Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1035-1044.doi: 10.3864/j.issn.0578-1752.2023.06.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize

LI YiPu1,2(), TONG LiXiu3(), LIN YaNan1,2, SU ZhiJun1,2, BAO HaiZhu1,2, WANG FuGui2,4, LIU Jian2,4, QU JiaWei1,2, HU ShuPing2,4, SUN JiYing1,2, WANG ZhiGang1,2, YU XiaoFang1,2(), XU MingLiang3(), GAO JuLin1,2()   

  1. 1 Agricultural College, Inner Mongolia Agricultural University, Hohhot 010018
    2 Region Research Center for Conservation and Utilization of Crop Germplasm Resources in Cold and Arid Areas, Hohhot 010018
    3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
    4 Vocational and Technical College of Inner Mongolia Agricultural University, Baotou 014109, Inner Mongolia
  • Received:2022-12-09 Accepted:2022-12-27 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 The lack of soil nitrogen impacts the yield and quality of maize, which is a major problem of maize production in China. ZmCCT10 encodes the transcription factor, which is pleiotropic. ZmCCT10 is a very important co-factor regulating the growth, development and responding to abiotic stress of maize. The molecular mechanism of maize tolerance to low nitrogen is the basis for breeding maize varieties with low nitrogen tolerance and high nitrogen efficiency. 【Method】 In this study, we compared the traits those relate to low-nitrogen tolerance, expression pattern of ZmCCT10 and transcriptome results of ZmCCT10 near-isogenic lines under low-nitrogen stress and complete nutrient conditions. To analysis the characteristics of ZmCCT10 in response to low-nitrogen stress and the molecular mechanisms involved in low-nitrogen tolerance were explored. 【Result】 This study indicated that different alleles of ZmCCT10 showed significant differences in root length traits, biomass and nitrogen physiological traits under low nitrogen stress. The Y331-ΔTE haplotype without transposon insertion of ZmCCT10 had significantly longer total root length, main radicle length and lateral root length than Y331 after low nitrogen stress. What is more, root dry weight, shoot dry weight, nitrogen accumulation and nitrate reductase activity were also significantly higher than Y331. The expression levels of ZmCCT10 in roots and leaves were significantly higher than those in the control treatment. The expression level of ZmCCT10 in roots reached a peak at 3 hours after stress treatment. In leaves, the expression of ZmCCT10 continued to increase and peaked 6 hours after stress treatment. Root samples were collected under 0.04 mmol·L-1 low nitrogen stress after 3h for transcriptome sequencing. The correlation coefficients between biological replicates are more than 0.9. GO enrichment analysis showed that the expression levels of amine synthesis process and cellular nitrogen compound catabolic process were significantly different in near-isogenic lines after low nitrogen stress. Combined with the amount and expression pattern of differential genes, ZmCCT10-regulated candidate genes involved in low-nitrogen tolerance were selected. qRT-PCR confirmed that the expression levels of ZmMPK5, ZmNS2 and other genes were significantly different after stress in near-isogenic lines. 【Conclusion】 ZmCCT10 is a candidate gene involved in low nitrogen tolerance in maize and it participates in the low-nitrogen tolerance response of maize as transcriptional regulation.

Key words: maize, ZmCCT10, low nitrogen resistance, transcription factor, transcriptome

Table 1

qRT-PCR primers"

引物名称Primer name 序列Sequence (5′-3′)
ZmCCT10_qRTPCR-F AACGACGACGACCTCATCAG
ZmCCT10_qRTPCR-R ACTGGAACTCGTGCAGGCAC
ZmMPK5_qRTPCR-F ACTGATGGACCGCAAACC
ZmMPK5_qRTPCR-R GGGTGACGAGGAAGTTGG
Zmb-ZIP44_qRTPCR-F TCGATCGTTAACCAGCACGG
Zmb-ZIP44_qRTPCR-R GTTCGACTCCTTGCGCTTG
ZmNS3_qRTPCR-F CTGTTCACGGACCTCGTCAC
ZmNS3_qRTPCR-R GGTAGTTGCCGAAGTAGGGG
ZmNS2_qRTPCR-F TGCTTGCCGTGTACCACC
ZmNS2_qRTPCR-R CTTTTGGTGGAGCGTGTTCG
GAPDH-F ATCAACGGCTTCGGAAGGAT
GAPDH-R CCGTGGACGGTGTCGTACTT

Fig. 1

Y331-ΔTE and Y331 plants and roots after one week of control and low nitrogen stress treatment a: Y331-ΔTE and Y331 plants. Control: CK, LNS: Low nitrogen stress; b: Roots of Y331-ΔTE; c: Roots of Y331. 1: Primary radicle; 2: Main root; Except 1 and 2 from total root is lateral root"

Fig. 2

Traits analysis of low nitrogen stress of Y331-ΔTE and Y331 a: Total root length; b: Primary radicle length; c: Main root length; d: Lateral root length; e: Root dry weight; f: Shoot dry weight; g: SPAD value; h: Nitrogen accumulation; i: NR activity"

Fig. 3

Expression analysis of ZmCCT10 in leaves (a, c) and roots (b, d) of Y331-ΔTE and Y331 under low nitrogen stress"

Fig. 4

Identification and enrichment analysis of DEGs under low nitrogen stress a: Person correlation between samples; b: Venn diagram of DEGs; c: Cluster/heatmap of DEGs; d: Bar chart of GO enrichment analysis"

Fig. 5

qRT-PCR verification results of DEGs"

[1]
王艳朋, 靳静晨, 汤继华, 胡彦民, 刘宗华. 作物氮素高效利用研究与现代农业. 中国农学通报, 2007, 23(10): 179-183.
WANG Y P, JIN J C, TANG J H, HU Y M, LIU Z H. Research on the high nitrogen use efficiency of crops and modern agriculture. Chinese Agricultural Science Bulletin, 2007, 23(10): 179-183. (in Chinese)
[2]
CHEN F J, FANG Z G, GAO Q, YE Y L, JIA L L, YUAN L X, MI G H, ZHANG F S. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Science China Life Sciences, 2013, 56(6): 552-560.

doi: 10.1007/s11427-013-4462-8 pmid: 23504275
[3]
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z C, FRENEY J R, MARTINELLI L A, SEITZINGER S P, SUTTON M A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892.

doi: 10.1126/science.1136674 pmid: 18487183
[4]
ROBSON F, COSTA M M, HEPWORTH S R, VIZIR I, PIÑEIRO M, REEVES P H, PUTTERILL J, COUPLAND G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal, 2001, 28(6): 619-631.

doi: 10.1046/j.1365-313x.2001.01163.x
[5]
LI Y P, XU M L. CCT family genes in cereal crops: a current overview. The Crop Journal, 2017, 5(6): 449-458.

doi: 10.1016/j.cj.2017.07.001
[6]
LIU H Y, ZHOU X C, LI Q P, WANG L, XING Y Z. CCT domain-containing genes in cereal crops: Flowering time and beyond. Theoretical and Applied Genetics, 2020, 133(5): 1385-1396.

doi: 10.1007/s00122-020-03554-8 pmid: 32006055
[7]
HUNG H Y, SHANNON L M, TIAN F, BRADBURY P J, CHEN C, FLINT-GARCIA S A, MCMULLEN M D, WARE D, BUCKLER E S, DOEBLEY J F, HOLLAND J B. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(28): E1913-E1921.
[8]
YANG Q, LI Z, LI W Q, KU L X, WANG C, YE J R, LI K, YANG N, LI Y P, ZHONG T, LI J S, CHEN Y H, YAN J B, YANG X H, XU M L. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16969-16974.
[9]
WANG C, YANG Q, WANG W X, LI Y P, GUO Y L, ZHANG D F, MA X N, SONG W, ZHAO, J R, XU M L. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytologist, 2017, 215(4): 1503-1515.

doi: 10.1111/nph.2017.215.issue-4
[10]
LI Y P, TONG L X, DENG L L, LIU Q Y, XING Y X, WANG C, LIU B S, YANG X H, XU M L. Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theoretical and Applied Genetics, 2017, 130(12): 2587-2600.

doi: 10.1007/s00122-017-2978-1
[11]
XU G H, WANG X F, HUANG C, XU D Y, LI D, TIAN J G, CHEN Q Y, WANG C L, LIANG Y M, WU Y Y. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 2017, 214(2): 852-864.

doi: 10.1111/nph.14400 pmid: 28067953
[12]
LI B, WANG Z, JIANG H, LUO J H, GUO T, TIAN F, ROSSI V, HE Y. ZmCCT10-relayed photoperiod sensitivity regulates natural variation in the arithmetical formation of male germinal cells in maize. New Phytologist, 2023, 237(2): 585-600.

doi: 10.1111/nph.v237.2
[13]
ZHONG S Y, LIU H Q, LI Y, LIN Z W. Opposite response of maize ZmCCT to photoperiod due to transposon jumping. Theoretical and Applied Genetics, 2021, 134(9): 2841-2855.

doi: 10.1007/s00122-021-03862-7
[14]
TONG L X, YAN M Z, ZHU M, YANG J, LI Y P, XU M L. ZmCCT haplotype H5 improves yield, stalk-rot resistance, and drought to tolerance in maize. Frontiers in Plant Science, 2022, 13: 984527.

doi: 10.3389/fpls.2022.984527
[15]
SU H H, LIANG J C, ABOU-ELWAFA S F, CHENG H Y, DOU D D, REN Z Z, XIE J R, CHEN Z H, GAO, F R, KU L X, CHEN Y H. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biology, 2021, 21(1): 453-467.

doi: 10.1186/s12870-021-03231-y
[16]
ZHANG Z H, ZHANG X, LIN Z L, WANG J, XU M L, LAI J S, YU J, LIN Z W. The genetic architecture of nodal root number in maize. The Plant Journal, 2018, 93(6): 1032-1044.

doi: 10.1111/tpj.13828 pmid: 29364547
[17]
于洋. 不同氮效率玉米对供氮的响应特征及转录组蛋白质组分析[D]. 哈尔滨: 东北农业大学, 2021.
YU Y. Response characteristics and transcriptome proteome analysis of maize with different nitrogen efficiency to nitrogen supply[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
[18]
储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学: 生命科学, 2021, 51(10): 1415-1423.
CHU C C, WANG Y, WANG E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Scientia Sinica (Vitae), 2021, 51(10): 1415-1423. (in Chinese)
[19]
MA F F, NI L, LIU L B, LI X, ZHANG H, ZHANG A Y, TAN M P, JIANG, M Y. ZmABA2, an interacting protein of Zm MPK5, is involved in abscisic acid biosynthesis and functions. Plant Biotechnology Journal, 2016, 14(2): 771-782.

doi: 10.1111/pbi.2016.14.issue-2
[20]
YOON Y, SEO D H, SHIN H, KIM H J, KIM C M, JANG G. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 2020, 10(6): 788.

doi: 10.3390/agronomy10060788
[21]
ZHANG X Y, JIA H Y, LI T, WU J Z, NAGARAJAN R, LEI L, POWERS C, KAN C C, HUA W, LIU Z Y, CHEN C, CARVER B F, YAN L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183.

doi: 10.1126/science.abm0717
[22]
XUE W Y, XING, Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761-767.

doi: 10.1038/ng.143
[23]
WENG X Y, WANG L, WANG J, HU Y, DU H, XU C G, XING Y Z, LI X H, XIAO J H, ZHANG Q F. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiology, 2014, 164(2): 735-747.

doi: 10.1104/pp.113.231308 pmid: 24390391
[24]
WANG Q, SU Q, NIAN J, ZHANG J, GUO M, DONG G G, HU J, WANG R S, WEI C S, LI G W, WANG W, GUO H S, LIN S Y, QIAN W F, XIE X Z, QIAN Q, Chen F, ZUO J Z. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023.

doi: 10.1016/j.molp.2021.04.012
[25]
李鹏程. 玉米根系性状的遗传分析及其与氮效率的关系研究[D]. 北京: 中国农业大学, 2015.
LI P C. Genetic analysis of root traits and the relationship with nitrogen use efficiency in maize (Zea mays L.)[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[26]
HAWKESFORD M J, GRIFFITHS S. Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Current Opinion in Plant Biology, 2019, 49: 35-42.

doi: S1369-5266(18)30115-8 pmid: 31176099
[27]
赵志鑫. 陕A群、陕B群选育玉米自交系耐低氮特性评价[D]. 西安: 西北农林科技大学, 2020.
ZHAO Z X. Evaluation of low nitrogen tolerance for maize inbred lines selected Shaan A and Shaan B groups[D]. Xi’an: Northwest A&F University, 2020. (in Chinese)
[28]
陈范骏, 米国华, 张福锁, 王艳, 刘向生, 春亮. 华北区部分主栽玉米杂交种的氮效率分析. 玉米科学, 2003, 11(2): 78-82.
CHEN F J, MI G H, ZHANG F S, WANG Y, LIU X S, CHUN L. Nitrogen use efficiency in some of main maize hybrids grown in North China. Journal of Maize Sciences, 2003, 11(2): 78-82. (in Chinese)
[29]
吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征. 作物学报, 2021, 47(5): 915-928.

doi: 10.3724/SP.J.1006.2021.03033
WU Y W, PU W, ZHAO B, WEI G, KONG F L, YUAN J C. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance. Acta Agronomica Sinica, 2021, 47(5): 915-928. (in Chinese)

doi: 10.3724/SP.J.1006.2021.03033
[30]
FIXEN P, BRENTRUP F, BRUULSEMA T, GARCIA F, NORTON R, ZINGORE S. Nutrient/ fertilizer use efficiency: measurement, current situation and trends. Managing Water and Fertilizer for Sustainable Agricultural Intensification, 2015, 270: 8-38.
[31]
崔文芳, 高聚林, 于晓芳, 胡树平, 苏治军, 王志刚, 孙继颖, 谢岷. 氮高效玉米自交系的筛选指标及其子粒氮素营养特性分析. 植物营养与肥料学报, 2014, 20(2): 290-297.
CUI W F, GAO J L, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. The index for the screening of N-efficient inbred lines of maize and their N nutrition peculiarity in seed production. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 290-297. (in Chinese)
[32]
米国华. 论作物养分效率及其遗传改良. 植物营养与肥料学报, 2017, 23(6): 1525-1535.
MI G H. Nutrient use efficiency in crops and its genetic improvement. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1525-1535. (in Chinese)
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[3] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[4] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[5] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[11] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[12] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[13] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[14] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[15] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!