Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 587-598.doi: 10.3864/j.issn.0578-1752.2023.04.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton

JIA XiaoYun(), WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao(), WANG GuoYin   

  1. Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang 050035
  • Received:2022-09-20 Accepted:2022-11-16 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】By constructing a high-density SNP genetic map, QTL mapping for cotton yield related traits of multiple populations was carried out to obtain stable and accurate QTL. It will provide references for the excavation of yield trait regulatory genes and the development of effective molecular markers. 【Method】Jifeng 1271 with high and stable yield and Jifeng173 with super fiber quality were used to construct an F2 population composing of 200 plants. A high-density SNP genetic map was constructed by GBS (Genotyping by sequencing), and QTL mapping was carried out for lint percentage, seed index and boll weight of F2, F2:3 and F2:4 populations. Genes in major and stable QTL were annotated, and the expression patterns in different tissues were analyzed for candidate genes selection. 【Result】A total of 383.07 Gb data was obtained by GBS, including 26.93 Gb for the maternal cultivar Jifeng 1271, 27.30 Gb for the paternal inbred line Jifeng 173 and 328.84 Gb for the 200 F2 plants, and Q30 scores were 90.55%, 89.95% and 95.77%, respectively. And 1 305 642 SNP markers were developed in the F2 population, including 410 726 aa×bb type SNP that were used for genetic map construction. A high-density genetic map containing 16 088 SNP and spanning 4 282.81 cM was constructed, and the average genetic distance between adjacent SNP was 0.27 cM. Collinearity analysis proved high quality of the genetic map. A total of 108 yield related QTL were mapped, including 34 lint percentage QTL, 36 seed index QTL and 38 boll weight QTL. 30 QTL overlapped with or were close to the published QTL, and the other 78 QTL were new. 10 major QTL and 16 stable QTL were found, and 5 major QTL could be mapped in 2 or 3 populations. qLP-A13-4 could be mapped in 3 populations, and the R2 reached 13.78%. qLP-A13-6 could be mapped in 2 populations, and the R2 reached 10.01%. qLP-D10-2 could be mapped in 2 populations, and the R2 reached 10.92%. qSI-D10-1 could be mapped in 2 populations and the R2 reached 12.31%. qBW-D5-3 could be mapped in 2 populations and the R2 reached 15.54%. A total of 3 415 genes were annotated in these major and stable QTL. By KEGG and GO analysis, the annotated genes are mainly involved in plant hormone signal transduction, TCA cycle, biosynthesis of secondary metabolites and amino acids, carbon fixation in photosynthetic organisms. Using the transcriptome data of TM-1 and NDM8, 8 genes were highly expressed in fiber, ovule or seed, which may be important candidate genes for boll weight and yield by regulating lint percentage or seed index. 【Conclusion】An intra-specific high-density genetic map was constructed for upland cotton. 108 yield related QTL were mapped, 5 major QTL could be mapped in at least 2 populations, and 8 candidate genes with high expression level in fiber, ovule or seed were identified.

Key words: Upland cotton, high density genetic map, yield, QTL mapping, candidate gene

Table 1

Number and quality of the clean reads and statistics of mapping with the reference genome sequence"

材料
Material
测序数据量
Sequence data (Gb)
GC含量
GC content (%)
平均Q30值
Average Q30 (%)
比对率
Mapped ratio (%)
平均深度
Average depth (×)
覆盖度
Coverage (5×) (%)
冀丰1271 Jifeng1271 26.93 34.98 90.55 99.64 9.58 86.45
冀丰173 Jifeng173 27.30 35.96 89.95 99.47 9.69 84.28
F2群体 F2 population 328.84 41.44 95.77 99.69 0.70 4.17

Table 2

Statistics of marker type and marker number"

标记类型 Marker type SNP数量 No. of SNP
aa×bb 410726
ab×cc 159
ab×cd 0
cc×ab 47
ef×eg 340
hk×hk 325126
lm×ll 162538
nn×np 406706
总计Total 1305642

Table 3

Detail information of each linkage group"

连锁群
Linkage group
SNP数量
No. of SNP
长度
Distance (cM)
平均距离
Average distance (cM)
大于5 cM的Gap数量
No. of gaps>5 cM
最大Gap
Largest gap (cM)
相关系数
Correlation coefficient
A1 1724 160.35 0.09 0 1.98 -1.00
A2 246 167.21 0.68 3 8.22 -1.00
A3 921 158.58 0.17 1 8.07 -1.00
A4 756 173.12 0.23 1 9.12 -1.00
A5 734 161.56 0.22 0 2.77 -1.00
A6 288 171.10 0.60 1 7.47 -1.00
A7 747 154.62 0.21 0 1.99 -1.00
A8 569 172.90 0.30 0 3.08 -1.00
A9 1130 169.12 0.15 0 3.82 -1.00
A10 545 159.40 0.29 0 3.61 -1.00
A11 499 167.66 0.34 0 3.01 -1.00
A12 259 171.19 0.66 3 17.82 -1.00
A13 828 164.37 0.20 1 5.82 -1.00
D1 320 179.92 0.56 1 5.69 -1.00
D2 459 151.62 0.33 1 6.31 -1.00
D3 39 157.33 4.14 10 19.75 -1.00
D4 131 176.25 1.36 5 10.71 -1.00
D5 1746 172.23 0.10 0 0.80 -1.00
D6 610 151.84 0.25 0 4.58 -1.00
D7 419 175.99 0.42 0 4.46 -1.00
D8 312 150.41 0.48 2 14.97 -1.00
D9 512 178.40 0.35 1 9.43 -1.00
D10 1201 152.77 0.13 0 1.13 -1.00
D11 429 164.12 0.38 1 7.20 -1.00
D12 473 170.61 0.36 1 5.60 -1.00
D13 191 150.12 0.79 1 8.46 -1.00
总计Total 16088 4282.81 0.27 33 19.75

Fig. 1

Collinearity analysis of the mapped markers on the genetic map with their physical position on the reference genome"

Table 4

Phenotypic statistics of the parents and populations"

群体与性状
Population and trait
F2 F2:3 F2:4
衣分
LP (%)
子指
SI (g)
单铃重
BW (g)
衣分
LP (%)
子指
SI (g)
单铃重
BW (g)
衣分
LP (%)
子指
SI (g)
单铃重
BW (g)
冀丰1271 Jifeng 1271 41.10** 11.00* 6.40** 41.98* 10.75** 6.35** 40.78** 11.20* 6.13**
冀丰173 Jifeng173 38.70 10.30 4.90 40.66 9.60 5.04 38.41 10.70 4.79
最大值Maximun 45.31 12.00 8.83 45.53 11.90 6.66 43.88 12.90 6.39
最小值Minimun 37.60 7.90 4.37 37.64 8.00 4.23 34.76 8.80 4.62
平均值Average 40.59 9.90 5.68 41.63 10.09 5.57 39.15 11.05 5.45
偏度Skewness 0.02 -0.37 0.02 -0.22 -0.23 -0.05 0.05 0.05 0.02
峰度Kurtosis -0.20 0.85 0.79 0.60 0.53 0.42 0.79 -0.15 -0.29
变异系数CV (%) 3.73 7.62 16.24 3.03 6.05 7.21 3.74 6.74 6.87

Table 5

Correlation analysis of boll weight, lint percentage and seed index"

性状
Trait
F2 F2:3 F2:4
子指SI 单铃重BW 子指SI 单铃重BW 子指SI 单铃重BW
衣分LP -0.33** 0.08 -0.31** 0.04 -0.36** 0.09
子指SI 1 0.34** 1 0.51** 1 0.56**

Fig. 2

The top 20 items of GO enrichment"

Fig. 3

The top 20 KEGG pathways"

Table 6

Information of the 8 genes highly expressed in different tissues"

基因Gene 名称Name 描述Description KEGG通路KEGG pathway
Ghir_A02G015550 XTH23 可能的木聚糖内转葡糖基酶/水解酶蛋白23 Probable xyloglucan endotransglucosylase/ hydrolase protein 23 植物激素信号转导
Plant hormone signal transduction
Ghir_A04G014830 ACLA-1 ATP柠檬酸合成酶α链蛋白1
ATP-citrate synthase alpha chain protein 1
柠檬酸循环(TCA循环),次生代谢物质合成
Citrate cycle (TCA cycle), biosynthesis of secondary metabolites
Ghir_D02G015800 GAPC2 甘油醛-3-磷酸脱氢酶2,细胞溶质Glyceraldehyde-3-phosphate dehydrogenase 2, cytosolic 光合生物的碳固定,次生代谢物质合成,氨基酸生物合成Carbon fixation in photosynthetic organisms, biosynthesis of secondary metabolites, biosynthesis of amino acids
Ghir_D10G018940 AAE7 乙酸/丁酸-辅酶A连接酶AAE7,过氧化物酶体Acetate/butyrate--CoA ligase AAE7, peroxisomal 次生代谢物质合成
Biosynthesis of secondary metabolites
Ghir_D13G005390 DHS2 磷酸-2-脱氢-3-脱氧庚酸醛缩酶2,叶绿体
Phospho-2-dehydro-3-deoxyheptonate aldolase 2, chloroplastic
次生代谢物质合成,氨基酸生物合成,苯丙氨酸、酪氨酸和色氨酸生物合成Biosynthesis of secondary metabolites, biosynthesis of amino acids, phenylalanine, tyrosine and tryptophan biosynthesis
Ghir_D13G009230 异柠檬酸裂解酶Isocitrate lyase 次生代谢物质合成Biosynthesis of secondary metabolites
Ghir_A13G010390 BACOVA_02659 β-葡萄糖苷酶BoGH3B
Beta-glucosidase BoGH3B
次生代谢物质合成,环丙烷生物合成,氰基氨基酸代谢Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, cyanoamino acid metabolism
Ghir_D13G010980 BACOVA_02659
[22]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[23]
WU Y H, BHATP P R, CLOSE T J, LONARDI S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genetics, 2008, 4(10): e1000212.

doi: 10.1371/journal.pgen.1000212
[24]
HU Y, CHEN J D, FANG L, ZHANG Z Y, MA W, NIU Y C, JU L Z, DENG J Q, ZHAO T, LIAN J M, BARUCH K, FANG D, LIU X, RUAN Y L, RAHMAN M U, HAN J L, WANG K, WANG Q, WU H T, MEI G F, ZANG Y H, HAN Z G, XU C Y, SHEN W J, YANG D F, SI Z F, DAI F, ZOU L F, HUANG F, BAI Y L, ZHANG Y G, BRODT A, BEN-HAMO H, ZHU X F, ZHOU B L, GUAN X Y, ZHU S J, CHEN X Y, ZHANG T Z. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4): 739-748.

doi: 10.1038/s41588-019-0371-5
[25]
LI H H, PAN Z E, HE S P, JIA Y H, GENG X L, CHEN B J, WANG L R, PANG B Y, DU X M. QTL mapping of agronomic and economic traits for four F2 populations of upland cotton. Journal of Cotton Research, 2021, 4(1): 1-12.

doi: 10.1186/s42397-020-00077-x
[26]
JAMSHED M, JIA F, GONG J W, PALANGA K K, SHI Y Z, LI J W, SHANG H H, LIU A Y, CHEN T T, ZHANG Z, CAI J, GE Q, LIU Z, LU Q W, DENG X Y, TAN Y N, OR RASHID H, SARFRAZ Z, HASSAN M, GONG W K, YUAN Y L. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics, 2016, 17(1): 197.

doi: 10.1186/s12864-016-2560-2
[27]
SI Z F, JIN S K, CHEN J D, WANG S, FANG L, ZHU X F, ZHANG T Z, HU Y. Construction of a high-density genetic map and identification of QTLs related to agronomic and physiological traits in an interspecific (Gossypium hirsutum×Gossypium barbadense) F2 population. BMC Genomics, 2022, 23(1): 307.

doi: 10.1186/s12864-022-08528-2
[28]
ZHANG Z, WEI T J, ZHONG Y, LI X G, HUANG J. Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology. Tree Genetics & Genomes, 2016, 12(4): 76.
[29]
JIA X Y, PANG C Y, WEI H L, WANG H T, MA Q F, YANG J L, CHENG S S, SU J J, FAN S L, SONG M Z, WUSIMAN N, YU S X. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L.. BMC Genomics, 2016, 17(1): 1-14.
[30]
BERTRAND J A, SUDDUTH T Q, CONDON A, JENKINS T C, CALHOUN M C. Nutrient content of whole cottonseed. Journal of Dairy Science, 2005, 88(4): 1470-1477.

pmid: 15778316
[31]
LIU D X, LIU F, SHAN X R, ZHANG J, TANG S Y, FANG X M, LIU X Y, WANG W W, TAN Z Y, TENG Z H, ZHANG Z S, LIU D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2015, 290(5): 1683-1700.

doi: 10.1007/s00438-015-1027-5
[32]
HAIGLER C H, BETANCUR L, STIFF M R, TUTTLE J R. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science, 2012, 3: 104.

doi: 10.3389/fpls.2012.00104 pmid: 22661979
[33]
LIU Y L. Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials (Basel, Switzerland), 2013, 6(1): 299-313.
[1]
喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016, 49(18): 3465-3476.
YU S X, FAN S L, WANG H T, WEI H L, PANG C Y. Progresses in research on cotton high yield breeding in China. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476. (in Chinese)
[2]
ZHANG Z, LI J W, JAMSHED M, SHI Y Z, LIU A Y, GONG J W, WANG S F, ZHANG J H, SUN F D, JIA F, GE Q, FAN L Q, ZHANG Z B, PAN J T, FAN S M, WANG Y L, LU Q, LIU R X, DENG X Y, ZOU X Y, JIANG X, LIU P, LI P T, IQBAL M S, ZHANG C Y, ZOU J, CHEN H, TIAN Q, JIA X H, WANG B Q, AI N J, FENG G L, WANG Y M, HONG M, LI S L, LIAN W M, WU B, HUA J P, ZHANG C J, HUANG J Y, XU A X, SHANG H H, GONG W K, YUAN Y L. Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnology Journal, 2020, 18(1): 239-253.

doi: 10.1111/pbi.13191
[3]
REINISCH A J, DONG J M, BRUBAKER C L, STELLY D M, WENDEL J F, PATERSON A H. A detailed RFLP map of cotton, Gossypium hirsutum×Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138(3): 829-847.

doi: 10.1093/genetics/138.3.829
[4]
SAID J I, SONG M Z, WANG H T, LIN Z X, ZHANG X L, FANG D D, ZHANG J F. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum×G. barbadense populations. Molecular Genetics and Genomics, 2015, 290(3): 1003-1025.

doi: 10.1007/s00438-014-0963-9
[5]
PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D C, LLEWELLYN D, SHOWMAKER K C, SHU S Q, UDALL J, YOO M J, BYERS R, CHEN W, DORON- FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G J, LEE T H, LI J P, LIN L F, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H B, XU C M, WANG J P, WANG Z N, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, RAHMAN M U, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F S, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T Z, DENNIS E S, MAYER K F X, PETERSON D G, ROKHSAR D S, WANG X Y, SCHMUTZ J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.

doi: 10.1038/nature11798
[6]
WANG K B, WANG Z W, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, ZHU S L, ZOU C S, LI Q, YUAN Y L, LU C R, WEI H L, GOU C Y, ZHENG Z Q, YIN Y, ZHANG X Y, LIU K, WANG B, SONG C, SHI N, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.

doi: 10.1038/ng.2371
[7]
LI F G, FAN G Y, WANG K B, SUN F M, YUAN Y L, SONG G L, LI Q, MA Z Y, LU C R, ZOU C S, CHEN W B, LIANG X M, SHANG H H, LIU W Q, SHI C C, XIAO G H, GOU C Y, YE W W, XU X, ZHANG X Y, WEI H L, LI Z F, ZHANG G Y, WANG J Y, LIU K, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46(6): 567-572.

doi: 10.1038/ng.2987
[8]
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZOU Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.

doi: 10.1038/nbt.3207
[9]
LI F, FANG G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z Y, SHANG H H, MA X F, WU J Y, LIANG X M, HUANG G, PERCY R G, LIU K, YANG W H, CHEN W B, DU X M, SHI C C, YUAN Y L, YE W W, LIU X, ZHANG X Y, LIU W Q, WEI H L, WEI S J, HUANG G D, ZHANG X L, ZHU S J, ZHANG H, SUN F M, WANG X F, LIANG J, WANG J H, HE Q, HUANG L H, WANG J, CUI J J, SONG G L, WANG K B, XU X, YU J Z, ZHU Y X, YU S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.

doi: 10.1038/nbt.3208
[10]
WANG M J, TU L L, YUAN D J, ZHU D, SHEN C, LI J Y, LIU F Y, PEI L L, WANG P C, ZHAO G N, YE Z X, HUANG H, YAN F L, MA Y Z, ZHANG L, LIU M, YOU J Q, YANG Y C, LIU Z P, HUANG F, LI B Q, QIU P, ZHANG Q H, ZHU L F, JIN S X, YANG X Y, MIN L, LI G L, CHEN L L, ZHENG H K, LINDSEY K, LIN Z X, UDALL J A, ZHANG X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019, 51(2): 224-229.

doi: 10.1038/s41588-018-0282-x
[11]
HUANG G, WU Z G, PERCY R G, BAI M Z, LI Y, FRELICHOWSKI J E, HU J, WANG K, YU J Z, ZHU Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.

doi: 10.1038/s41588-020-0607-4
[12]
MA Z Y, ZHANG Y, WU L Q, ZHANG G Y, SUN Z W, LI Z K, JIANG Y F, KE H F, CHEN B, LIU Z W, GU Q S, WANG Z C, WANG G N, YANG J, WU J H, YAN Y Y, MENG C S, LI L H, LI X X, MO S J, WU N, MA L M, CHEN L T, ZHANG M, SI A J, YANG Z W, WANG N, WU L Z, ZHANG D M, CUI Y R, CUI J, LV X, LI Y, SHI R K, DUAN Y H, TIAN S L, WANG X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53(9): 1385-1391.

doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[13]
曲朝阳, 贾晓昀, 马启峰, 王寒涛, 魏恒玲, 范术丽. 棉花重组自交系铃重性状的QTL定位. 棉花学报, 2019, 31(1): 12-22.
QU Z Y, JIA X J, MA Q F, WANG H T, WEI H L, FAN S L. QTL mapping of boll weight trait based on recombinant inbred lines in Gossypium hirsutum L.. Cotton Science, 2019, 31(1): 12-22. (in Chinese)
[14]
WANG H T, JIA X Y, KANG M, LI W, FU X K, MA L, LU J H, WEI H L, YU S X. QTL mapping and candidate gene identification of lint percentage based on a recombinant inbred line population of upland cotton. Euphytica, 2021, 217(6): 102.

doi: 10.1007/s10681-021-02823-x
[15]
ZHANG Z, SHANG H H, SHI Y Z, HUANG L, LI J W, GE Q, GONG J W, LIU A Y, CHEN T T, WANG D, WANG Y L, PALANGA K K, MUHAMMAD J, LI W J, LU Q W, DENG X Y, TAN Y N, SONG W W, CAI J, LI P T, RASHID H O, GONG W K, YUAN Y L. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum). BMC Plant Biology, 2016, 16(1): 79.

doi: 10.1186/s12870-016-0741-4
[16]
DIOUF L, MAGWANGA R O, GONG W F, HE S P, PAN Z E, JIA Y H, KIRUNGU J N, DU X M. QTL mapping of fiber quality and yield-related traits in an intra-specific upland cotton using genotype by sequencing (GBS). International Journal of Molecular Sciences, 2018, 19(2): 441.

doi: 10.3390/ijms19020441
[17]
GU Q S, KE H F, LIU Z W, LV X, SUN Z W, ZHANG M, CHEN L T, YANG J, ZHANG Y, WU L Q, LI Z K, WU J H, WANG G N, MENG C S, ZHANG G Y, WANG X F, MA Z Y. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. Theoretical and Applied Genetics, 2020, 133(12): 3395-3408.

doi: 10.1007/s00122-020-03676-z
[18]
ELSHIRE R J, GLAUBITZ J C, SUN Q, POLAND J A, KAWAMOTO K, BUCKLER E S, MITCHELL S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6(5): e19379.

doi: 10.1371/journal.pone.0019379
[19]
ZHOU Z Q, ZHANG C S, ZHOU Y, HAO Z F, WANG Z H, ZENG X, DI H, LI M S, ZHANG D G, YONG H J, ZHANG S H, WENG J F, LI X H. Genetic dissection of maize plant architecture with an ultra-high density Bin map based on recombinant inbred lines. BMC Genomics, 2016, 17(1): 178.

doi: 10.1186/s12864-016-2555-z
[20]
LI L B, ZHAO S Q, SU J J, FAN S L, PANG C Y, WEI H L, WANG H T, GU L J, ZHANG C, LIU G Y, YU D W, LIU Q B, ZHANG X L, YU S X. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS ONE, 2017, 12(8): e0182918.

doi: 10.1371/journal.pone.0182918
[21]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows- Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324
[1] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[2] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[3] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[4] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[5] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[6] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[7] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[8] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[9] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[10] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[11] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[12] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[13] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[14] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[15] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!