Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 686-696.doi: 10.3864/j.issn.0578-1752.2023.04.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil

MA Nan1(), AN TingTing1(), ZHANG JiuMing2, WANG JingKuan1   

  1. 1College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources/Key Laboratory of Northeast Arable Land Conservation, Ministry of Agriculture and Rural Affair, Shenyang 110866
    2Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086
  • Received:2022-01-14 Accepted:2022-04-08 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】 Maize shoot and root residues are the significance sources of soil organic matter (SOM). Exogenous carbon (C) and nitrogen (N) are assimilated by soil microorganism, accumulated as microbial necromass and contributed to relatively stable SOM. The objectives of this study were to clarify the accumulation of microbial residue C and N in different fertility levels of soil with shoot and root residues addition, and to qualify the contributions of microbial residue C and N to soil organic C (SOC) and total N (TN), respectively, so as to provide a basis for increasing the storage and stability of SOC and TN. 【Method】 Based on a long-term experiment of black soil with different fertility levels, this study used the 13C15N isotope labeling and amino sugar biomarkers methods, and mixed the labeled maize shoot and root residues with black soil samples. Then the mixture samples were incubated in lab, and sampled in 30 and 180 days. The percentages of exogenous C (shoot C and root C) and N (shoot N and root N) remaining in soil, contents of microbial residues C and N, and their contributions to SOC and TN were analyzed. 【Result】On the 180th day, the percentages of shoot C and root C remaining in soil were, on average, 36.3% and 31.7%, respectively, and those of shoot N and root N remaining in soil were, on average, 95.8% and 79.3%, respectively. On the 180th day, the ratio of the SOC derived from exogenous C (13C-SOC) to TN derived from exogenous N (15N-TN) were, on average, 17.6 and 28.5 in the soils with shoot and root residue addition, respectively. The ratio of 13C-SOC to 15N-TN was decreased by 47.9% and 28.2% in the soils with shoot and root residue addition on the 180th day compared with the 30th day, respectively. During the incubation, the contents of fungal and bacterial residue in the high fertility soil were, on average, 1.17 and 1.31 times those in the low fertility soil, respectively. On the 180th day, the content of microbial residue C and N (fungal and bacterial) was, on average, 8.5% higher in the soil added with shoot than that in the soil added with root. On the end of incubation, the average percentage of fungal residue C contributed to SOC was 37.0% and 33.8%, respectively, and that of bacterial residue C contributed to SOC was 11.2% and 9.2% in the high and low fertility level soils, respectively. The average percentage of fungal residue C contributed to SOC was 36.0% and 34.7%, and that of bacterial residual C contributed to SOC was 10.8% and 9.6% on the end of incubation, respectively. The average percentage of bacterial residue C contributed to SOC was 55.2% and 16.3% in the soil added with shoot and root on the 30th day, respectively. The average percentage of fungal residue N contributed to TN was 63.5% and 60.5%, and that of bacterial residue N to TN was 16.4% and 17.5% in low and high fertility level soils on the 180th day, respectively. The percentage of bacterial residue C and N contributed to SOC and TN was increased by 4.8% and 7.4% in the high fertility soil and by 20.3% and 32.5% in low fertility soil on the 180th day compared with the basic soil without shoot and root addition, respectively. 【Conclusion】 The accumulation of fungal residue was of great significance for the storage and stability of SOC and TN. Maize shoot addition promoted the accumulation of microbial residues C and N in soil compared with root addition. Low fertility soil with the addition of shoot and root improved the transformation of bacterial residue C and N to SOC and TN.

Key words: maize shoot, maize root, soil microbial residue, amino sugar, soil organic carbon, soil total nitrogen, black soil

Table 1

Basic characteristics of Black soil samples with different fertility levels (in 2019)"

指标
Index
高肥土壤
High fertility level of soil
低肥土壤
Low fertility level of soil
有机碳Soil organic carbon (g·kg-1) 18.0 16.7
全氮Total nitrogen (g·kg-1) 1.75 1.53
碳氮比 Ratio of soil organic carbon to total nitrogen 10.3 11.0
δ13C值δ13C value (‰) -21.7 -21.5
δ15N值δ15N value (‰) 8.49 7.92
真菌残体碳Fungal residue carbon (mg·kg-1) 6354 5698
细菌残体碳Bacterial residue carbon (mg·kg-1) 1913 1275
真菌残体氮Fungal residue nitrogen (mg·kg-1) 988 886
细菌残体氮Bacterial residue nitrogen (mg·kg-1) 284 189
真菌残体碳与SOC比值Ratio of fungal residue carbon to SOC (%) 35.3 34.1
细菌残体碳与SOC比值Ratio of bacterial residue carbon to SOC (%) 10.6 7.64
真菌残体氮与TN比值Ratio of fungal residue nitrogen to TN (%) 56.4 16.3
细菌残体氮与TN比值Ratio of bacterial residue nitrogen to TN (%) 57.9 12.4

Fig. 1

Percentages of exogenous carbon and nitrogen remaining in black soil with different fertility levels HF+R and HF+S denote high fertility soil added with root and shoot residues, respectively; LF+R and LF+S denote low fertility soil added with root and shoot residues, respectively. Different capital letters show significant differences (P<0.05) among different treatments on the 30th day of incubation. Different lowercase letters show significant differences (P<0.05) among different treatments on the 180th day of incubation. Fp means influences by types of exogenous organic matter. Fs denotes influences by soil fertility level. Fp×s means interaction effects by types of exogenous organic matter and soil fertility level. ns, * and ** denote P>0.05, P<0.05, and P<0.01 level, respectively. The same as blow"

Table 2

Contribution percentages of exogenous carbon and nitrogen to total soil organic carbon and total soil nitrogen in different fertility levels of black soil, respectively"

处理
Treatment
外源碳对土壤有机碳的贡献率
Contribution percentage of exogenous carbon to total soil organic carbon (%)
外源氮对土壤全氮的贡献率
Contribution percentage of exogenous nitrogen to total soil nitrogen (%)
30 d 180 d 30 d 180 d
HF+R 17.9±0.115 A 15.0±0.437 ab 5.5±0.593 A 6.1±0.362 a
HF+S 23.0±0.416 C 14.4±0.974 a 8.7±0.239 C 8.0±0.269 b
LF+R 20.9±0.549 B 15.1±0.141 ab 7.3±0.353 B 5.7±0.003 a
LF+S 26.0±0.316 D 16.3±0.021 b 9.6±0.020 C 10.4±0.113 c
外源有机物类型 Types of exogenous organic matter (p) 178** 0.370ns 55.5** 197**
土壤肥力水平 Soil fertility level (s) 60.0** 3.42ns 14.1* 18.0*
外源有机物类型×土壤肥力水平 p×s 0.001ns 2.65ns 1.19ns 37.2**

Table 3

Ratio of total organic carbon (SOC) to total nitrogen (TN) and that of SOC derived from exogenous carbon (13C-SOC) to TN derived from exogenous nitrogen (15N-TN) in different fertility levels of soils"

处理
Treatment
土壤有机碳与全氮的比值
Ratio of SOC to TN
土壤有机碳中外源碳含量与全氮中外源氮含量比值
Ratio of 13C-SOC to 15N-TN
30 d 180 d 30 d 180 d
HF+R 11.7±0.461 A 10.9±0.129 ab 38.3±2.79 AB 25.1±1.46 b
HF+S 11.9±0.254 A 10.2±0.073 a 31.7±1.456 A 18.5±1.22 a
LF+R 14.3±0.231 B 12.1±0.251 c 41.0±2.49 B 32.0±0.665 c
LF+S 13.5±0.103B 11.4±0.423 bc 36.5±0.640 AB 16.7±1.92 a
外源有机物类型 Types of exogenous organic matter (p) 0.855ns 6.44* 7.50* 62.3**
土壤肥力水平 Soil fertility level (s) 54.0** 22.6** 3.53ns 3.40ns
外源有机物类型×土壤肥力水平 p×s 2.82ns 0.022ns 0.254ns 9.96*

Fig. 2

Contents of fungal residue-carbon and -nitrogen and those of bacterial residue-carbon and -nitrogen in different fertility levels of black soils"

Fig. 3

Contribution percentage of microbial residue carbon to total soil organic carbon (SOC) in different fertility levels of black soils"

Fig. 4

Contribution percentage of microbial residue nitrogen to total nitrogen (TN) in different fertility levels of black soils"

[1]
LIANG C, BALSER T C. Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA. Geoderma, 2008, 148(1): 113-119. doi:10.1016/j.geoderma.2008.09.012.

doi: 10.1016/j.geoderma.2008.09.012.
[2]
GLASER B, TURRIÓN M B, ALEF K. Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis. Soil Biology and Biochemistry, 2004, 36(3): 399-407. doi:10.1016/j. soilbio.2003.10.013.

doi: 10.1016/j. soilbio.2003.10.013.
[3]
徐英德. 玉米残体碳向土壤有机碳转化的微生物介导过程解析[D]. 沈阳: 沈阳农业大学, 2020.
XU Y D. Analysis of the microbe-mediated transformation of maize residue carbon into soil organic carbon[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[4]
谢柠桧. 外源新碳在不同肥力土壤中的分配与固定[D]. 沈阳: 沈阳农业大学, 2016.
XIE N H. distribution and fixation of residue carbon from different parts of maize in soils[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese)
[5]
LIU X, ZHOU F, HU G Q, SHAO S, HE H B, ZHANG W, ZHANG X D, LI L J. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma, 2019, 333: 35-42. doi:10.1016/j.geoderma.2018.07.017.

doi: 10.1016/j.geoderma.2018.07.017.
[6]
MERINO A, FERREIRO A, SALGADO J, FONTÚRBEL M T, BARROS N, FERNÁNDEZ C, VEGA J A. Use of thermal analysis and solid-state 13C CP-MAS NMR spectroscopy to diagnose organic matter quality in relation to burn severity in Atlantic soils. Geoderma, 2014, 226/227: 376-386. doi:10.1016/j.geoderma.2014.03.009.

doi: 10.1016/j.geoderma.2014.03.009.
[7]
SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, HEITKAMP F, ZELENEV V, KUMAR A, BLAGODATSKAYA E. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils, 2017, 53(3): 287-301. doi:10.1007/s00374-016- 1174-9.

doi: 10.1007/s00374-016- 1174-9.
[8]
CLEMENTE J S. Soil organic matter composition impacts its degradability and association with soil minerals. Toronto: University of Toronto, 2012.
[9]
BAI Z, BODÉ S, HUYGENS D, ZHANG X D, BOECKX P. Kinetics of amino sugar formation from organic residues of different quality. Soil Biology and Biochemistry, 2013, 57: 814-821. doi:10.1016/j.soilbio.2012.08.006.

doi: 10.1016/j.soilbio.2012.08.006.
[10]
XU Y D, GAO X D, LIU Y L, LI S Y, LIANG C, LAL R, WANG J K. Differential accumulation patterns of microbial necromass induced by maize root vs. shoot residue addition in agricultural Alfisols. Soil Biology and Biochemistry, 2022, 164: 108474. doi:10.1016/j.soilbio.2021.108474.

doi: 10.1016/j.soilbio.2021.108474.
[11]
JAFFÉ R, DING Y, NIGGEMANN J, VÄHÄTALO A V, STUBBINS A, SPENCER R G M, CAMPBELL J, DITTMAR T. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science, 2013, 340(6130): 345-347. doi:10.1126/science.1231476.

doi: 10.1126/science.1231476 pmid: 23599492
[12]
钟敏, 庄舜尧, 曹志洪. 绰墩埋藏古水稻土中木质素特征研究. 土壤学报, 2012, 49(4): 764-772.
ZHONG M, ZHUANG S Y, CAO Z H. Lignin in buried ancient paddy soils at Chuodun site. Acta Pedologica Sinica, 2012, 49(4): 764-772. (in Chinese)
[13]
HE H B, ZHANG W, ZHANG X D, XIE H T, ZHUANG J. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation. Soil Biology and Biochemistry, 2011, 43(6): 1155-1161. doi:10.1016/j.soilbio.2011.02.002.

doi: 10.1016/j.soilbio.2011.02.002.
[14]
GRIEPENTROG M, BODÉ S, BOECKX P, HAGEDORN F, HEIM A, SCHMIDT M W I. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Global Change Biology, 2014, 20(1): 327-340. doi:10.1111/gcb.12374.

doi: 10.1111/gcb.12374 pmid: 23996910
[15]
SHAO P S, LIANG C, LYNCH L, XIE H T, BAO X L. Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biology and Biochemistry, 2019, 131: 182-190. doi:10.1016/j.soilbio.2019.01.012.

doi: 10.1016/j.soilbio.2019.01.012.
[16]
SHAO S, ZHAO Y, ZHANG W, HU G Q, XIE H T, YAN J H, HAN S J, HE H B, ZHANG X D. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114: 114-120. doi:10.1016/j.soilbio.2017.07.007.

doi: 10.1016/j.soilbio.2017.07.007.
[17]
邹文秀, 韩晓增, 陆欣春, 陈旭, 严君, 宋宝辉, 杨宁, 林青华, 贺宇. 肥沃耕层构建对东北黑土区旱地土壤肥力和玉米产量的影响. 应用生态学报, 2020, 31(12): 4134-4146. doi:10.13287/j.1001-9332.202012.030.

doi: 10.13287/j.1001-9332.202012.030
ZOU W X, HAN X Z, LU X C, CHEN X, YAN J, SONG B H, YANG N, LIN Q H, HE Y. Effects of the construction of fertile and cultivated upland soil layer on soil fertility and maize yield in black soil region in Northeast China. Chinese Journal of Applied Ecology, 2020, 31(12): 4134-4146. doi:10.13287/j.1001-9332.202012.030. (in Chinese)

doi: 10.13287/j.1001-9332.202012.030.
[18]
丁雪丽, 张旭东, 杨学明, 张晓平. 免耕秸秆还田和传统耕作方式下东北黑土氨基糖态碳的积累特征. 土壤学报, 2012, 49(3): 535-543.
DING X L, ZHANG X D, YANG X M, ZHANG X P. Accumulation of amino sugar carbon affected by tillage in black soil in northeast China. Acta Pedologica Sinica, 2012, 49(3): 535-543. (in Chinese)
[19]
LI N, XU Y Z, HAN X Z, HE H B, ZHANG X D, ZHANG B. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. European Journal of Soil Biology, 2015, 67: 51-58. doi:10.1016/j.ejsobi.2015.02.002.

doi: 10.1016/j.ejsobi.2015.02.002.
[20]
高洪军, 彭畅, 朱末, 张秀芝, 李强, 焦云飞, 朱平. 不同轮耕模式对黑土土壤微生物群落结构的影响. 玉米科学, 2021, 29(5): 104-112. doi:10.13597/j.cnki.maize.science.20210514.

doi: 10.13597/j.cnki.maize.science.20210514.
GAO H J, PENG C, ZHU M, ZHANG X Z, LI Q, JIAO Y F, ZHU P. Effects of different rotational tillage patterns on soil microbial community structure. Journal of Maize Sciences, 2021, 29(5): 104-112. doi:10.13597/j.cnki.maize.science.20210514. (in Chinese)

doi: 10.13597/j.cnki.maize.science.20210514.
[21]
李丽东, 胡国庆, 赵钰, 刘肖, 丁雪丽, 何红波, 张旭东. 玉米秸秆掺入对土壤氨基糖分布动态的影响. 土壤通报, 2014, 45(6): 1402-1409. doi:10.19336/j.cnki.trtb.2014.06.018.

doi: 10.19336/j.cnki.trtb.2014.06.018.
LI L D, HU G Q, ZHAO Y, LIU X, DING X L, HE H B, ZHANG X D. The impact of maize residues addition on distribution of amino sugars in soils. Chinese Journal of Soil Science, 2014, 45(6): 1402-1409. doi:10.19336/j.cnki.trtb.2014.06.018. (in Chinese)

doi: 10.19336/j.cnki.trtb.2014.06.018.
[22]
ZHANG X D, AMELUNG W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28(9): 1201-1206. doi:10.1016/ 0038- 0717(96)00117-4.
[23]
CONRAD R, KLOSE M, YUAN Q, LU Y H, CHIDTHAISONG A. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry, 2012, 49: 193-199. doi:10.1016/j.soilbio.2012.02.030.

doi: 10.1016/j.soilbio.2012.02.030.
[24]
BLAUD A, LERCH T Z, CHEVALLIER T, NUNAN N, CHENU C, BRAUMAN A.Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012, 53: 1-9. doi:10.1016/j.apsoil.2011.11.005.

doi: 10.1016/j.apsoil.2011.11.005.
[25]
LIANG C, AMELUNG W, LEHMANN J, KÄSTNER M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25(11): 3578-3590. doi:10.1111/gcb.14781.

doi: 10.1111/gcb.14781 pmid: 31365780
[26]
ENGELKING B, FLESSA H, JOERGENSEN R G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biology and Biochemistry, 2007, 39(8): 2111-2118. doi:10.1016/j.soilbio.2007.03.020.

doi: 10.1016/j.soilbio.2007.03.020.
[27]
JOERGENSEN R G, WICHERN F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry, 2008, 40(12): 2977-2991. doi:10.1016/j.soilbio.2008.08.017.

doi: 10.1016/j.soilbio.2008.08.017.
[28]
VAN GROENIGEN K J, SIX J, HARRIS D, VAN KESSEL C. Elevated CO2 does not favor a fungal decomposition pathway. Soil Biology and Biochemistry, 2007, 39(8): 2168-2172. doi:10.1016/j.soilbio.2007.03.009.

doi: 10.1016/j.soilbio.2007.03.009.
[29]
张成娥, 王栓全. 作物秸秆腐解过程中土壤微生物量的研究. 水土保持学报, 2000, 14(3): 96-99. doi:10.13870/j.cnki.stbcxb.2000.03.021.

doi: 10.13870/j.cnki.stbcxb.2000.03.021.
ZHANG C E, WANG S Q. Study on soil microbial biomass during decomposition of crop straws. Journal of Soil Water Conservation, 2000, 14(3): 96-99. doi:10.13870/j.cnki.stbcxb.2000.03.021. (in Chinese)

doi: 10.13870/j.cnki.stbcxb.2000.03.021.
[30]
THROCKMORTON H M, BIRD J A, DANE L, FIRESTONE M K, HORWATH W R. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecology Letters, 2012, 15(11): 1257-1265. doi:10.1111/j.1461-0248.2012.01848.x.

doi: 10.1111/j.1461-0248.2012.01848.x pmid: 22897121
[31]
MILTNER A, BOMBACH P, SCHMIDT-BRÜCKEN B, KÄSTNER M. SOM genesis: microbial biomass as a significant source. Biogeochemistry, 2012, 111(1/2/3): 41-55. doi:10.1007/s10533-011-9658-z.

doi: 10.1007/s10533-011-9658-z.
[32]
HU J X, HUANG C D, ZHOU S X, LIU X, DIJKSTRA F A. Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: a global meta-analysis. Soil Biology and Biochemistry, 2022, 165: 108500. doi:10.1016/j.soilbio.2021.108500.

doi: 10.1016/j.soilbio.2021.108500.
[33]
WANG X X, ZHANG W, ZHOU F, LIU Y, HE H B, ZHANG X D. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biology and Biochemistry, 2020, 142: 107723. doi:10.1016/j.soilbio.2020.107723.

doi: 10.1016/j.soilbio.2020.107723.
[34]
DING X L, HAN X Z, ZHANG X D. Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions. Biology and Fertility of Soils, 2013, 49(7): 949-954. doi:10.1007/s00374-012-0768-0.

doi: 10.1007/s00374-012-0768-0.
[35]
CUI S Y, LIANG S W, ZHANG X K, LI Y B, LIANG W J, SUN L J, WANG J K, MARTIJN BEZEMER T, LI Q. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant and Soil, 2018, 429(1/2): 335-348. doi:10.1007/s11104-018-3688-4.

doi: 10.1007/s11104-018-3688-4.
[36]
KÖGEL-KNABNER I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biology and Biochemistry, 2017, 105: A3-A8. doi:10. 1016/j.soilbio.2016.08.011.

doi: 10.1016/j.soilbio.2016.08.011.
[37]
STRICKLAND M S, ROUSK J. Considering fungal: bacterial dominance in soils - Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010, 42(9): 1385-1395. doi:10. 1016/j.soilbio.2010.05.007.

doi: 10. 1016/j.soilbio.2010.05.007.
[38]
REDIN M, RECOUS S, AITA C, DIETRICH G, SKOLAUDE A C, LUDKE W H, SCHMATZ R, GIACOMINI S J. How the chemical composition and heterogeneity of crop residue mixtures decomposing at the soil surface affects C and N mineralization. Soil Biology and Biochemistry, 2014, 78: 65-75. doi:10.1016/j.soilbio.2014.07.014.

doi: 10.1016/j.soilbio.2014.07.014.
[39]
LIANG C, ZHANG X D, BALSER T C. Net microbial amino sugar accumulation process in soil as influenced by different plant material inputs. Biology and Fertility of Soils, 2007, 44(1): 1-7. doi:10.1007/s00374-007-0170-5.

doi: 10.1007/s00374-007-0170-5.
[40]
YE G P, LIN Y X, KUZYAKOV Y, LIU D Y, LUO J F, LINDSEY S, WANG W J, FAN J B, DING W X. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: results of a 27-year field experiment. Soil Biology and Biochemistry, 2019, 134: 15-24. doi:10.1016/j.soilbio.2019.03.018.

doi: 10.1016/j.soilbio.2019.03.018.
[41]
LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105. doi:10.1038/nmicrobiol.2017.105.

doi: 10.1038/nmicrobiol.2017.105 pmid: 28741607
[42]
HU G Q, ZHAO Y, LIU X, ZHOU F, ZHANG W, SHAO S, HE H B, ZHANG X D. Comparing microbial transformation of maize residue-N and fertilizer-N in soil using amino sugar-specific 15N analysis. European Journal of Soil Science, 2020, 71(2): 252-264. doi:10.1111/ejss.12859.

doi: 10.1111/ejss.12859.
[43]
霍海南, 李杰, 张效琛, 朱平, 王立春, 石元亮, 何红波, 张旭东. 不同施肥管理措施对农田土壤中植物和微生物残留组分的影响. 应用生态学报, 2020, 31(9): 3060-3066. doi:10.13287/j.1001-9332.202009.021.

doi: 10.13287/j.1001-9332.202009.021
HUO H N, LI J, ZHANG X C, ZHU P, WANG L C, SHI Y L, HE H B, ZHANG X D. Effects of different fertilization managements on microbial necromass and plant lignin accumulation in a Mollisol. Chinese Journal of Applied Ecology, 2020, 31(9): 3060-3066. doi:10.13287/j.1001-9332.202009.021. (in Chinese)

doi: 10.13287/j.1001-9332.202009.021.
[1] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[2] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[6] LIU ShuSen,SUN Hua,SHI Jie,GUO Ning,MA HongXia,ZHANG HaiJian. Grading Criterion of Maize Root Rot Based on Aboveground Symptoms and the Relationship Between Severity and Agronomic Traits [J]. Scientia Agricultura Sinica, 2022, 55(20): 3939-3947.
[7] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[8] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[9] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[10] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[11] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[12] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[13] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
[14] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[15] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!