cas9 vector construction
CRISPR-SlAGB1 Solyc01g109560 GATTGTTGAGCTCGACTAGCAACT AAACAGTTGCTAGTCGAGCTCAAC
OE-SlSTP2 Solyc09g075820 AGGCGCGCCATGGCCGGTGGAGGATTTAC ACGCGTCGACCAACCGAGAAGTGGGATCAT OE载体构建
OE vector construction
OE-SlAGB1 Solyc01g109560 AGGCGCGCCATGTCAGTTGCGGAGCTGAAAG GGGGTACCGATCACACTTCTGTGTCCTC
SlSTP2 Solyc09g075820 TATCAACTCTTTCATTACAT CAGAAACTCCAACATCATAAC CRISPR/Cas9植株鉴定CRISPR/Cas9 plant identification
SlAGB1 Solyc01g109560 GCTAATAGGGTGTCCCACACG CGTATAGTTAGTGCATCCCAAG
RT-SlSTP1 Solyc02g079220 GGGGTGTGACATCAATGGAC ATGCCACCAGAGAAGACACA qRT-PCR
RT-SlSTP2 Solyc09g075820 ACCGGAGCAGTCAACGTTCT ACCATGGCTAAGGTTGTCTGAATGA
RT-SlSTP3 Solyc07g006970 GGCTGGTTTAGTTGCATCTCTGG GGAACTGCCTGGTTGCCAAA
RT-SlSTP4 Solyc04g074070 GGTGCATTCAGCACAGGCTT TGTCACGGCTGGGACTATGG
RT-SlSTP5 Solyc01g010530 AGCAATCGGGGCAATTTTGT GTACACACCAACACCACCAC
RT-SlSTP6 Solyc08g080300 GGAACAAGTGGCGATCCAGGAA GGGACTAACCACCCTAGTGGAC
RT-SlSTP7 Solyc03g005140 GGCTCTTGTCGCGAGCTTT CCGAAGCCAACACCAACACC
RT-SlSTP8 Solyc00g009030 TGCAATGGGAGGGTTGATCT GGTCACTTTTCTGCCGTGTT
RT-SlSTP9 Solyc01g008240 GTGACGGAGCTGCGTTGATG TGATGGAACCAACAGCAATCTGAC
RT-SlSTP10 Solyc03g006650 CTTGCCCGAGACGAAGAATG GCTCTCCCCTTTGCCATTTC
RT-SlSTP11 Solyc06g054270 CAACGGGTGGAGGGTGTCA TTGCCCTGTTCGTCTTTGCC
RT-SlSTP12 Solyc05g018230 AGTTGATGCTGAGTTTGCGG GAGTTCATGCCGGTAAGCTG
RT-SlSTP13 Solyc03g005150 TTTGCTTCAAAGGCAGCCACT CCGAATCCAATACCAACGCCAA
RT-SlSTP14 Solyc03g078600 ATGGCAGCAATGGGAGGGTT AAGGGTGAGCAACTGGCTGT
RT-SlSTP15 Solyc03g093400 GGAGGAGCTAACTTCCTCGCT ACGGTACAGCCTGATTGGCA
RT-SlSTP16 Solyc03g093410 CGTGATCTCCTTCTACGCTCCA GCCTACCACACCTGTCACCA
RT-SlSTP17 Solyc03g094170 CCAGACCATAGGCCTAGGTG ACATAGCCCTTCGTCTGACC
RT-SlSTP18 Solyc12g008320 TTTGGCTCTGGTGCTGCTCT AGCTACCGCTACCATGACACA
RT-SlAGB1 Solyc01g109560 TGGGTATGCAAAGACGCAAG CTGGCTTGTCAGAGCATTCC
SlSTP2-GFP Solyc09g075820 CCGCTCGAGATGGCCGGTGGAGGATTTAC TCCCCCGGGCAACCGAGAAGTGGGATCAT 亚细胞定位
Subcellular localization
SlSTP2-PacI-F
SlSTP2-AscI-R
Solyc09g075820 CCCTTAATTAACATGGCCGGTGGAGGATTTAC AAAGGCGCGCCCCAACCGAGAAGTGGGATCAT 双分子荧光互补载体构建
BiFC vector construction
SlAGB1-PacI-F
SlAGB1-AscI-R
Solyc01g109560 CCCTTAATTAACATGTCAGTTGCGGAGCTGAAAG AAAGGCGCGCCCGATCACACTTCTGTGTCCTC

Fig. 1

Phylogenetic tree of tomato and A. thaliana STP family"

Fig. 2

SlSTP1 and SlSTP2 in tomato STP gene family were induced by Pst DC3000"

Fig. 3

SlSTP2 contains 12 transmembrane domains and is located on the plasma membrane Subcellular localization of SlSTP2, Scale bar=25 μm"

Fig. 4

SlSTP2 positively regulates the defense against bacterial leaf spot in tomato"

Fig. 5

Bimolecular fluorescent complimentary experiment shows that SlSTP2 interacts with SlAGB1 SlSTP2-cYFP interacts with SlAGB1-nYFP. Scale bar=25 μm"

Fig. 6

SlAGB1 positively regulates the defense against bacterial leaf spot in tomato"

[1] 李君明, 项朝阳, 王孝宣, 国艳梅, 黄泽军, 刘磊, 李鑫, 杜永臣. “十三五”我国番茄产业现状及展望. 中国蔬菜, 2021(2): 13-20.
LI J M, XIANG C Y, WANG X X, GUO Y M, HUANG Z J, LIU L, LI X, DU Y C. Current situation of tomato industry in China during ‘The Thirteenth Five-year Plan’ period and future prospect. China Vegetables, 2021(2): 13-20. (in Chinese)
[2] 冷鹏, 唐洪杰, 钟建峰, 姚夕敏, 董慧颖, 范永强, 周耀武. 番茄细菌性斑点病的发生与防治. 浙江农业科学, 2011(4): 901-902, 905.
LENG P, TANG H J, ZHONG J F, YAO X M, DONG H Y, FAN Y Q, ZHOU Y W. Occurrence and control of tomato bacterial spot. Journal of Zhejiang Agricultural Sciences, 2011(4): 901-902, 905. (in Chinese)
[3] 李宝聚, 朱辉, 石延霞. 番茄细菌性斑点病的识别与防治. 长江蔬菜, 2008(13): 23-24, 58.
LI B J, ZHU H, SHI Y X. Identification and control of tomato bacterial spot. Journal of Changjiang Vegetables, 2008(13): 23-24, 58. (in Chinese)
[4] REUSCHER S, AKIYAMA M, YASUDA T, MAKINO H, AOKI K, SHIBATA D, SHIRATAKE K. The sugar transporter inventory of tomato: Genome-wide identification and expression analysis. Plant and Cell Physiology, 2014, 55(6): 1123-1141.
doi: 10.1093/pcp/pcu052
[5] DOIDY J, GRACE E, KÜHN C, SIMON-PLAS F, CASIERI L, WIPF D. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 2012, 17(7): 413-422.
doi: 10.1016/j.tplants.2012.03.009
[6] LEMONNIER P, GAILLARD C, VEILLET F, VERBEKE J, LEMOINE R, COUTOS-THEVENOT P, LA CAMERA S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Molecular Biology, 2014, 85(4/5): 473-484.
doi: 10.1007/s11103-014-0198-5
[7] YAMADA K, SAIJO Y, NAKAGAMI H, TAKANO Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science, 2016, 354(6318): 1427-1430.
doi: 10.1126/science.aah5692
[8] 怀宝玉. 小麦感条锈病过程中TaSTP3和TaSTP6的功能及调控机理研究[D]. 杨凌: 西北农林科技大学, 2020.
HUAI B Y.The function and regulation mechanism of TaSTP3 and TaSTP6 in wheat susceptibility to stripe rust[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[9] MCCURDY D W, DIBLEY S, CAHYANEGARA R, MARTIN A, PATRICK J W. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Molecular Plant, 2010, 3(6): 1049-1063.
doi: 10.1093/mp/ssq050
[10] LI L, SHEEN J. Dynamic and diverse sugar signaling. Current Opinion in Plant Biology, 2016, 33: 116-125.
doi: 10.1016/j.pbi.2016.06.018
[11] FU Y, LIM S, URANO D, TUNC-OZDEMIR M, PHAN N G, ELSTON T C, JONES A M. Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell, 2014, 156(5): 1084-1095.
doi: 10.1016/j.cell.2014.01.013
[12] HUANG J, TAYLOR J P, CHEN J G, UHRIG J F, SCHNELL D J, NAKAGAWA T, KORTH K L, JONES A M. The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. The Plant Cell, 2006, 18(5): 1226-1238.
doi: 10.1105/tpc.105.037259
[13] LEMAIRE K, VAN DE VELDE S, VAN DIJCK P, THEVELEIN J M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Molecular Cell, 2004, 16(2): 293-299.
doi: 10.1016/j.molcel.2004.10.004
[14] LEE S, ROJAS C M, ISHIGA Y, PANDEY S, MYSORE K S. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE, 2013, 8(12): e82445.
doi: 10.1371/journal.pone.0082445
[15] LIANG X, MA M, ZHOU Z, WANG J, YANG X, RAO S, BI G, LI L, ZHANG X, CHAI J, CHEN S, ZHOU J M. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Research, 2018, 28(5): 529-543.
doi: 10.1038/s41422-018-0027-5
[16] WANG J, GRUBB L E, WANG J, LIANG X, LI L, GAO C, MA M, FENG F, LI M, LI L, et al. A regulatory module controlling homeostasis of a plant immune kinase. Molecular Cell, 2018, 69(3): 493-504.
doi: 10.1016/j.molcel.2017.12.026
[17] ZHANG S, LI X, SUN Z, SHAO S, HU L, YE M, ZHOU Y, XIA X, YU J, SHI K. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66(7): 1951-1963.
doi: 10.1093/jxb/eru538
[18] HU Z, MA Q, FOYER C H, LEI C, CHOI H W, ZHENG C, LI J, ZUO J, MAO Z, MEI Y, YU J, KLESSIG D F, SHI K. High CO2- and pathogen-driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. New Phytologist, 2021, 229(5): 2827-2843.
doi: 10.1111/nph.17087
[19] WANG J, ZHENG C, SHAO X, HU Z, LI J, WANG P, WANG A, YU J, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 7(1): 209.
doi: 10.1038/s41438-020-00442-6
[20] MÜLLER F, XU J, KRISTENSEN L, WOLTERS-ARTS M, DE GROOT P F M, JANSMA S Y, MARIANI C, PARK S, RIEU I. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE, 2016, 11(12): e0167614.
doi: 10.1371/journal.pone.0167614
[21] 方瀚墨, 胡璋健, 马巧梅, 丁淑婷, 王萍, 王安然, 师恺. 番茄SlβCA3在防御丁香假单胞菌番茄致病变种中的功能. 中国农业科学, 2022, 55(14): 2740-2751.
FANG H M, HU Z J, MA Q M, DING S T, WANG P, WANG A R, SHI K. Function of SlβCA3 in plant defense against Pseudomonas syringae pv. tomato DC3000. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. (in Chinese)
[22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[23] LIAO Y, TIAN M, ZHANG H, LI X, WANG Y, XIA X, ZHOU J, ZHOU Y, YU J, SHI K, KLESSIG D F. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. New Phytologist, 2015, 205(3): 1296-1307.
doi: 10.1111/nph.13137
[24] DING S, SHAO X, LI J, AHAMMED G J, YAO Y, DING J, HU Z, YU J, SHI K. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant, Cell and Environment, 2021, 44(5): 1596-1610.
doi: 10.1111/pce.14019
[25] HU Z, LI J, DING S, CHENG F, LI X, JIANG Y, YU J, FOYER C H, SHI K. The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermos tolerance in tomato. Plant Physiology, 2021, 186(2): 1302-1317.
doi: 10.1093/plphys/kiab120
[26] NORHOLM M, NOUR-ELDIN H H, BRODERSEN P, MUNDY J, HALKIER B A. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Letters, 2006, 580(9): 2381-2387.
doi: 10.1016/j.febslet.2006.03.064
[27] TRUERNIT E, SCHMID J, EPPLE P, ILLIG J, SAUER N. The sink-specific and stress-regulated Arabidopsis STP4 gene: Enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. The Plant Cell, 1996, 8(12): 2169-2182.
[28] BÜTTNER M. The Arabidopsis sugar transporter (AtSTP) family: An update. Plant Biology, 2010, 121(Suppl. 1): 35-41.
[29] MOORE J W, HERRERA-FOESSEL S, LAN C, SCHNIPPENKOETTER W, AYLIFFE M, HUERTA-ESPINO J, LILLEMO M, VICCARS L, MILNE R, PERIYANNAN S, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47(12): 1494-1498.
doi: 10.1038/ng.3439
[30] 王娇. 弱光下番茄抗病性变化中质外体葡萄糖信号的作用及机制研究[D]. 杭州: 浙江大学, 2021.
WANG J. Function and mechanisms of apoplastic glucose signaling in tomato disease resistance under low light condition[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[31] TORRES M A, MORALES J, SANCHEZ-RODRIGUEZ C, MOLINA A, DANGL J L. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. Molecular Plant-Microbe Interactions, 2013, 26(6): 686-694.
doi: 10.1094/MPMI-10-12-0236-R
[32] LOREK J, GRIEBEL T, JONES A M, KUHN H, PANSTRUGA R. The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Molecular Plant-Microbe Interactions, 2013, 26(9): 991-1003.
doi: 10.1094/MPMI-03-13-0077-R
[33] NINH T T, GAO W, TRUSOV Y, ZHAO J R, LONG L, SONG C P, BOTELLA J R. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. Plant Direct, 2021, 5(11): e359.
[1] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[7] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[8] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[9] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[10] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[11] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[12] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[13] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[14] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[15] BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!