Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1086-1101.doi: 10.3864/j.issn.0578-1752.2023.06.006

• PLANT PROTECTION • Previous Articles     Next Articles

Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels

QU Qing1,2(), LIU Ning2,3, ZOU JinPeng2,3, ZHANG YaXuan3, JIA Hui3, SUN ManLi2,3, CAO ZhiYan2,3(), DONG JinGao2,3()   

  1. 1 College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei
    2 Hebei Key Laboratory of Plant Physiology and Molecular Pathology/State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei
    3 College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
  • Received:2022-10-27 Accepted:2022-11-23 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 Maize ear rot caused by Fusarium verticillioides is one of the most serious diseases in maize producing areas in China. The objective of this study is to understand the differences in gene expression during the plant-pathogen interaction at different stages, and to provide a basis for pathogenic mechanism of the pathogen infection and resistance mechanism of maize. 【Method】 Illumina platform was used to sequence the transcriptome of maize kernels infected with F. verticillioides at 0, 4, 12, and 72 h. The differentially expressed genes (DEGs) of maize and F. verticillioides were screened with |log2FC|≥1, P-adjust<0.05 as threshold and clean reads were compared with genome of maize and F. verticillioides, separately. Functional annotation and enrichment analysis of DEGs were carried out by using GO and KEGG databases. Goatools software was used to analyze the expression changes of genes related to plant-pathogen interaction, MAPK signaling pathway and plant hormone signal transduction pathway. Sequencing results were verified by quantitative real-time PCR (qRT-PCR). 【Result】 A total of 140, 400 and 1 945 DEGs were up-regulated and 9, 302, and 1 784 DEGs were down-regulated in F. verticillioides after 4, 12 and 72 h interaction, respectively. A total of 293, 692, and 1 426 DEGs were up-regulated and 320, 482, and 153 DEGs were down-regulated in maize after 4, 12 and 72 h interaction, respectively. GO and KEGG enrichment analysis of DEGs showed that F. verticillioides grew in intercellular space at the early stage of pathogen infection. The DEGs were enriched in RNA biosynthesis, cell wall structural component, fatty acid biosynthesis, protein metabolism, carbohydrate metabolism, biological process, and metabolic process. Reactive oxygen species (ROS) was triggered in maize at the early stage of infection. The DEGs were enriched in response to ROS, hydrogen peroxide, chitinase activity, monooxygenase activity, lignin metabolism. At the later stage of infection, F. verticillioides colonized and expanded in maize, and the DEGs were enriched in carbohydrate and cell wall polysaccharide catabolic process, transmembrane transport and oxidoreductase activity. Maize responded to pathogen infection through phenylpropanoid, lignin, flavonoid biosynthesis, MAPK signaling pathway, plant-pathogen interaction and plant hormone signal transduction. Six DEGs of maize and six DEGs of F. verticillioides were randomly selected for qRT-PCR. The results were consistent with those of transcriptome sequencing, which confirmed the accuracy of RNA-seq. 【Conclusion】 At the early stage of infection, F. verticillioides grew in the intercellular space, triggering ROS outbreak in maize and the expression of related pathway differential genes. At the middle and late stages of infection, the pathogen further colonized and expanded in maize with starch as nutrient. Maize responded to the infection of F. verticillioides through biosynthesis of phenylpropanoid, lignin and chitinase. Meanwhile, plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction were involved in the resistance to the infection of F. verticillioides.

Key words: Fusarium verticillioides, maize ear rot, transcriptome, plant-pathogen interaction, gene expression, differentially expressed gene (DEG)

Table 1

Information of the primers for qRT-PCR in this study"

引物名称 Primer name 引物序列 Primer sequence (5′- 3′)
Zm00001d026018-F AGTTTTCACCGATGTTGTTGG
Zm00001d 026018-R TTCCTTGTTGTGTTTCTGCCC
Zm00001d 002540-F TGCGGGGTTGAAGGAAATGT
Zm00001d 002540-R TGCGGGGTTGAAGGAAATGT
Zm00001d 043025-F ATGAAAAGGCTGCCACGAGA
Zm00001d 043025-R GCTCCAGTATCTTCCCCTC
Zm00001d 022017-F TGACCTCTGTACGCCTCTT
Zm00001d 022017-R GGCTCTCCATTTCCTCTTTGTC
Zm00001d 043350-F GCGGTTCTTGAAGTGGTTGCTC
Zm00001d 043350-R CGAGGACAAGACCAGGAACT
Zm00001d 014250-F GATGGGGTGGGAGGAGATGA
Zm00001d 014250-R CCAGAAGAGGAAGGAGAGGAT
UBQ9-F TACAGTTCTACAAGGTGGACGAC
UBQ9-R GCAGTAGTGGCGGTCGAAGT
FVEG_06768-F GTTATTTCCGCCGCCCTTTCA
FVEG_06768-R GCCACCACCAGCCATACTCGT
FVEG_06181-F GAGTCGCACAAAGAACAAGGA
FVEG_06181-R TACAGAAGGATAGGGAAAGCA
FVEG_04041-F CTTCACTCCCGACGACCCCAA
FVEG_04041-R TATGCCCACATCAGAAACCAG
FVEG_06896-F CTGACGCTTCTACTCCTCTCG
FVEG_06896-R GGGTCTCAATGCCCTCAACTC
FVEG_07280-F CCTGTTCTGATTGGTGGTAAG
FVEG_07280-R CCATCGTTTTTGAGTGGTTCC
FVEG_09248-F CTCAGCGGAACCACCACCCCT
FVEG_09248-R ACCTCGGACAGCAACAGCACG
Actin-F TGCTCCTGAGGCTCTCTTCCA
Actin-R AAGCAAGAATAGAACCACCGA

Table 2

Statistics of transcriptome sequencing data"

文库
Library
原始测序数据的
总条目数
Raw reads
质控后测序数据的
总条目数
Clean reads
比对到玉米基因组的
百分比
Total mapped rate (maize) (%)
比对到拟轮枝镰孢
基因组的百分比
Total mapped rate (Fv) (%)
准确率在99.9%以上的
碱基所占百分比
Q30 (%)
Mock_1 51587734 51110882 94.63 - 95.41
Mock_2 50799662 50311356 95.17 - 95.44
Mock_3 44878654 44387490 94.91 - 95.12
Fv_1 46302536 45922668 - 95.19 95.29
Fv_2 50383740 49966126 - 95.28 95.45
Fv_3 41064824 40694544 - 95.28 95.42
Fv4_1 102436676 101474514 95.21 0.05 95.06
Fv4_2 96101768 95247160 95.13 0.05 95.26
Fv4_3 84949414 83492592 94.76 0.04 93.59
Fv12_1 103162526 102019788 95.00 0.07 95.27
Fv12_2 107524620 106427588 95.46 0.05 95.37
Fv12_3 107586942 106395294 95.25 0.06 95.20
Fv72_1 108575700 107478816 93.31 2.27 95.27
Fv72_2 104267510 103103634 91.63 2.27 95.43
Fv72_3 82027324 81228748 92.25 3.21 95.30
-:未比对 Not blast

Fig. 1

Venn of gene expression among samples and DEGs in F. verticillioides"

Fig. 2

Venn of gene expression among samples and DEGs in maize"

Table 3

GO enrichment analysis of DEGs in F. verticillioides at different time points"

侵染时间Infection time GO ID GO功能描述
GO description
功能类别
Term type
基因数量
Gene number
P value
4 h GO:0032774 RNA生物合成过程RNA biosynthetic process BP 9 0.042121302
GO:0034248 细胞酰胺代谢过程的调控Regulation of cellular amide metabolic process BP 2 0.017806275
GO:0006417 调控翻译Regulation of translation BP 2 0.016413092
GO:0005198 结构分子活性Structural molecule activity MF 5 0.023663705
GO:0004553 水解酶活性,水解 O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
MF 6 0.030782616
GO:0016798 水解酶活性,作用于糖基键Hydrolase activity, acting on glycosyl bonds MF 6 0.042898824
GO:0005618 细胞壁Cell wall CC 4 1.60E-06
GO:0009277 真菌类型的细胞壁Fungal-type cell wall CC 3 1.20E-05
GO:0000786 核小体Nucleosome CC 2 0.003814409
12 h GO:0043043 肽生物合成过程Peptide biosynthetic process BP 75 4.61E-07
GO:0006518 肽代谢过程Peptide metabolic process BP 75 5.47E-07
GO:0019538 蛋白质代谢过程Protein metabolic process BP 105 2.42E-06
GO:0005975 碳水化合物代谢过程Carbohydrate metabolic process BP 44 2.92E-06
GO:0044238 初级代谢过程Primary metabolic process BP 205 4.42E-06
GO:0008150 生物过程Biological process BP 359 4.94E-06
GO:0008152 代谢过程Metabolic process BP 263 5.73E-06
GO:0005198 结构分子活性Structural molecule activity MF 77 7.92E-07
GO:0003735 核糖体的结构成分Structural constituent of ribosome MF 71 9.56E-07
GO:0016798 水解酶活性Hydrolase activity MF 27 0.002644
GO:0003723 RNA结合RNA binding MF 35 0.000165
GO:0032991 蛋白质复合物Protein-containing complex CC 108 0.000515
GO:0044464 细胞部分Cell part CC 183 5.33E-05
72 h GO:0005975 碳水化合物代谢过程Carbohydrate metabolic process BP 177 2.74E-10
GO:0044347 细胞壁多糖分解代谢过程Cell wall polysaccharide catabolic process BP 13 0.000117
GO:0055085 跨膜运输Transmembrane transport BP 366 4.16E-10
GO:0003824 催化活性Catalytic activity MF 1430 4.38E-05
GO:0022857 跨膜转运蛋白活性Transmembrane transporter activity MF 239 2.10E-08
GO:0016491 氧化还原酶活性Oxidoreductase activity MF 466 5.60E-08
GO:0005215 转运蛋白活性Transporter activity MF 243 7.30E-08
GO:0016021 膜的组成部分Integral component of membrane CC 1080 1.25E-07
GO:0044425 膜部分Membrane part CC 1090 4.33E-08

Fig. 3

KEGG pathway enrichment of the DEGs in F. verticillioides"

Table 4

GO enrichment analysis of DEGs in maize after inoculation with F. verticillioides at different time points"

侵染时间
Infection time
GO ID GO功能描述
GO description
功能类别
Term type
基因数量
Gene number
P value
4 h GO:0042542 对过氧化氢的反应Response to hydrogen peroxide BP 15 3.90E-11
GO:0000302 对活性氧的反应Response to reactive oxygen species BP 16 5.02E-11
GO:0009628 对非生物刺激的反应Response to abiotic stimulus BP 52 5.25E-11
GO:0004497 单加氧酶活性Monooxygenase activity MF 25 3.31E-08
GO:0016491 氧化还原酶活性Oxidoreductase activity MF 73 1.69E-06
GO:0004568 几丁质酶活性Chitinase activity MF 6 5.52E-05
GO:0022857 跨膜转运蛋白活性Transmembrane transporter activity MF 48 0.00040527
12 h GO:0042542 对过氧化氢的反应Response to hydrogen peroxide BP 15 5.02E-07
GO:0009628 对非生物刺激的反应Response to abiotic stimulus BP 85 2.20E-06
GO:0009808 木质素代谢过程Lignin metabolic process BP 6 0.005347
GO:0004568 几丁质酶活性Chitinase activity MF 13 0.002782
72 h GO:0009699 苯丙素生物合成过程Phenylpropanoid biosynthetic process BP 20 2.29E-07
GO:0009809 木质素生物合成过程Lignin biosynthetic process BP 13 2.60E-07
GO:0009620 对真菌的反应Response to fungus BP 22 3.56E-07
GO:0072593 活性氧代谢过程Reactive oxygen species metabolic process BP 29 6.85E-07
GO:0009694 茉莉酸代谢过程Jasmonic acid metabolic process BP 9 1.55E-05
GO:0009696 水杨酸代谢过程Salicylic acid metabolic process BP 5 5.05E-05
GO:0008610 脂质生物合成过程Lipid biosynthetic process BP 54 0.000134
GO:0004568 几丁质酶活性Chitinase activity MF 11 1.46E-06
GO:0045548 苯丙氨酸解氨酶活性Phenylalanine ammonia-lyase activity MF 7 3.87E-06
GO:0004601 过氧化物酶活性Peroxidase activity MF 27 1.50E-05

Fig. 4

KEGG pathway enrichment of the DEGs in maize inoculated with F. verticillioides at different time points"

Fig. 5

DEGs of plant-pathogen interaction in maize"

Fig. 6

DEGs of MAPK signaling pathway in maize"

Fig. 7

DEGs of plant hormone signal transduction in maize"

Fig. 8

qRT-PCR validation of gene expression at 72 h after inoculation with F. verticillioides"

[1]
DUAN C X, QIN Z H, YANG Z H, LI W X, SUN S L, ZHU Z D, WANG X M. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8(6): 186.

doi: 10.3390/toxins8060186
[2]
RHEEDER J P, MARASAS W F, VISMER H F. Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 2002, 68: 2101-2105.

doi: 10.1128/AEM.68.5.2101-2105.2002
[3]
YAZDANPANAH H, SHEPHARD G S, MARASAS W F, VAN DER WESTHUIZEN L, RAHIMIAN H, SAFAVI S N, ESKANDARI P, GHIASIAN S A. Human dietary exposure to fumonisin B1 from Iranian maize harvested during 1998-2000. Mycopathologia, 2006, 161(6): 395-401.

pmid: 16761187
[4]
SUN G J, WANG S K, HU X, SU J J, HUANG T R, YU J H, TANG L L, GAO W M, WANG J S. Fumonisin B1 contamination of home- grown corn in high-risk areas for esophageal and liver cancer in China. Food Additives and Contaminants, 2007, 24(2): 181-185.

doi: 10.1080/02652030601013471
[5]
GELDERBLOM W C A, SNYMAN S D. Mutagenicity of potentially carcinogenic mycotoxins produced by Fusarium moniliforme. Mycotoxin Research, 1991, 7: 46-52.

doi: 10.1007/BF03192165 pmid: 23605649
[6]
WILSON R A. Magnaporthe oryzae. Trends in Microbiology, 2021, 29(7): 663-664.

doi: 10.1016/j.tim.2021.03.019
[7]
PRITSCH C, MUEHLBAUER G J, BUSHNELL W R, SOMERS D A, VANCE C P. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Molecular Plant-Microbe Interactions, 2000, 13(2): 159-169.

doi: 10.1094/MPMI.2000.13.2.159
[8]
AN H J, LURIE S, GREVE L C, ROSENQUIST D, KIRMIZ C, LABAVITCH J M, LEBRILLA C B. Determination of pathogen- related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls. Analytical Biochemistry, 2005, 338: 71-82.

doi: 10.1016/j.ab.2004.11.004
[9]
PEKKARINEN A, MANNONEN L, JONES B L, NIKU-PAAVOLA M L. Production of proteases by Fusarium species grown on barley grains and in media containing cereal proteins. Journal of Cereal Science, 2000, 31(3): 253-261.

doi: 10.1006/jcrs.2000.0305
[10]
WANYOIKE W M, KANG Z, BUCHENAUER H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat head. European Journal of Plant Pathology, 2002, 108: 803-810.

doi: 10.1023/A:1020847216155
[11]
JONES J D, DANGL J L. The plant immune system. Nature, 2006, 444(7117): 323-329.

doi: 10.1038/nature05286
[12]
MILLER G, SHULAEV V, MITTLER R. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 2008, 133(3): 481-489.

doi: 10.1111/j.1399-3054.2008.01090.x
[13]
GADJEV I, VANDERAUWERA S, GECHEV T S, LALOI C, MINKOV I N, SHULAEV V, APEL K, INZE D, MITTLER R, BREUSEGEM F V. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiology, 2006, 141(2): 436-445.

doi: 10.1104/pp.106.078717
[14]
BARI R, JONES J D. Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69(4): 473-488.

doi: 10.1007/s11103-008-9435-0 pmid: 19083153
[15]
NAVARRO L, BARI R, ACHARD P, LISON P, NEMRI A, HARBERD N P, JONES J D G. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Current Biology, 2008, 18(9): 650-655.

doi: 10.1016/j.cub.2008.03.060 pmid: 18450451
[16]
AMIL-RUIZ F, GARRIDO-GALA J, GADEA J, BLANCO- PORTALES R, MUNOZ-MERIDA A, TRELLES O, DE LOS SANTOS B, ARROYO F T, AGUADO-PUIG A, ROMERO F, MERCADO J A, PLIEGO-ALFARO F, MUNOZ-BLANCO J, CABALLERO J L. Partial activation of SA- and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction. Frontiers in Plant Science, 2016, 7: 1036.
[17]
GORMAN Z, CHRISTENSEN S A, YAN Y, HE Y, BORREGO E, KOLOMIETS M V. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Molecular Plant Pathology, 2020, 21(5): 702-715.

doi: 10.1111/mpp.v21.5
[18]
刘俊. 拟轮枝镰孢和层出镰孢侵染玉米果穗的途径及镰孢菌病害防治[D]. 保定: 河北农业大学, 2017.
LIU J. The pathway of infecting ear by Fusarium verticillioide and Fusarium proliferatum and Fusarium disease control[D]. Baoding: Hebei Agricultural University, 2017. (in Chinese)
[19]
WANG Y P, ZHOU Z J, GAO J Y, WU Y B, XIA Z L, ZHANG H Y, WU J Y. The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Frontiers in Plant Science, 2016, 7: 1654.
[20]
LANUBILE A, FERRARINI A, MASCHIETTO V, DELLEDONNE M, MAROCCO A, BELLIN D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014, 15(1): 710.

doi: 10.1186/1471-2164-15-710
[21]
SHU X M, LIVINGSTON D P, FRANKS R G, BOSTON R S, WOLOSHUK C P, PAYNE G A. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides. Molecular Plant Pathology, 2015, 16(7): 662-674.

doi: 10.1111/mpp.2015.16.issue-7
[22]
唐科志, 周常勇. 红橘响应褐斑病菌侵染的转录组学分析. 中国农业科学, 2020, 53(22): 4584-4600.

doi: 10.3864/j.issn.0578-1752.2020.22.006
TANG K Z, ZHOU C Y. Transcriptome analysis of Citrus reticulata Blanco, cv. Hongjv infected with Alternaria alternata tangerine pathotype. Scientia Agricultura Sinica, 2020, 53(22): 4584-4600. (in Chinese)
[23]
滕彩玲, 钟晰, 吴昊娣, 胡燕, 周常勇, 王雪峰. 马蜂柑响应黄龙病菌不同侵染时期的生物学和转录组学分析. 中国农业科学, 2020, 53(7): 1368-1380.

doi: 10.3864/j.issn.0578-1752.2020.07.007
TENG C L, ZHONG X, WU H D, HU Y, ZHOU C Y, WANG X F. Biologic and transcriptomic analysis of Citrus hystrix responses to ‘Candidatus Liberibacter asiaticus’ at different infection stages. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380. (in Chinese)
[24]
史毅, 牛奎举, 马晖玲. 匍匐翦股颖接种立枯丝核菌后基因表达变化的转录组学分析. 中国农业科学, 2017, 50(17): 3323-3336.

doi: 10.3864/j.issn.0578-1752.2017.17.007
SHI Y, NIU K J, MA H L. Transcriptome analysis of creeping bentgrass (Agrostis stolonifera) infected with Rhizoctonia solani. Scientia Agricultura Sinica, 2017, 50(17): 3323-3336. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.17.007
[25]
CALVO A M, HINZE L L, GARDNER H W, KELLER N P. Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp.. Applied and Environmental Microbiology, 1999, 65(8): 3668-3673.

doi: 10.1128/AEM.65.8.3668-3673.1999
[26]
TSITSIGIANNIS D I, KOWIESKI T M, ZARNOWSKI R, KELLER N P. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology, 2005, 151(6): 1809-1821.

doi: 10.1099/mic.0.27880-0
[27]
晏石娟, 黄文洁, 刘春明. 脂肪酸及其氧合物对曲霉属真菌菌丝生长、产孢和黄曲霉毒素合成的影响. 微生物学报, 2017, 57(1): 24-32.
YAN S J, HUANG W J, LIU C M. Effects of fatty acids and oxylipins on fungal growth, sporulation and aflatoxin production in Aspergillus. Acta Microbiologica Sinica, 2017, 57(1): 24-32. (in Chinese)
[28]
BIGEARD J, COLCOMBET J, HIRT H. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 2015, 8(4): 521-539.

doi: 10.1016/j.molp.2014.12.022 pmid: 25744358
[29]
MITTLER R. ROS are good. Trends in Plant Science, 2017, 22: 11-19.

doi: S1360-1385(16)30112-1 pmid: 27666517
[30]
TSUDA K, KATAGIRI F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 2010, 13(4): 459-465.

doi: 10.1016/j.pbi.2010.04.006 pmid: 20471306
[31]
JIA L J, TANG H Y, WANG W Q, YUAN T L, WEI W Q, PANG B, GONG X M, WANG S F, LI Y J, ZHANG D, LIU W, TANG W H. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nature Communications, 2019, 10(1): 922.

doi: 10.1038/s41467-019-08726-9
[32]
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209.

doi: 10.1111/jipb.v63.1
[33]
LANUBILE A, MASCHIETTO V, BORRELLI V M, STAGNATI L, LOGRIECO A F, MAROCCO A. Molecular basis of resistance to Fusarium ear rot in maize. Frontiers in Plant Science, 2017, 8: 1774.

doi: 10.3389/fpls.2017.01774
[34]
ZHANG Y, WU L, WANG X, CHEN B, ZHAO J, CUI J, LI Z, YANG J, WU L, WU J, ZHANG G, MA Z. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence- induced lignification and lignin components in the cell walls of plants. Molecular Plant Pathology, 2019, 20(3): 309-322.

doi: 10.1111/mpp.2019.20.issue-3
[35]
MENG X, ZHANG S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013, 51: 245-266.

doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002
[36]
LIAO C J, LAI Z, LEE S, YUN D J, MENGISTE T. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin. The Plant Cell, 2016, 28(7): 1662-1681.
[37]
ZHANG X, MENARD R, LI Y, CORUZZI G M, HEITZ T, SHEN W H, BERR A. Arabidopsis SDG8 potentiates the sustainable transcriptional induction of the pathogenesis-related genes PR1 and PR2 during plant defense response. Frontiers in Plant Science, 2020, 11: 277.

doi: 10.3389/fpls.2020.00277
[38]
ZHENG Z, QAMAR S A, CHEN Z, MENGISTE T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 2006, 48(4): 592-605.

doi: 10.1111/tpj.2006.48.issue-4
[39]
BIRKENBIHL R P, DIEZEL C, SOMSSICH I E. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology, 2012, 159(1): 266-285.

doi: 10.1104/pp.111.192641
[1] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[2] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[3] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[4] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[5] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[6] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[7] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[8] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[11] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[12] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[13] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[14] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[15] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!