Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 1-16.doi: 10.3864/j.issn.0578-1752.2023.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China

WANG CaiXiang1(),YUAN WenMin1(),LIU JuanJuan1,XIE XiaoYu1,MA Qi2,JU JiSheng1,CHEN Da1,WANG Ning3,FENG KeYun3,SU JunJi1()   

  1. 1. College of Life Science and Technology, Gansu Agricultural University/State Key Laboratory of Aridland Crop Science, Lanzhou 730070
    2. Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang
    3. Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2022-07-21 Accepted:2022-08-29 Online:2023-01-01 Published:2023-01-17
  • Contact: JunJi SU E-mail:wangcx8050@163.com;yuanwm2022@163.com;sujj@gsau.edu.cn

Abstract:

【Objective】This paper evaluated comprehensively early maturity upland cotton varieties in northwest inland cotton-growing region of China, and uncovered the evolution rules of the main traits from the breeding cultivars in the region. It provides a useful reference for recommendation and breeding of main cotton varieties in northwest inland region. 【Method】A total of 110 early-maturing upland cotton varieties which were approved in northwest inland cotton-growing region from 1988 to 2021 were applied, and phenotypic identification of 12 main traits related to early maturity, yield, fiber quality and plant architecture was carried out in Dunhuang, Gansu province and Shihezi, Xinjiang Production and Construction Corps in 2020 and 2021, respectively. Clustering analysis, correlation analysis and principal component analysis were respectively used to evaluate the phenotypic characteristics of the cultivars, and carry out the breeding evolution analysis of their main traits. 【Result】The phenotype value of 12 main traits had large distribution range from 110 early-maturing upland cotton varieties in northwest inland cotton-growing region of China. The variation coefficient in descending order is: fruit branch length (FBL), boll number per plant (BN), boll opening rate (BOR), boll weight (BW), fiber micronaire (FM), fiber strength (FS), lint percentage (LP), fiber length (FL), flowering time (FT), fruit branch angle (FBA), fiber elongation (FE), and fiber uniformity (FU). By cluster analysis, these cultivars were divided into four groups: Ⅰ, Ⅱ, Ⅲ and Ⅳ, which were the population of high fiber quality, early maturity, loose plant type and high yield, respectively. Correlation analysis showed that early maturity was negatively correlated with yield and fiber quality related to traits, while the yield related to traits were positively correlated with the fiber quality traits, and most of them reached significant or extremely significant level. The 12 main traits were simplified into four principal components which had cumulative contribution rate of 66.92%. Based on the comprehensive evaluation results of these varieties by principal components, an excellent cultivar Zhongmian 113 ranked the first in the 110 early-maturing upland cotton varieties with a score of 0.67, which was characterized by early maturity, high yield and excellent fiber quality, and relatively loose plant type. Additionally, it was found that the early maturity character of cotton varieties approved in Gansu province was significantly better than that of varieties approved in northwest inland region and Xinjiang province, and the traits related to yield and fiber quality of cotton varieties approved in Gansu province were significantly lower than those of varieties approved in northwest inland region and Xinjiang province. During the breeding evolution of early maturing upland cotton varieties in northwest of China for more than 30 years, most of the traits related to yield and fiber quality showed significant upward trends, and the plant type was becoming more compact. BN was negatively correlated with BW, LP, FL and FS in early cultivars, while BN was positively correlated with BW, LP, FL and FS in recent cultivars. 【Conclusion】In the process of breeding and improvement of early maturing upland cotton varieties in northwest of China, the main traits related to yield and fiber quality had wide distribution, and they had significant improvement trends year by year. In the recently developed varieties, BN, FL and FS had been improved cooperatively.

Key words: upland cotton, early maturity, yield, fiber quality, plant architecture, northwest inland cotton-growing region of China, breeding evolution

Table 1

Descriptive statistics of 12 main traits of early maturing upland cotton varieties"

性状
Trait
环境
Env.
最小值
Min
最大值
Max
平均值
Mean
标准差
SD
变异系数
CV (%)
开花时间
FT (d)
敦煌DH 64.00 84.33 75.74 3.10 4.09
石河子SHZ 64.33 81.33 74.90 2.98 3.98
平均Mean 67.00 80.83 75.31 3.02 4.01
吐絮率
BOR (%)
敦煌DH 43.28 100.00 82.31 10.36 12.59
石河子SHZ 32.91 98.99 74.18 12.23 16.48
平均Mean 43.13 98.85 78.25 11.08 14.17
单株结铃数
BN
敦煌DH 2.10 12.60 6.81 1.26 18.46
石河子SHZ 3.40 9.50 5.90 1.26 21.44
平均Mean 3.58 9.57 6.35 1.23 19.32
单铃重
BW (g)
敦煌DH 3.72 6.99 5.73 0.62 10.75
石河子SHZ 4.19 6.60 5.37 0.41 7.58
平均Mean 4.20 6.72 5.55 0.47 8.45
衣分
LP (%)
敦煌DH 29.72 48.49 41.23 2.69 6.52
石河子SHZ 32.99 50.08 42.60 2.65 6.21
平均Mean 31.35 48.94 41.91 2.64 6.3
纤维长度
FL (mm)
敦煌DH 24.93 32.70 29.58 1.45 4.90
石河子SHZ 25.29 33.58 29.67 1.42 4.80
平均Mean 25.11 33.14 29.62 1.44 4.85
纤维强度
FS (cN·tex-1)
敦煌DH 22.47 35.39 29.30 2.19 7.46
石河子SHZ 22.95 35.35 30.05 2.23 7.42
平均Mean 22.71 34.91 29.67 2.22 7.48
马克隆值
FM
敦煌DH 3.56 5.59 4.55 0.36 7.95
石河子SHZ 3.44 5.66 4.42 0.35 7.97
平均Mean 3.5 5.5 4.48 0.35 7.90
整齐度
FU (%)
敦煌DH 79.30 87.35 84.71 1.18 1.40
石河子SHZ 82.20 87.53 85.07 1.06 1.25
平均Mean 80.9 86.9 84.88 1.07 1.26
伸长率
FE (%)
敦煌DH 6.37 7.13 6.83 0.13 1.92
石河子SHZ 6.30 7.23 6.90 0.15 2.17
平均Mean 6.33 7.18 6.86 0.14 2.00
果枝夹角
FBA (°)
敦煌DH 48.33 60.60 53.04 2.02 3.81
石河子SHZ 39.16 56.76 51.30 1.61 3.13
平均Mean 45.29 57.72 52.16 1.81 3.47
果枝长度
FBL (cm)
敦煌DH 3.94 33.70 10.16 3.66 36.02
石河子SHZ 3.27 14.99 7.64 2.63 34.41
平均Mean 3.67 19.4 8.9 3.05 34.22

Fig. 1

A cluster dendrogram of early-maturing upland cotton varieties based on phenotypic traits"

Fig. 2

Correlation of 12 main traits among early-maturing upland cotton varieties * and ** indicate the significance level of 0.05 and 0.01, respectively"

Table 2

Principal component analysis of main traits of early maturing upland cotton varieties"

性状
Trait
主成分Principal component
PC1 PC2 PC3 PC4
开花时间FT 0.562 -0.506 0.103 -0.411
吐絮率BOR -0.599 0.544 -0.215 0.173
单株结铃数BN 0.138 0.16 0.468 0.139
单铃重BW 0.423 -0.068 -0.069 -0.489
衣分LP 0.127 0.39 0.492 -0.201
纤维长度FL 0.902 0.064 -0.135 0.207
整齐度FU 0.802 0.274 0.214 0.19
马克隆值FM -0.365 0.317 0.672 0.026
纤维强度FS 0.799 0.212 -0.319 0.271
伸长率FE 0.797 0.191 0.185 0.174
果枝长度FBL 0.044 -0.647 0.5 0.184
果枝夹角FBA -0.224 -0.499 0.02 0.649
特征值Eigenvalue 3.805 1.664 1.424 1.137
贡献率Contribution rate (%) 31.71 13.864 11.867 9.476
累积贡献率Cumulative contribution rate (%) 31.71 45.574 57.44 66.916
贡献率权重Contribution rate weight 0.474 0.207 0.178 0.142

Table 3

Comparative analysis of 9 key traits of top ten early maturing upland cotton varieties"

品种
<BOLD>V</BOLD>ariety
评分
Score
开花时间
FT
(d)
吐絮率
BOR
(%)
单株铃数
BN
单铃重
BW
(g)
衣分
LP
(%)
纤维长度
FL
(mm)
纤维强度
FS
(cN·tex-1)
果枝长度
FBL
(cm)
果枝夹角FBA
(°)
中棉113 Zhongmian113 0.67 68b 88.01ab 7.39ab 5.29cd 48.95a 30.34b 30.71cd 8.79ab 55.35a
金垦1565 Jinken1565 0.66 75a 74.45bc 7.07abc 5.33cd 40.00e 31.16ab 33.15ab 9.30a 52.35bc
Y21 0.63 74ab 77.61bc 7.18abc 5.43cd 40.76e 30.91ab 29.64de 6.36de 50.67de
金科20 Jinke20 0.62 76a 53.47d 8.35a 5.86abc 43.40cd 32.16a 31.20bcd 5.68e 51.03de
Z11-46 0.61 78a 64.54cd 6.65bcd 5.38cd 41.54de 31.12ab 31.29bcd 7.04cd 51.53cd
H216 0.61 76a 75.36bc 6.23bcd 6.40a 44.04bc 31.56ab 33.68a 6.04de 48.70f
庄稼汉902 Zhuangjiahan902 0.60 76a 63.97cd 6.70bcd 5.57bcd 43.74bc 30.98ab 31.22bcd 7.68bc 50.48de
Z1112 0.59 77a 68.51c 6.03cde 6.16ab 43.21cd 30.62ab 32.24abc 8.70ab 53.35bc
新陆早40号Xinluzao40 0.59 74ab 86.00ab 5.40e 5.05d 45.43b 30.98ab 33.72a 4.29f 50.27e
新陆早53号Xinluzao53 0.59 76a 92.84a 5.50de 5.60bcd 42.62cd 28.39c 28.38e 8.17abc 51.00de

Fig. 3

Comparison of the main agronomic characters of early maturing upland cotton varieties in three different approved regions Different lowercase letters indicate the significance level of 0.05. The same as below"

Fig. 4

Evolution trend of the main characters of early maturing upland cotton varieties in different ages"

Table 4

Correlation analysis of 12 main traits in early and recently developed varieties"

性状
Trait
育成时期Approved period 开花
时间
FT
吐絮率
BOR
单株
铃数
BN
单铃重
BW
衣分
LP
纤维
长度
FL
纤维
强度
FS
马克
隆值
FM
整齐度
FU
伸长率
FE
果枝
长度
FBL
果枝
夹角
FBA
开花时间
FT
早期 Early 1
近期Recently 1
吐絮率
BOR
早期Early -0.68** 1
近期Recently -0.59** 1
单株铃数
BN
早期Early -0.20 -0.04 1
近期Recently 0.06 -0.15 1
单铃重
BW
早期Early 0.27 -0.16 -0.20 1
近期Recently 0.25 -0.24 0.12 1
衣分
LP
早期Early -0.13 0.10 -0.01 0.03 1
近期Recently 0.15 0.03 0.05 0.09 1
纤维长度
FL
早期Early 0.24 -0.32* -0.27 0.40** 0.06 1
近期Recently 0.51** -0.64** 0.20 0.15 0.11 1
纤维强度
FS
早期Early 0.05 -0.06 -0.31* 0.35* 0.11 0.87** 1
近期Recently 0.37** -0.50** 0.06 0.20 0.11 0.70** 1
马克隆值
FM
早期Early -0.16 0.17 0.30* -0.20 0.33* -0.39** -0.39** 1
近期Recently -0.46** 0.31* -0.05 -0.11 -0.02 -0.57** -0.53** 1
整齐度
FU
早期Early 0.19 -0.30* -0.10 -0.29* 0.25 0.73** 0.66** 0.05 1
近期Recently 0.55** -0.36** -0.03 0.13 0.19 0.49** 0.43** -0.08 1
伸长率
FE
早期Early 0.24 -0.29* -0.09 0.33* 0.17 0.61** 0.50** 0.06 0.73** 1
近期Recently 0.36** -0.61** 0.01 0.20 0.06 0.59** 0.56** -0.11 0.58** 1
果枝长度
FBL
早期Early 0.46** -0.60** 0.06 -0.12 -0.19 -0.11 -0.32* 0.09 -0.10 0.01 1
近期Recently 0.01 -0.01 0.01 0.27* 0.18 0.06 0.09 0.02 0.08 -0.03 1
果枝夹角
FBL
早期Early 0.05 -0.13 -0.08 -0.04 -0.25 -0.14 -0.15 -0.310* -0.39** -0.30* 0.34* 1
近期Recently -0.27 0.19 -0.21 -0.33** -0.10 -0.18 -0.08 0.282* -0.18 -0.02 0.27* 1
[1] 喻树迅, 张雷, 冯文娟. 快乐植棉——中国棉花生产的发展方向. 棉花学报, 2015, 27(3): 283-290.
YU S X, ZHANG L, FENG W J. Easy and enjoyable cotton cultivation: Developments in China’s cotton production. Cotton Science, 2015, 27(3): 283-290. (in Chinese)
[2] 黄滋康, 崔读昌. 中国棉花生态区划. 棉花学报, 2002, 14(3): 185-190.
HUANG Z K, CUI D C. Ecological regionalization of cotton production in China. Cotton Science, 2002, 14(3): 185-190. (in Chinese)
[3] 乔银桃, 孙世贤, 赵素琴, 杨晓妮, 许乃银. 我国西北内陆棉花品种生态区划分与试验环境评价. 中国生态农业学报, 2022, 30(8): 1301-1308.
QIAO Y T, SUN S X, ZHAO S Q, YANG X N, XU N Y. Cotton mega-environment investigation and test environment evaluation for the national cotton variety trials in the northwest inland cotton production region. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1301-1308. (in Chinese)
[4] 喻树迅. 21世纪初新疆棉区的育种方向. 中国棉花, 1999, 26(2): 2-3.
YU S X. Breeding direction in Xinjiang cotton area at the beginning of 21st century. China Cotton, 1999, 26(2): 2-3. (in Chinese)
[5] 董承光, 王娟, 周小凤, 马晓梅, 李生秀, 王旭文, 肖光顺, 李保成. 新疆早熟陆地棉早熟性状的遗传分析. 西北农业学报, 2014, 23(12): 96-101.
DONG C G, WANG J, ZHOU X F, MA X M, LI S X, WANG X W, XIAO G S, LI B C. Inheritance of earliness traits in Xinjiang early-Maturity upland cotton (G. hirsutum L.). Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(12): 96-101. (in Chinese)
[6] 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测. 中国农业科学, 2022, 55(2): 248-264.
XIE X Y, WANG K H, QIN X X, WANG C X, SHI C H, NING X Z, YANG Y L, QIN J H, LI C Z, MA Q, SU J J. Restricted two-stage multi-locus genome-wide association analysis and candidate gene prediction of boll opening rate in upland cotton. Scientia Agricultura Sinica, 2022, 55(2): 248-264. (in Chinese)
[7] 喻树迅, 黄祯茂. 短季棉品种早熟性构成因素的遗传分析. 中国农业科学, 1990, 23(6): 48-54.
YU S X, HUANG Z M. Genetic analysis of precocious factors of cotton varieties in the short season. Scientia Agricultura Sinica, 1990, 23(6): 48-54. (in Chinese)
[8] 喻树迅, 王寒涛, 魏恒玲, 宿俊吉. 棉花早熟性研究进展及其应用. 棉花学报, 2017, 29(S1): 1-10.
YU S X, WANG H T, WEI H L, SU J J. Research progress and application of early maturity in upland cotton. Cotton Science, 2017, 29(S1): 1-10. (in Chinese)
[9] 董章辉, 赵丽芬, 赵彦坤, 眭书祥, 张艳丽, 王虎, 李增书, 李爱国, 朱青竹. 83份早熟抗虫棉种质资源的SSR标记聚类分析. 华北农学报, 2015, 30(S1): 46-50.
doi: 10.7668/hbnxb.2015.S1.008
DONG Z H, ZHAO L F, ZHAO Y K, SUI S X, ZHANG Y L, WANG H, LI Z S, LI A G, ZHU Q Z. Cluster analysis in 83 early-maturing cotton germplasms by SSR markers. Acta Agriculturae Boreali-Sinica, 2015, 30(S1): 46-50. (in Chinese)
doi: 10.7668/hbnxb.2015.S1.008
[10] 徐敏, 胡玉枢, 李憬霖, 金路路, 王子胜. 早熟棉创新种质资源主要性状聚类及相关分析. 作物杂志, 2017(1): 25-31.
XU M, HU Y S, LI J L, JIN L L, WANG Z S. Clustering and correlation analysis of earlier-mature cotton innovation germplasm based on biological characters. Crops, 2017(1): 25-31. (in Chinese)
[11] 徐濉喜, 王旭文, 田琴, 孔宪辉, 刘丽, 司爱君, 王娟, 余渝. 新疆早熟陆地棉种质资源遗传多样性及纤维品质性状SSR关联分析. 棉花学报, 2020, 32(3): 233-246.
XU S X, WANG X W, TIAN Q, KONG X H, LIU L, SI A J, WANG J, YU Y. Genetic diversity and association analysis of fiber quality traits with SSR markers in germplasm resources of early maturity upland cotton in Xinjiang. Cotton Science, 2020, 32(3): 233-246. (in Chinese)
[12] SU J J, MA Q, LI M, HAO F S, WANG C X. Multi-locus genome-wide association studies of fiber-quality related traits in Chinese early-maturity upland cotton. Frontiers in Plant Science, 2018, 9: 1169.
doi: 10.3389/fpls.2018.01169 pmid: 30166989
[13] SU J J, WANG C X, HAO F S, MA Q, WANG J, LI J L, NING X Z. Genetic detection of lint percentage applying single-locus and multi-locus genome-wide association studies in Chinese early- maturity upland cotton. Frontiers in Plant Science, 2019, 10: 964.
doi: 10.3389/fpls.2019.00964
[14] 农业部种植业管理司. 棉花术语: NY/T 2673-2015.(2018-12-03) [2019-04-01]. https://hbba.sacinfo.org.cn/stdDetail/19a69ecf081dde849d9d43e298545f900962f9b3ea6e242a406861df9275962b.
Planting Management Department of Ministry of Agriculture of the People’s Republic of China. Agricultural Industry Standard of the People’s Republic of China: NY/T 2673-2015. (2018-12-03) [2019-04-01]. https://hbba.sacinfo.org.cn/stdDetail/19a69ecf081dde849d9d43e298545f900962f9b3ea6e242a406861df9275962b. (in Chinese)
[15] FENG L, DAI J L, TIAN L W, ZHANG H J, LI W J, DONG H Z. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Research, 2017, 208: 18-26.
doi: 10.1016/j.fcr.2017.03.008
[16] 潘旭东, 孙自武, 冯亚静, 刘启斌, 张凤华. 新疆北疆不同积温条件下棉花生育进程及生长解析. 中国农学通报, 2011, 27(5): 274-280.
PAN X D, SUN Z W, FENG Y J, LIU Q B, ZHANG F H. Growth stage and growth analysis on cotton with different accumulate temperature in North of Xinjiang. Chinese Agricultural Science Bulletin, 2011, 27(5): 274-280. (in Chinese)
[17] 鲍玉琴, 刘安全, 陈庆宽, 李春平, 刘忠山, 张大伟, 徐建辉. 北疆早熟棉机械采收的发展趋势与品种选择. 中国棉花, 2014, 41(9): 44-45.
BAO Y Q, LIU A Q, CHEN Q K, LI C P, LIU Z S, ZHANG D W, XU J H. Development trend and variety choice of mechanical harvest of precocious cotton in the north of Xinjiang. China Cotton, 2014, 41(9): 44-45. (in Chinese)
[18] 胡渊, 胡新民. 试论南疆植棉区棉花品种布局. 中国棉花, 1997(8): 2-3.
HU Y, HU X M. Discussion on the layout of suitable cotton varieties in southern Xinjiang. China Cotton, 1997(8): 2-3. (in Chinese)
[19] 王香茹, 张恒恒, 胡莉婷, 庞念厂, 董强, 贵会平, 宋美珍, 张西岭. 新疆棉区棉花脱叶催熟剂的筛选研究. 中国棉花, 2018, 45(2): 8-14.
WANG X R, ZHANG H H, HU L T, PANG N C, DONG Q, GUI H P, SONG M Z, ZHANG X L. Screening for suitable cotton harvest aids in Xinjiang. China Cotton, 2018, 45(2): 8-14. (in Chinese)
[20] 高丽丽. 脱叶剂喷施时间对棉花生理调节效应的研究[D]. 乌鲁木齐: 新疆农业大学, 2016.
GAO L L. Study of defoliants spraying time on cotton physiological mechanism[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese)
[21] 聂新辉, 尤春源, 鲍健, 李晓方, 惠慧, 刘洪亮, 秦江鸿, 林忠旭. 基于关联分析的新陆早棉花品种农艺和纤维品质性状优异等位基因挖掘. 中国农业科学, 2015, 48(15): 2891-2910.
NIE X H, YOU C Y, BAO J, LI X F, HUI H, LIU H L, QIN J H, LIN Z X. Exploration of elite alleles of agronomic and fiber quality traits in Xinluzao cotton varieties by association analysis. Scientia Agricultura Sinica, 2015, 48(15): 2891-2910. (in Chinese)
[22] 承泓良, 喻树迅. 试论我国短季棉的发展前景及其技术对策. 中国棉花, 1994(4): 2-4.
CHENG H L, YU S X. Studies on the earliness inheritance of upland cottons (G. hirsutum L.). China Cotton, 1994(4): 2-4. (in Chinese)
[23] 宋美珍, 喻树迅, 范术丽, 原日红, 黄祯茂. 短季棉主要农艺性状的遗传分析. 棉花学报, 2005, 17(2): 94-98.
SONG M Z, YU S X, FAN S L, YUAN R H, HUANG Z M. Genetic analysis of main agronomic traits in short season upland cotton. Cotton Science, 2005, 17(2): 94-98. (in Chinese)
[24] 范术丽, 喻树迅, 原日红, 宋美珍. 短季棉早熟性的遗传效应及其与环境互作研究. 西北植物学报, 2006, 26(11): 2270-2275.
FAN S L, YU S X, YUAN R H, SONG M Z. Genetic effects and environmental interactions of early maturity in short-season cotton. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(11): 2270-2275. (in Chinese)
[25] SU J J, PANG C Y, WEI H L, LI L B, LIANG B, WANG C X, SONG M Z, WANG H T, ZHAO S Q, JIA X Y, MAO GZ, HUANG L, GENG D D, WANG C S, FAN S L, YU S X. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics, 2016, 17(1): 687.
doi: 10.1186/s12864-016-2875-z
[26] 张志鹏, 李菁, 林参, 王兴龙, 严卫古, 朱明超. 104个粳稻品种(系)的产量性状遗传多样性分析及优良种质资源筛选. 大麦与谷类科学, 2022, 39(3): 22-34.
ZHANG Z P, LI J, LIN S, WANG X L, YAN W G, ZHU M C. Genetic diversity analysis of yield-related traits and selection of superior germplasm from 104 geng rice varieties (lines). Barley and Cereal Sciences, 2022, 39(3): 22-34. (in Chinese)
[27] 黎松松, 赖建军, 张红梅, 崔晓艳, 刘晓庆, 陈新, 朱月林, 陈华涛. 江苏鲜食春大豆种质资源表型鉴定及综合评价. 大豆科学, 2022, 41(4): 385-396.
LI S S, LAI J J, ZHANG H M, CUI X Y, LIU X Q, CHEN X, ZHU Y L, CHEN H T. Phenotyping identification and comprehensive evaluation of fresh spring soybean germplasms in Jiangsu province. Soybean Science, 2022, 41(4): 385-396. (in Chinese)
[28] 徐泽俊, 齐玉军, 邢兴华, 童飞, 王幸. 黄淮海大豆种质农艺与品质性状分析及综合评价. 植物遗传资源学报, 2022, 23(2): 468-479.
XU Z J, QI Y J, XING X H, TONG F, WANG X. Analysis and evaluation of agronomic and quality traits in soybean germplasms from Huang-Huai-Hai region. Journal of Plant Genetic Resources, 2022, 23(2): 468-479. (in Chinese)
[29] 白雪花, 王延周, 魏忆萍, 马永红, 饶晶, 高馨悦, 扶雅芬, 王满生, 刘头明, 朱四元. 298份苎麻种质资源纤维产量性状综合评价. 植物遗传资源学报, 2022, 23(1): 106-122.
BAI X H, WANG Y Z, WEI Y P, MA Y H, RAO J, GAO X Y, FU Y F, WANG M S, LIU T M, ZHU S Y. Comprehensive evaluation of fiber yield traits of 298 ramie germplasm resources. Journal of Plant Genetic Resources, 2022, 23(1): 106-122. (in Chinese)
[30] 魏晓羽, 刘红, 瞿辉, 李风童, 袁媛, 刘春贵, 马辉, 张甜, 包建忠, 孙叶. 158份春兰种质资源的表型多样性分析. 植物遗传资源学报, 2022, 23(2): 398-411.
WEI X Y, LIU H, QU H, LI F T, YUAN Y, LIU C G, MA H, ZHANG T, BAO J Z, SUN Y. Phenotypic diversity analysis of 158 Cymbidium goeringii germplasm resources. Journal of Plant Genetic Resources, 2022, 23(2): 398-411. (in Chinese)
[31] 代帅, 张先亮, 冯克云, 梅峥, 任翔, 孟永明, 马雄风. 早熟机采棉品种中棉113在新疆引种示范表现及栽培技术要点. 中国棉花, 2022, 49(2): 34-36.
DAI S, ZHANG X L, FENG K Y, MEI Z, REN X, MENG Y M, MA X F. Phenotypic characteristics and cultivation techniques of an early maturing and machine-harvested cotton variety Zhongmian 113 in introduction and demonstration of Xinjiang. China Cotton, 2022, 49(2): 34-36. (in Chinese)
[32] 王凯鸿, 谢晓宇, 刘娟娟, 苏玥, 王晴, 王彩香, 张先亮, 代帅, 宿俊吉, 马雄风. 早熟优质陆地棉品种中棉113高产高效栽培技术. 中国棉花, 2021, 48(1): 32-33.
WANG K H, XIE X Y, LIU J J, SU Y, WANG Q, WANG C X, ZHANG X L, DAI S, SU J J, MA X F. High yield and efficiency cultivation techniques of an upland cotton cultivar, Zhongmian 113, with early maturity and excellent fiber quality. China Cotton, 2021, 48(1): 32-33. (in Chinese)
[33] 相吉山, 谢宗铭, 田琴, 李有忠, 董永梅, 司爱君. 北疆早熟棉“新陆早”系列品种主要性状演化分析. 新疆农业科学, 2010, 47(10): 1918-1923.
XIANG J S, XIE Z M, TIAN Q, LI Y Z, DONG Y M, SI A J. Analysis on the main characters evolution of “Xinluzao” series cotton cultivars in Northern Xinjiang. Xinjiang Agricultural Sciences, 2010, 47(10): 1918-1923. (in Chinese)
[34] 陈民志, 杨延龙, 王宇轩, 田景山, 徐守振, 刘宁宁, 党科, 张旺锋. 新疆早熟陆地棉品种更替过程中的株型特征及主要经济性状的演变. 中国农业科学, 2019, 52(19): 3279-3290.
CHEN M Z, YANG Y L, WANG Y X, TIAN J S, XU S Z, LIU N N, DANG K, ZHANG W F. Plant type characteristics and evolution of main economic characters in early maturing upland cotton cultivar replacement in Xinjiang. Scientia Agricultura Sinica, 2019, 52(19): 3279-3290. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[6] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[7] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[10] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[11] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[12] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[15] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!