Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 453-465.doi: 10.3864/j.issn.0578-1752.2023.03.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves

ZHAO JianTao(), YANG KaiXin, WANG XuZhe, MA ChunHui(), ZHANG QianBing()   

  1. College of Animal Science & Technology, Shihezi University, Shihezi 832000, Xinjiang
  • Received:2022-05-20 Accepted:2022-10-08 Online:2023-02-01 Published:2023-02-14
  • Contact: MA ChunHui, ZHANG QianBing E-mail:1513192544@qq.com;chunhuima@126.com;qbz102@163.com

Abstract:

【Objective】The aim of this study was to investigate the effects on nutrient uptake, photosynthetic pigment content, stomatal aperture and antioxidant system of alfalfa leaves after three consecutive years of phosphorus fertilizer application, so as to provide scientific fertilization methods for efficient production of alfalfa.【Method】Field trials were conducted at the forage experiment station of Shihezi University in Xinjiang from 2019 to 2021. ‘WL366HQ’ alfalfa was used as the test material, and four fertilizer treatments in the experiment included 0 (CK), 50 (Low P, LP), 100 (Middle P, MP), and 150 (High P, HP) kg·hm-2. Samples were taken at the first flowering of alfalfa to determine the hay yield, nitrogen and phosphorus content, pigment content, stomatal opening, antioxidant enzyme activity, and oxidizing substances of leaves.【Result】The nitrogen and phosphorus content, photosynthetic pigment content and stomatal aperture of leaves of alfalfa increased significantly (P<0.05) after 3 years of continuous phosphorus fertilization, with the highest nitrogen and phosphorus content under MP treatment (54.74 and 2.99 g·kg-1, respectively), the highest chlorophyll a and chlorophyll b content under MP, and the highest carotenoid content under LP or MP, and the lowest in CK. The stomatal aperture was the highest under MP and significantly higher than that under CK (P<0.05). Therefore, phosphorus fertilizer had different effects on the morphological and physiological characteristics of alfalfa leaves, and MP treatment significantly affected the photosynthetic and physiological characteristics of alfalfa leaves (P<0.05). Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were the highest under MP, with the value of 162.55, 406.40 and 147.13 U·g-1, respectively, and were significantly higher than those under CK (P<0.05). The malondialdehyde (MDA), hydrogen peroxide (H2O2) and proline (Pro) content were the lowest under MP, at 2.38 and 1.04 μmol·g-1 and 56.85 μg·g-1, respectively. According to the Pearson correlation analysis, the total N and P contents of alfalfa leaves showed significant positive correlation (P<0.05) with chlorophyll content, carotenoid content, stomatal aperture, SOD activity and POD activity, and significant negative correlation (P<0.05) with MDA and H2O2 content. The overall evaluation showed that the principal component scores of phosphorus application treatments were ranked as MP>HP>LP>CK. 【Conclusion】 The reasonable application of phosphorus fertilizer increased the nutritional characteristics and photosynthetic physiological characteristics of alfalfa leaves, thus avoiding the stressful effects brought by other environmental factors, enhancing the adaptive capacity of alfalfa, and making it better adapted to external environmental changes. Considering the leaf morphology, photosynthetic physiological characteristics and antioxidant enzymes and oxidizing substances of alfalfa, the phosphorus application rate of 100 kg·hm-2 was suitable under this experiment.

Key words: alfalfa, phosphorus fertilizer, leaf phenotype, leaf physiology, hay yield

Fig. 1

Dynamics of nitrogen and phosphorus content of alfalfa leaves 1- 4 cuts under different phosphorus application levels Different letters above column indicate significant difference between treatments (P<0.05). The same as below"

Fig. 2

Dynamics of photosynthetic pigment content in leaves 1-4 cuts under different phosphorus application levels"

Fig. 3

Stomatal images of alfalfa leaves in the third crop under different phosphorus application levels Figure A shows CK, B shows LP, C shows MP and D shows HP"

Table 1

Dynamics of stomatal number, longitudinal diameter, transverse diameter and aperture in alfalfa leaves 1-4 cuts under different phosphorus application levels"

茬次
Stubble time
处理
Treatment
气孔数
Stomatal number
气孔长度
Stomatal longitudinal diameter (μm)
气孔宽度
Stomatal transverse diameter (μm)
气孔开度
Stomatal aperture
(μm2)
第1茬
First cut
CK 17.5±0.77a 29.43±0.76b 10.00±0.44b 230.97±11.31b
LP 18.3±0.77a 29.51±0.70b 11.15±0.35a 248.78±6.56b
MP 19.4±1.25a 32.80±0.79a 11.29±0.30a 290.58±9.81a
HP 17.6±0.75a 29.54±0.50b 9.77±0.34b 225.93±6.46b
第2茬
Second cut
CK 15.3±0.49b 28.38±0.50b 6.98±0.18b 155.87±5.59b
LP 19.7±0.99a 30.25±0.47a 8.52±0.16a 202.50±4.88a
MP 19.8±0.79a 30.49±0.26a 8.54±0.14a 204.46±6.75a
HP 15.0±0.52b 28.36±0.38b 7.05±0.24b 156.62±4.30b
第3茬
Third cut
CK 16.9±0.77a 30.93±0.69bc 10.14±0.35a 246.23±11.80a
LP 19.1±0.77a 31.21±0.61b 10.30±0.34a 251.53±6.98a
MP 19.6±1.25a 33.30±0.78a 10.43±0.23a 272.60±9.58a
HP 18.5±0.74a 29.04±0.50c 9.41±0.34a 213.95±6.36b
第4茬
Fourth cut
CK 19.7±2.04ab 28.83±1.15a 6.27±0.34bc 141.08±7.72c
LP 20.7±0.40ab 30.69±0.50a 7.06±0.21b 170.04±5.79b
MP 22.7±1.18a 30.52±0.67a 8.33±0.40a 201.03±13.86a
HP 17.8±0.83b 29.65±0.51a 6.00±0.26c 139.43±5.50c

Fig. 4

Dynamics of antioxidant enzyme activity in alfalfa leaves 1-4 cuts under different phosphorus application levels"

Fig. 5

Dynamics of oxidant content in alfalfa leaves 1-4 cuts under different phosphorus application levels"

Fig. 6

Dynamics of alfalfa hay yield 1-4 cuts under different phosphorus application levels"

Fig. 7

Correlation of leaf nitrogen and phosphorus content with photosynthetic physiological parameters and antioxidant capacity * mean significant level of correlation (P<0.05)"

Fig. 8

Principal component analysis and comprehensive score of each index under different phosphorus application levels"

[1] SCASTA J D, TROSTLE C L, FOSTER M A. Evaluating alfalfa (medicago sativa L.) cultivars for salt tolerance using laboratory, greenhouse and field methods. Journal of Agricultural Science, 2012, 4(6): 90-103.
[2] CHEN Y H, HAN W X, TANG L Y, TANG Z Y, FANG J Y. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 2013, 36(2): 178-184.
doi: 10.1111/j.1600-0587.2011.06833.x
[3] RUSSELL R S, RICKSON J B, ADAMS S N. Istopic equilibria between phosphates in soil and their significance in the assessment of fertility by tracer methods. European Journal of Soil Science, 1954, 5(1): 85-105.
[4] 刘俊英, 回金峰, 孙梦瑶, 刘选帅, 鲁为华, 马春晖, 张前兵. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149.
LIU J Y, HUI J F, SUN M Y, LIU X S, LU W H, MA C H, ZHANG Q B. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. (in Chinese)
[5] 毕银丽, 孙江涛, YPYSZHAN Z, 解文武, 于淼. 不同施磷水平下接种菌根玉米营养状况及光谱特征分析. 煤炭学报, 2016, 41(5): 1227-1235.
BI Y L, SUN J T, YPYSZHAN Z, XIE W W, YU M. Hyperspectral characterization and nutrition condition of maize inoculated with arbuscular mycorrhiza in different phosphorus levels. Journal of China Coal Society, 2016, 41(5): 1227-1235. (in Chinese)
[6] DOS SANTOS E F, ZANCHIM B J, DE CAMPOS A G, GARRONE R F, LAVRES J. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization. Revista Brasileira de Ciência do Solo, 2013, 37(5): 1334-1342.
doi: 10.1590/S0100-06832013000500022
[7] 任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响. 草业学报, 2012, 21(3): 242-249.
REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcata. Acta Prataculturae Sinica, 2012, 21(3): 242-249. (in Chinese)
[8] SYNAN F A, SUZANNE M C, JEFFREY J V. Phosphate nutrition and defoliation effects on growth and root physiology of alfalfa. Journal of Plant Nutrition, 2006, 29(8): 1387-1403.
doi: 10.1080/01904160600830191
[9] 齐敏兴, 刘晓静, 张晓磊, 刘艳楠. 不同磷水平对紫花苜蓿光合作用和根瘤固氮特性的影响. 草地学报, 2013, 21(3): 512-516.
doi: 10.11733/j.issn.1007-0435.2013.03.016
QI M X, LIU X J, ZHANG X L, LIU Y N. Effects of different phosphorus levels on photosynthesis and root nodule nitrogen-fixing characteristic of alfalfa. Acta Agrectir Sinica, 2013, 21(3): 512-516. (in Chinese)
[10] BOYCE R L, LARSON J R, SANFORD R L. Phosphorus and nitrogen limitations to photosynthesis in Rocky Mountain bristlecone pine (Pinas aristata) in Colorado. Tree Physiology, 2006, 26(11): 1477-1486.
doi: 10.1093/treephys/26.11.1477
[11] ZHANG W, CHEN X X, LIU Y M, LIU D Y, DU Y F, CHEN X P, ZOU C Q. The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Research, 2018, 219: 113-119.
doi: 10.1016/j.fcr.2018.01.031
[12] ASHRAF M, HARRIS P J C. Photosynthesis under stressful environments: An overview. Photosynthetica, 2013, 51(2): 163-190.
doi: 10.1007/s11099-013-0021-6
[13] ZHAO W S, SUN Y L, KJELGREN R, LIU X P. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015, 37: 1074.
[14] LAWSON T, BLATT M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164(4): 1556-1570.
doi: 10.1104/pp.114.237107 pmid: 24578506
[15] WOLZ K J, WERTIN T M, ABORDO M, WANG D, LEAKEY A D. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nature Ecology and Evolution, 2017, 1(9): 1292-1298.
doi: 10.1038/s41559-017-0238-z pmid: 29046531
[16] CAI Q, JI C J, YAN Z B, JIANG X X, FANG J Y. Anatomical responses of leaf and stem of Arabidopsis thaliana to nitrogen and phosphorus addition. Journal of Plant Research, 2017, 13(6): 1035-1045.
[17] 高宏云. 棉花冠层“铃—叶系统”光合生理特性及其对滴灌量的响应[D]. 石河子: 石河子大学, 2020.
GAO H Y. Photosynthetic physiological characteristics of cotton canopy “boll-leaf system” and the response to drip irrigation amount[D]. Shihezi: Shihezi University, 2020. (in Chinese)
[18] 张燕, 王红兰, 蒋舜媛, 孙辉, 杨萍, 杜玖珍, 孙洪兵, 周毅. 不同氮浓度对羌活幼苗生长及抗氧化酶系统的效应. 中国实验方剂学杂志, 2018, 24(7): 38-44.
ZHANG Y, WANG H L, JIANG S Y, SUN H, YANG P, DU J Z, SUN H B, ZHOU Y. Effect of different nitrogen concentrations on growth and antioxidant enzymes activity in Notopterygium incisum seedling in cultivation matrix. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(7): 38-44. (in Chinese)
[19] 魏婧, 徐畅, 李可欣, 贺洪军, 徐启江. 超氧化物歧化酶的研究进展与植物抗逆性. 植物生理学报, 2020, 56(12): 2571-2584.
WEI J, XU C, LI K X, HE H J, XU Q J. Progress on superoxide dismutase and plant stress resistance. Plant Physiology Journal, 2020, 56(12): 2571-2584. (in Chinese)
[20] SU B Q, WANG L F, SHANGGUAN Z P. Morphological and physiological responses and plasticity in Robinia pseudoacacia to the coupling of water, nitrogen and phosphorus. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 271-281.
doi: 10.1002/jpln.202000465
[21] 杨妮, 万绮雯, 李逸民, 韩妙华, 腾瑞敏, 刘洁霞, 庄静. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响. 园艺学报, 2022, 49(2): 378-394.
YANG N, WAN Q W, LI Y M, HAN M H, TENG R M, LIU J X, ZHUANG J. Effects of exogenous spermidine on photosynthetic characteristics and gene expression of key enzymes under salt stress in tea plant. Acta Horticulturae Sinica, 2022, 49(2): 378-394. (in Chinese)
[22] ZHANG M, LIU W, LI C H, SHAO T T, JIANG X, ZHAO H Z, AI W T. Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage. Scientia Horticulturae, 2019, 249: 219-227.
doi: 10.1016/j.scienta.2019.01.058
[23] AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67.
[24] THOMPSON J B, SLOT M, DALLING J W, WINTER K, TURNER B L, ZALAMEA P C. Species-specific effects of phosphorus addition on tropical tree seedling response to elevated CO2. Functional Ecology, 2019, 33(10): 1871-1881.
doi: 10.1111/1365-2435.13421
[25] 陈婷婷, 符卫蒙, 余景, 奉保化, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系. 中国农业科学, 2022, 55(3): 467-478.
CHEN T T, FU W M, YU J, FENG B H, LI G Y, FU G F, TAO L X. The photosynthesis characteristics of colored rice leaves and its relation with antioxidant capacity and anthocyanin content. Scientia Agricultura Sinica, 2022, 55(3): 467-478. (in Chinese)
[26] SERGI M B, TANA J M, LEONOR A. Enhanced photo- and antioxidative protection, and hydrogen peroxide accumulation in drought-stressed Cistus clusii and Cistus albidus plants. Tree Physiology, 2003, 23: 1-12.
doi: 10.1093/treephys/23.1.1
[27] 陆雯芸, 房克, 边红武, 朱睦元. 气孔发育及其调控因素的研究进展. 植物生理学报, 2016, 52(6): 782-788.
LU W Y, FANG K, BIAN H W, ZHU M Y. Advances in stomatal development and its regulation factors. Plant Physiology Journal, 2016, 52(6): 782-788. (in Chinese)
[28] RODRIGUEZ D, SANTA MARIA G E, POMAR M C. Phosphorus deficiency affects the early development of wheat plants. Journal of Agronomy and Crop Science, 1994, 173(1): 69-72.
doi: 10.1111/j.1439-037X.1994.tb00575.x
[29] 王宏亮, 郭思义, 王棚涛, 宋纯鹏. 植物气孔发育机制研究进展. 植物学报, 2018, 53(2): 164-174.
doi: 10.11983/CBB17033
WANG H L, GUO S Y, WANG P T, SONG C P. Research progress in stomatal development mechanism. Chinese Bulletin of Botany, 2018, 53(2): 164-174. (in Chinese)
[30] CORNIC G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science, 2000, 5(5): 187-188.
doi: 10.1016/S1360-1385(00)01625-3
[31] XU Z Z, ZHOU G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
doi: 10.1093/jxb/ern185 pmid: 18648104
[32] 郑云普, 常志杰, 范晓懂, 张运鑫, 刘亮, 陈文娜, 刘媛媛, 郝立华. CO2浓度升高和磷素亏缺对黑麦草气孔特征及气体交换参数的影响. 农业工程学报, 2021, 37(18): 82-89.
ZHENG Y P, CHANG Z J, FAN X D, ZHANG Y X, LIU L, CHEN W N, LIU Y Y, HAO L H. Effects of CO2 concentration increase and phosphorus deficiency on the stomatal traits and leaf gas exchange parameters of ryegrass. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 82-89. (in Chinese)
[33] ZHAO W S, SUN Y L, KJELGREN R, LIU X P. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015, 37(1): 1-9.
doi: 10.1007/s11738-014-1746-y
[34] ULLAH A, SUN H, YANG X Y, ZHANG X L. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal, 2017, 15(3): 271-284.
doi: 10.1111/pbi.12688 pmid: 28055133
[35] YU Q, RENGEL Z. Drought and salinity differentially influence activities of superoxide dismutase in narrow-leafed lupins. Plant Science, 1999, 142: 1-11.
doi: 10.1016/S0168-9452(98)00246-5
[36] ISRAR D, MUSTAFA G, KHAN K S, SHAHZAD M, AHMAD N, MASOOD S. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiology and Biochemistry, 2016, 108: 304-312.
doi: 10.1016/j.plaphy.2016.07.023
[37] SONG Y Z, KONG F F, XUE Y, QIN B Q. Responses of chlorophyll and MDA of Vallisneria natans to nitrogen and phosphorus availability and epiphytic algae. Journal of Freshwater Ecology, 2015, 30(1): 85-97.
doi: 10.1080/02705060.2014.989554
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[3] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[4] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[5] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[6] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[7] ZeMin LI,Chen ZHANG,ChongYu ZHANG,GuiGuo ZHANG. The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(6): 1269-1277.
[8] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[9] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[10] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[11] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[12] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
[13] XiaoDong LI,YiShun SHANG,ShiGe LI,GuangJi CHEN,ChengJiang PEI,Fang SUN,XianQin XIONG. The Mechanism of Ectopic Expression of Brassica juncea Multidrug and Toxic Compound Extrusion (BjMATE) to Enhance the Resistance to Acid and Aluminum Stress in Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(1): 18-28.
[14] SUN JuanJuan, A LaMuSi, ZHAO JinMei, XUE YanLin, YU LinQing, YU Zhu, ZHANG YingJun. Analysis of Amino Acid Composition and Six Native Alfalfa Cultivars [J]. Scientia Agricultura Sinica, 2019, 52(13): 2359-2367.
[15] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!