Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1045-1060.doi: 10.3864/j.issn.0578-1752.2023.06.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism

HE Jiang1,2(), DING Ying2, LOU XiangDi2, JI DongLing1, ZHANG XiangXiang2, WANG YongHui2, ZHANG WeiYang1, WANG ZhiQin1, WANG WeiLu1,3(), YANG JianChang1   

  1. 1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu
    2 Jiangsu Coastal Agricultural Science Research Institute, Yancheng 224002, Jiangsu
    3 Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education/Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2022-06-28 Accepted:2022-08-02 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 The aim of this study was to explore the comprehensive response difference and physiological mechanism of different rice cultivars in response to elevated atmospheric CO2 concentration and nitrogen nutrition. 【Method】 In this study, a rice cultivar Liangyoupeijiu (LY) with high response to CO2 (high-response rice cultivar) and a rice cultivar Nanjing 9108 (NJ) with low response to CO2 (low-response rice cultivar) were selected as materials. Hydroponic experiments were carried out in the climate chamber. Two CO2 treatments and two nitrogen treatments were set up with ambient CO2 concentration (A-CO2, 400 μmol·mol-1) and elevated CO2 concentration (E-CO2, 600 μmol·mol-1), and high nitrogen (HN, 1.25 mmol·L-1 NH4NO3) and low nitrogen (LN, 0.25 mmol·L-1 NH4NO3), respectively. The effects of elevated CO2 concentration on root morphology and physiological activity, cytokinin (CTKs) content in leaves and roots, nitrogen assimilation enzyme activity, physiological characteristics of leaves, photosynthetic parameters, and dry matter accumulation of different rice cultivars were analyzed. 【Result】 (1) E-CO2 significantly increased the total crown root number, total root length (except LN level), total root surface area, and average diameter of LY, improved root respiration rate and maintained high root oxidation power, but had no significant or opposite effects on NJ. (2) Regardless of nitrogen level, E-CO2 significantly increased CTKs content in LY leaves and roots, but significantly decreased zeatin nucleoside (ZR) content in NJ roots at HN level. (3) At LN level, E-CO2 significantly increased GOGAT and GDH activities in LY leaves, but significantly decreased NR activities in NJ leaves. At HN level, the activity of LY nitrogen assimilation enzyme increased under E-CO2 condition, but only NR activity increased in NJ. (4) At LN level, E-CO2 increased the net photosynthetic rate (Pn) of LY and NJ by 28.0% and 29.4%, respectively. At HN level, Pn of the two cultivars increased by 41.0% and 28.1%, respectively. The significant increase in photosynthetic response of LY was attributed to the significant increase in leaf maximum carboxylation efficiency (Vc,max), maximum photosynthetic electron transport efficiency (Jmax), ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) content, chlorophyll content, and leaf nitrogen content. (5) E-CO2 significantly increased the leaf area per plant of LY under different nitrogen levels, but had no significant effect on NJ. (6) E-CO2 significantly increased the organs and total biomass of LY, and the increased level under HN was significantly higher than that under LN level. E-CO2 did not significantly affect the total biomass of NJ under different nitrogen treatments, but significantly reduced the underground biomass of NJ under HN (-16.7%). 【Conclusion】 No matter at the HN or LN treatment, the response of dry matter production and physiological characteristics of LY to E-CO2 was higher than that of NJ. In the early growth stage, LY had better root morphological characters and root activity, higher CTKs content, stronger nitrogen assimilation ability, larger green leaf area and photosynthetic response capacity, which were important reasons accounting for the higher response of dry matter production under E-CO2 conditions.

Key words: rice, elevated CO2 concentration, root morphology, cytokinin, photosynthesis, dry matter production

Table 1

Effect of elevated CO2 concentration on root morphology of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

N水平
N level
品种
Cultivar
二氧化碳水平CO2 level 每穴冠根数
Number of roots
每穴总根长
Total root length (cm/hill)
每穴表面积
Total root surface (cm2/hill)
平均直径
Average diameter (mm)
LN LY A 47.6±3.1cd 2386.1±81.6b 214.7±15.0c 0.29±0.01c
E 60.8±1.1b 2377.6±81.6b 261.1±15.3b 0.35±0.02a
NJ A 43.0±0.9de 2329.2±166.1b 146.3±9.1ef 0.20±0.01e
E 43.1±2.9de 1759.5±116.7e 150.5±10.2ef 0.27±0.01cd
HN LY A 51.9±2.8c 2188.6±107.5bc 185.8±12.1d 0.27±0.01cd
E 77.9±4.6a 3389.2±173.1a 348.0±16.8a 0.32±0.02b
NJ A 40.1±2.8e 2005.9±138.3cd 166.8±8.4de 0.25±0.01d
E 40.1±1.5e 1816.7±114.6de 142.6±8.2f 0.26±0.02d
方差分析 ANOVA
N ** * ** NS
Cultivar ** ** ** **
CO2 ** ** ** **
N×Cultivar ** ** * **
N×CO2 * ** ** **
Cultivar×CO2 ** ** ** NS
N×Cultivar×CO2 * * ** *

Fig. 1

Effect of elevated CO2 concentration on root physiological characteristics of Liangyoupeijiu (LY) and Nanjing 9108 (NJ) LN: Low nitrogen level; HN: High nitrogen level; A: Ambient CO2 (400 μmol·mol-1); E: Elevated CO2 (600 μmol·mol-1); Different lowercase letters indicate significant difference at 0.05 level. The same as below"

Fig. 2

Effect of elevated CO2 concentration on cytokinins in leaves of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

Fig. 3

Effect of elevated CO2 concentration on cytokinins in roots of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

Fig. 4

Effect of elevated CO2 concentration on activities of enzymes in nitrogen assimilation of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

Fig. 5

Effect of elevated CO2 concentration on photosynthesis parameter in leaves of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

Fig. 6

Effect of elevated CO2 concentration on physiological characteristics of leaves of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

Fig. 7

Effect of elevated CO2 concentration on the number of tillers per hill and leaf area per hill of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

Table 2

Effect of elevated CO2 concentration on dry matter accumulation of Liangyoupeijiu (LY) and Nanjing 9108 (NJ)"

氮水平
N level
品种
Cultivar
二氧化碳水平
CO2 level
叶片干重
Leaf dry weight
(g/hill)
茎鞘干重
Stem dry weight
(g/hill)
根系干重
Root dry weight
(g/hill)
地上部单茎干重
Dry weight of shoot per stem (g/stem)
根冠比
R/S
LN LY A 0.29±0.01de 0.23±0.01f 0.18±0.01c 0.23±0.03f 0.34±0.01b
E 0.40±0.02c 0.38±0.02b 0.28±0.01a 0.35±0.03a 0.37±0.02a
NJ A 0.28±0.01e 0.27±0.01de 0.11±0.01de 0.26±0.03ef 0.21±0.02c
E 0.26±0.01e 0.26±0.01e 0.11±0.01de 0.26±0.01de 0.22±0.01c
HN LY A 0.49±0.03b 0.33±0.01c 0.12±0.01de 0.25±0.01ef 0.14±0.01e
E 0.96±0.03a 0.61±0.02a 0.24±0.01b 0.34±0.03ab 0.15±0.01e
NJ A 0.32±0.01d 0.29±0.01de 0.12±0.01d 0.30±0.01bc 0.19±0.01d
E 0.33±0.02d 0.29±0.02d 0.10±0.01e 0.30±0.03cd 0.16±0.01e
方差分析 ANOVA
N ** ** ** * **
Cultivar ** ** ** NS **
CO2 ** ** ** ** NS
N×Cultivar ** ** ** NS **
N×CO2 ** ** NS NS **
Cultivar×CO2 ** ** ** ** **
N×Cultivar×CO2 ** ** NS NS NS

Fig. 8

Correlation analysis of indexes of Liangyoupeijiu (LY) and Nanjing 9108 (NJ) under elevated CO2 concentration Blue and red showed significant positive and negative correlation, while white showed no significant correlation. *: P≤0.05; **: P≤0.01; ***: P≤0.001. LDW: Leaf dry weight; SDW: Stem dry weight; RDW: Root dry weight; TDW: Total dry weight; SPTDW: Dry weight of shoot per stem; R/S: Ratio of root to shoot; LA: Leaf area; Tillers: Number of tillers; NumR: Number of roots; RL: Total root length; RS: Total root surface area; RD: Average root diameter; RrR: Root respiration rate; ROA: Root oxidation power; LCTK: Total cytokinin content in leaves; RCTK: Total cytokinin content in roots; NR: Nitrate reductase activity; GS: Glutamine synthetase activity; GOGAT: Glutamate synthetase activity; GDH: Glutamate dehydrogenase activity; Pn: Leaf net photosynthetic rate; Gs: Stomatal conductance; Vc,max: Maximum carboxylation efficiency; Jmax: Maximum photosynthetic electron transport efficiency; LCC: Chlorophyll content; NC: Leaf nitrogen content; RubiscoC: Ribulose-1,5-bisphosphate carboxylase/oxygenase content"

[1]
IPCC. Climate Change 2013: The Physical Science Basis// Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014.
[2]
GAMAGE D, THOMPSON M, SUTHERLAND M, HIROTSU N, MAKINO A, SENEWEERA S. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant, Cell & Environment, 2018, 41(6): 1233-1246.
[3]
WANG W L, HE J, WANG Z Q, GU J F, LIU L J, ZHANG W Y, ZISKA L H, ZHU J G. Leaf characteristics of rice cultivars with a stronger yield response to projected increases in CO2 concentration. Physiologia Plantarum, 2021, 171(3): 416-423.

doi: 10.1111/ppl.v171.3
[4]
WANG W L, CAI C, HE J, GU J F, ZHU G L, ZHANG W Y, ZHU J G, LIU G. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research, 2020, 248: 107605.

doi: 10.1016/j.fcr.2019.107605
[5]
WANG W L, CAI C, LAM S K, LIU G, ZHU J G. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. European Journal of Agronomy, 2018, 99: 21-29.

doi: 10.1016/j.eja.2018.06.005
[6]
ZISKA L H, TOMECEK M B, GEALY D R. Assessment of cultivated and wild, weedy rice lines to concurrent changes in CO2 concentration and air temperature: Determining traits for enhanced seed yield with increasing atmospheric CO2. Functional Plant Biology, 2014, 41(3): 236.

doi: 10.1071/FP13155
[7]
KIM H Y, LIEFFERING M, KOBAYASHI K, OKADA M, MITCHELL M W, GUMPERTZ M. Effects of free air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 2003, 83(3): 261-270.

doi: 10.1016/S0378-4290(03)00076-5
[8]
YANG L X, WANG Y L, DONG G C, GU H, HUANG J Y, ZHU J G, YANG H J, LIU G, HAN Y. The impact of free air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 2007, 102(2): 128-140.

doi: 10.1016/j.fcr.2007.03.006
[9]
CHEN C, JIANG Q, ZISKA L H, ZHU J G, LIU G, ZHANG J S, NI K, SENEWEERA S, ZHU C W. Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide. Field Crops Research, 2015, 178: 63-68.

doi: 10.1016/j.fcr.2015.03.023
[10]
YANG L X, LIU H J, WANG Y X, ZHU J G, HUANG J Y, LIU G, DONG G C, WANG Y L. Yield formation of CO2enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agriculture, Ecosystems & Environment, 2009, 129(1/3): 193-200.

doi: 10.1016/j.agee.2008.08.016
[11]
ZHU C W, ZHU J G, CAO J, JIANG Q, LIU G, ZISKA L H. Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated CO2. Journal of Experimental Botany, 2014, 65(20): 6049-6056.

doi: 10.1093/jxb/eru344
[12]
YANG L X, LIU H J, WANG Y X, ZHU J G, HUANG J Y, GANG L, DONG G C, WANG Y L. Impact of elevated CO2 concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research, 2009, 112(1): 7-15.

doi: 10.1016/j.fcr.2009.01.008
[13]
周娟, 舒小伟, 赖上坤, 许高平, 黄建晔, 姚友礼, 杨连新, 董桂春, 王余龙. 不同类型水稻品种产量和氮素吸收利用对大气CO2浓度升高响应的差异. 中国水稻科学, 2020, 34(6): 561-573.

doi: 10.16819/j.1001-7216.2020.0404
ZHOU J, SHU X W, LAI S K, XU G P, HUANG J Y, YAO Y L, YANG L X, DONG G C, WANG Y L. Differences in response of grain yield, nitrogen absorption and utilization to elevated CO2 concentration in different rice varieties. Chinese Journal of Rice Science, 2020, 34(6): 561-573. (in Chinese)
[14]
CHEN C P, SAKAI H, TOKIDA T, USUI Y, NAKAMURA H, HASEGAWA T. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar takanari to free air CO2 enrichment. Plant & Cell Physiology, 2014, 55(2): 381-391.
[15]
DAEPP M, SUTER D, ALMEIDA J P F, ISOPP H, HARTWIG U A, FREHNER M, BLUM H, NÖSBERGER J, LÜSCHER A. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology, 2000, 6(7): 805-816.

doi: 10.1046/j.1365-2486.2000.00359.x
[16]
STITT M, KRAPP A. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant, Cell and Environment, 1999, 22: 583-621.

doi: 10.1046/j.1365-3040.1999.00386.x
[17]
TERASHIMA I, YANAGISAWA S, SAKAKIBARA H. Plant responses to CO2: Background and perspectives. Plant & Cell Physiology, 2014, 55(2): 237-240.
[18]
FENG Z Z, RÜTTING T, PLEIJEL H, WALLIN G, REICH P B, KAMMANN C I, NEWTON P C D, KOBAYASHI K, LUO Y J, UDDLING J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Global Change Biology, 2015, 21(8): 3152-3168.

doi: 10.1111/gcb.12938 pmid: 25846203
[19]
戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45(23): 4770-4781.

doi: 10.3864/j.issn.0578-1752.2012.23.003
JI L, LI T X, ZHANG X Z, YU H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Scientia Agricultura Sinica, 2012, 45(23): 4770-4781. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.23.003
[20]
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1): 36-46.
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese)
[21]
YANG L X, WANG Y L, KOBAYASHI K, ZHU J G, HUANG J Y, YANG H J, WANG Y X, DONG G C, LIU G, HAN Y, SHAN Y H, HU J, ZHOU J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biology, 2008, 14(8): 1844-1853.

doi: 10.1111/j.1365-2486.2008.01624.x
[22]
武慧斌, 宋正国, 沈跃, 唐世荣, 刘仲齐. 水稻根系生长发育对CO2浓度升高的响应及其品种间的差异. 生态环境学报, 2014, 23(3): 439-443.
WU H B, SONG Z G, SHEN Y, TANG S R, LIU Z Q. Response of root development on elevated CO2 and its variation among different rice varieties. Ecology and Environmental Sciences, 2014, 23(3): 439-443. (in Chinese)
[23]
庞静, 朱建国, 谢祖彬, 刘钢, 陈改苹, 张雅丽. 开放式空气二氧化碳浓度增高(FACE)条件下水稻的根系活力和氮同化能力. 应用生态学报, 2005, 16(8): 1482-1486.
PANG J, ZHU J G, XIE Z B, LIU G, CHEN G P, ZHANG Y L. Root activity and nitrogen assimilation of rice (Oryza sativa L.) under free-air CO2 enrichment. Chinese Journal of Applied Ecology, 2005, 16(8): 1482-1486. (in Chinese)
[24]
OOKAWA T, NARUOKA Y, SAYAMA A, HIRASAWA T. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Science, 2004, 44(6): 2107-2115.

doi: 10.2135/cropsci2004.2107
[25]
REGUERA M, PELEG Z, ABDEL-TAWAB Y M, TUMIMBANG E B, DELATORRE C A, BLUMWALD E. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiology, 2013, 163(4): 1609-1622.

doi: 10.1104/pp.113.227702 pmid: 24101772
[26]
CRIADO M V, CAPUTO C, ROBERTS I N, CASTRO M A, BARNEIX A J. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology, 2009, 166(16): 1775-1785.

doi: 10.1016/j.jplph.2009.05.007 pmid: 19540618
[27]
HE J, ZHANG W Y, ZHU K Y, WANG Z Q, WANG W L, YANG J C. Advantages linked to root development enhance rice biomass accumulation under elevated carbon dioxide conditions. Agronomy Journal, 2020, 112(5): 4007-4017.

doi: 10.1002/agj2.v112.5
[28]
SHARKEY T D, BERNACCHI C J, FARQUHAR G D, SINGSAAS E L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment, 2007, 30(9): 1035-1040.
[29]
LICHTENTHALER H K, WELLBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983, 11(5): 591-592.

doi: 10.1042/bst0110591
[30]
MAKINO A, OHIRA T M. Photosynthesis and ribulose-1,5- bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Planta, 1985, 166(3): 414-420.

doi: 10.1007/BF00401181
[31]
MAKINO A, MAE T, OHIRA K. Colorimetric measurement of protein stained with coomassie brilliant blue R on sodium dodecyl sulfate-polyacrylamide gel electrophoresis by eluting with formamide. Agricultural and Biological Chemistry, 1986, 50(7): 1911-1912.
[32]
陈薇, 张德颐. 植物组织中硝酸还原酶的提取、测定和纯化. 植物生理学通讯, 1980(4): 45-49.
CHEN W, ZHANG D Y. Extraction, determination and purification of nitrate reductase from Plant tissues. Plant Physiology Journal, 1980(4): 45-49. (in Chinese)
[33]
RHODES D, RENDON G A, STEWART G R. The control of glutamine synthetase level in Lemna minor L. Planta, 1975, 125(3): 201-211.

doi: 10.1007/BF00385596
[34]
LIN C C, KAO C H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regulation, 1996, 18(3): 233-238.

doi: 10.1007/BF00024387
[35]
ANDO T, YOSHIDA S, NISHIYAMA I. Nature of oxidizing power of rice roots. Plant & Soil, 1983, 72(1): 57-71.
[36]
ZHANG H, CHEN T T, WANG Z Q, YANG J C, ZHANG J H. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. Journal of Experimental Botany, 2010, 61(13): 3719-3733.

doi: 10.1093/jxb/erq198 pmid: 20584789
[37]
YANG J C, ZHANG H, ZHANG J H. Root morphology and physiology in relation to the yield formation of rice. Journal of Integrative Agriculture, 2012, 11(6): 920-926.

doi: 10.1016/S2095-3119(12)60082-3
[38]
李志康, 严冬, 薛张逸, 顾逸彪, 李思嘉, 刘立军, 张耗, 王志琴, 杨建昌, 顾骏飞. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨. 中国水稻科学, 2018, 32(4): 311-324.

doi: 10.16819/j.1001-7216.2018.8027
LI Z K, YAN D, XUE Z Y, GU Y B, LI S J, LIU L J, ZHANG H, WANG Z Q, YANG J C, GU J F. Regulations of plant growth and development by cytokinins and their applications in rice production. Chinese Journal of Rice Science, 2018, 32(4): 311-324. (in Chinese)

doi: 10.16819/j.1001-7216.2018.8027
[39]
KIBA T, KUDO T, KOJIMA M, SAKAKIBARA H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 2011, 62(4): 1399-1409.

doi: 10.1093/jxb/erq410 pmid: 21196475
[40]
OOKAWA T, NARUOKA Y, YAMAZAKI T, SUGA J, HIRASAWA T. A comparison of the accumulation and partitioning of nitrogen in plants between two rice cultivars, akenohoshi and nipponbare, at the ripening stage. Plant Production Science, 2003, 6(3): 172-178.

doi: 10.1626/pps.6.172
[41]
SCHAZ U, DÜLL B, REINBOTHE C, BECK E. Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins. AoB Plants, 2014, 10(6): 490-552.
[42]
WANG Y, DU S T, LI L L, HUANG L D, FANG P, LIN X Y, ZHANG Y S, WANG H L. Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Pedosphere, 2009, 19(5): 570-576.

doi: 10.1016/S1002-0160(09)60151-X
[43]
LI X M, ZHANG L H, MA L J, LI Y Y. Elevated carbon dioxide and/or ozone concentrations induce hormonal changes in Pinus tabulaeformis. Journal of Chemical Ecology, 2011, 37(7): 779-784.

doi: 10.1007/s10886-011-9975-7
[44]
LI C R, GAN L J, XIA K, ZHOU X, HEW C S. Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant, Cell & Environment, 2010, 25(3): 369-377.
[45]
YONG J W H, WONG S C, LETHAM D S, HOCART C H, FARQUHAR G D. Effects of elevated CO2 and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiology, 2000, 124(2): 767-780.

doi: 10.1104/pp.124.2.767
[46]
WANG W L, XU X, ZHU C W, GU J F, ZHANG W Y, LIU G, ZHU J G. Elevated CO2induced changes in cytokinin and nitrogen metabolism are associated with different responses in the panicle architecture of two contrasting rice genotypes. Plant Growth Regulation, 2019, 89(2): 119-129.

doi: 10.1007/s10725-019-00511-4
[47]
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63(1): 153-182.

doi: 10.1146/arplant.2012.63.issue-1
[48]
ROBREDO A, PÉREZ-LÓPEZ U, MIRANDA-APODACA J, LACUESTA M, MENA-PETITE A, MUÑOZ-RUEDA A. Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environmental and Experimental Botany, 2011, 71(3): 399-408.
[49]
门中华, 李生秀. CO2浓度对冬小麦氮代谢的影响. 中国农业科学, 2005, 38(2): 320-326.
MEN Z H, LI S X. Effect of CO2 concentration on nitrogen metabolism of winter wheat. Scientia Agricultura Sinica, 2005, 38(2): 320-326. (in Chinese)
[50]
BLOOM A J, BURGER M, ASENSIO J S R, COUSINS A B. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science, 2010, 328(5980): 899-903.

doi: 10.1126/science.1186440
[51]
赵黎明, 李明, 郑殿峰, 顾春梅, 那永光, 解保胜. 灌溉方式与种植密度对寒地水稻产量及光合物质生产特性的影响. 农业工程学报, 2015, 31(6): 159-169.
ZHAO L M, LI M, ZHENG D F, GU C M, NA Y G, XIE B S. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 159-169. (in Chinese)
[52]
WANG J Y, WANG C, CHEN N N, XIONG Z Q, WOLFE D, ZOU J W. Response of rice production to elevated CO2 and its interaction with rising temperature or nitrogen supply: a meta-analysis. Climatic Change, 2015, 130(4): 529-543.

doi: 10.1007/s10584-015-1374-6
[53]
杨海龙, 蔡金洋. 大气CO2浓度和温度升高对水稻生长发育影响的研究进展. 安徽农业科学, 2020, 48(4): 24-27, 30.
YANG H L, CAI J Y. A review on the effects of increasing atmospheric CO2 concentration and temperature on rice growth and development. Journal of Anhui Agricultural Sciences, 2020, 48(4): 24-27, 30. (in Chinese)
[54]
李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46(12): 1819-1830.

doi: 10.3724/SP.J.1006.2020.02027
LI Y S, JIN J, LIU X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review. Acta Agronomica Sinica, 2020, 46(12): 1819-1830. (in Chinese)
[55]
谢立勇, 姜乐, 冯永祥, 赵洪亮, 王惠贞, 林而达. FACE条件下CO2浓度和温度增高对北方水稻光合作用与产量的影响研究. 中国农业大学学报, 2014, 19(3): 101-107.
XIE L Y, JIANG L, FENG Y X, ZHAO H L, WANG H Z, LIN E D. Impacts of elevated CO2and increasing temperature on rice photosynthesis and yield in North China under FACE system. Journal of China Agricultural University, 2014, 19(3): 101-107. (in Chinese)
[56]
CAI C, YIN X Y, HE S Q, JIANG W Y, SI C F, STRUIK P C, LUO W H, LI G, XIE Y T, XIONG Y, PAN G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016, 22(2): 856-874.

doi: 10.1111/gcb.13065
[57]
ARANJUELO I, ERICE G, SANZ-SAEZ A, ABADIE C, GILARD F, GIL-QUINTANA E, AVICE J C, STAUDINGER C, WIENKOOP S, ARAUS J L, BOURGUIGNON J, IRIGOYEN J J, TCHERKEZ G. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.). Plant, Cell & Environment, 2015, 38(12): 2780-2794.
[58]
SENEWEERA S, MAKINO A, HIROTSU N, NORTON R, SUZUKI Y. New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/ oxygenase content in rice leaves. Environmental and Experimental Botany, 2011, 71(2): 128-136.

doi: 10.1016/j.envexpbot.2010.11.002
[59]
LI Y, GAO Y X, XU X M, SHEN Q R, GUO S W. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany, 2009, 60(8): 2351-2360.

doi: 10.1093/jxb/erp127
[60]
邹应斌, 黄见良, 屠乃美, 李合松, 黄升平, 张杨珠. "旺壮重"栽培对双季杂交稻产量形成及生理特性的影响. 作物学报, 2001, 27(3): 343-350.
ZOU Y B, HUANG J L, TU N M, LI H S, HUANG S P, ZHANG Y Z. Effects of the VSW cultural method on yield formation and physiological characteristics in double cropping hybrid rice. Acta Agronomica Sinica, 2001, 27(3): 343-350. (in Chinese)
[61]
AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2004, 165(2): 351-372.

doi: 10.1111/nph.2005.165.issue-2
[62]
KIM H, SUNG N. The effect of ambient pressure on the evaporation of a single droplet and a spray. Combustion and Flame, 2003, 135(3): 261-270.

doi: 10.1016/S0010-2180(03)00165-2
[63]
刘红江, 杨连新, 黄建晔, 董桂春, 朱建国, 刘钢, 王余龙. FACE对杂交籼稻汕优63干物质生产与分配的影响. 农业环境科学学报, 2009, 28(1): 8-14.
LIU H J, YANG L X, HUANG J Y, DONG G C, ZHU J G, LIU G, WANG Y L. Effect of free air CO2 enrichment (FACE) on production and distribution of dry matter of three-line indica hybrid rice cultivar Shanyou 63. Journal of Agro-Environment Sciences, 2009, 28(1): 8-14. (in Chinese)
[64]
YANG L X, HUANG J Y, YANG H J, DONG G C, LIU G, ZHU J G, WANG Y L. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research, 2006, 98(1): 12-19.

doi: 10.1016/j.fcr.2005.11.003
[65]
李春华, 曾青, 沙霖楠, 张继双, 朱建国, 刘钢. 大气CO2浓度和温度升高对水稻地上部干物质积累和分配的影响. 生态环境学报, 2016, 25(8): 1336-1342.

doi: 10.16258/j.cnki.1674-5906.2016.08.012
LI C H, ZENG Q, SHA L N, ZHANG J S, ZHU J G, LIU G. Impacts of elevated atmospheric CO2 and temperature on above-ground dry matter accumulation and distribution of rice (Oryza sativa L.). Ecology and Environmental Sciences, 2016, 25(8): 1336-1342. (in Chinese)
[66]
陈改苹, 朱建国, 谢祖彬, 朱春梧, 程磊, 曾青, 庞静. 开放式空气CO2浓度升高对水稻根系形态的影响. 生态环境, 2005, 14(4): 503-507.
CHEN G P, ZHU J G, XIE Z B, ZHU C W, CHENG L, ZENG Q, PANG J. Effects of free air CO2 enrichment on root morphology of rice. Ecology and Environment, 2005, 14(4): 503-507. (in Chinese)
[67]
张凤哲, 谢立勇, 赵洪亮, 金殿玉. 大气CO2浓度升高条件下施加生物炭对水稻生物量分配及产量的影响. 植物营养与肥料学报, 2021, 27(6): 929-937.
ZHANG F Z, XIE L Y, ZHAO H L, JIN D Y. Synergistic effects of biochar application and elevated atmospheric CO2 concentration on rice biomass allocation and yield. Plant Nutrition and Fertilizer Science, 2021, 27(6): 929-937. (in Chinese)
[68]
WU J J, KRONZUCKER H J, SHI W M. Dynamic analysis of the impact of free-air CO2 enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice. Functional Plant Biology, 2018, 45(7): 696-704.

doi: 10.1071/FP17278
[1] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[2] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[3] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[4] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[5] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[6] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[7] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[15] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!