Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 619-634.doi: 10.3864/j.issn.0578-1752.2023.04.003

Previous Articles     Next Articles

Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation

DING JinFeng(), XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan()   

  1. College of Agriculture, Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Wheat Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2022-06-08 Accepted:2022-10-09 Online:2023-02-16 Published:2023-02-24


【Objective】This study aimed to provide the theoretical and technical support for the synergic cultivation of good-quality, high-yield, and high-efficiency of wheat under the rice-wheat rotation. 【Method】 In 2017-2018 and 2018-2019, the cultivation patterns of tradition (TCP), high yield (HCP), reducing fertilizer (RFCP), and reducing fertilizer and increasing planting density (IDCP) were conducted in Suining (northern Jiangsu) and Hanjiang and Yangzhou (middle area of Jiangsu) to study the differences in grain protein content, grain yield, nitrogen efficiency, and economic benefits. The excepted results could clarify the patterns achieving high yield and high efficiency and the characteristics of their wheat population qualities and nitrogen absorption and transportation, explore the relationship between yield, nitrogen efficiency and agronomic physiological traits, and then reveal the approaches to realize high yield and high-efficiency synergy. 【Result】 The effects of cultivation patterns on wheat grain yield, net economic benefit, and nitrogen efficiency were different depending on the ecological conditions in the various years and sites. The wheat grain protein content under different cultivation patterns was more than 12.5%, but which under HCP and RFCP was 13%-14%. In 2018, IDCP achieved the highest grain yield and economic net benefit with 31.5%-33.5% and 104.4%-239.1% higher than TCP, respectively, followed by HCP and RFCP. In 2019, the grain yield under HCP was the highest, which was 8.1%-13.2% higher than that under TCP, followed by RFCP and IDCP. In addition, IDCP could obtain stable or increased net economic benefits compared with TCP because of less fertilizer inputs. The above results indicated that compared with other patterns, grain yield, nitrogen efficiency, and economic benefits under TCP were relatively lower. HCP could achieve more stable and higher grain yield as well as higher protein content, and IDCP achieved the highest yield potential, economic benefits, and nitrogen efficiency but had a low grain protein content. High yield was achieved by increasing single-spike yield based on enough spike number, and the high yielding HCP mainly increased grains per spike, but IDCP achieved high grain weight. HCP achieved high spike number mainly depended on tiller fertility, and IDCP depended on the synergistically increasing tiller number and tiller fertility. The suitable range of the ratio of tiller number at the beginning of wintering stage to spike number was 0.9-1.1 for high yield population. Further analysis showed that the high yield patterns could improve the leaf photosynthetic rate and maintain a high photosynthetic area after anthesis, indicating high-level coordination of the source-sink relationship and enlarged source level. The results also indicated that improving nitrogen absorption efficiency based on high nitrogen physiological efficiency was the key for realizing high nitrogen use efficiency. The nitrogen accumulation in the HCP population was low at the early growth stage, but the absorption capacity was gradually increased at the middle and late growth stage, finally promoting nitrogen transportation. The IDCP population also had strong nitrogen absorption capacity during the middle and early growth stage and also showed a sufficient transportation level. The relationships of grain yield and nitrogen use efficiency with agronomic and physiological traits under different ecological conditions and cultivation patterns were analyzed, and it was found that increasing tiller fertility of the crop population contributed to a higher photosynthetic area per stem and leaf photosynthetic rate at the grain-filling stage, which increased single-spike yield and wheat production. Besides, the high tiller fertility also promoted nitrogen absorption capacity before anthesis increasing nitrogen transportation and use efficiency. 【Conclusion】 In conclusion, the synergistic approach to achieve high yield and high efficiency of wheat under the rice-wheat rotation was to develop large spikes especially increase grain weight based on obtaining sufficient spikes and to establish the population with sufficient quantity and high quality. The latter included that the tiller number of the population before wintering stage met the expected spike number with improving tiller fertility, the nitrogen absorption and transportation level was high before the anthesis stage, and the photosynthetic area and intensity of single stem could maintain a high level after the anthesis to promote the grain filling. The present study also indicated that technologies realizing high-yield and high-efficiency production needed to emphasize moderately increasing planting density, limitedly reducing nitrogen application, increasing topdressing nitrogen with reducing base fertilization, and precisely applying fertilization.

Key words: wheat under rice-wheat rotation, high-yield and high-efficiency synergy, population quality characteristics, nitrogen uptake characteristics, technological approach

Fig. 1

Mean daily temperature and precipitation per month during wheat growth season in the experimental sites"

Table 1

Planting density and fertilizer management of different cultivation patterns"

Technology index
基本苗 Planting density (plants/m2) 270 180 180 225
施用量 Application rate (kg·hm-2) 270 270 240 210
施用比例 Application ratio 6﹕1﹕3﹕0 3﹕1﹕3﹕3 3﹕1﹕3﹕3 3﹕1﹕3﹕3
N﹕P2O5﹕K2O 1﹕0.35﹕0.35 1﹕0.5﹕0.5 1﹕0.5﹕0.5 1﹕0.5﹕0.5
Phosphorus and potassium
施用量 Application rate (kg·hm-2) 94.5 135 120 105
施用比例 Application ratio 10﹕0﹕0﹕0 5﹕0﹕5﹕0 5﹕0﹕5﹕0 5﹕0﹕5﹕0
Application stage of fertilizer
基肥 Basis 播种前 Pre-sowing 播种前 Pre-sowing 播种前 Pre-sowing 播种前 Pre-sowing
分蘖肥 Tillering 3叶期 3rd leaf 4叶期 4th leaf 4叶期 4th leaf 4叶期 4th leaf
Remaining 4 leaves
Remaining 3 leaves
Remaining 3 leaves
Remaining 3 leaves
Flag leaf visible
Flag leaf visible
Flag leaf visible

Table 2

Effects of cultivation patterns on grain protein content (GPC), grain yield, and economic benefit"

GPC (%)
Grain yield (t·hm-2)
Increase (%)
Economic benefit (yuan/hm2)
Increase (%)
2018 邗江
TCP 13.2±0.10a 6.46±0.15c 4477±346c
HCP 13.5±0.12a 8.23±0.23ab 27.5 6371±522b 44.1
RFCP 13.5±0.11a 7.72±0.34b 19.5 6199±752b 38.0
IDCP 13.4±0.18a 8.62±0.15a 33.5 9120±327a 104.4
FF-value 1.29ns 16.72** 13.85*
TCP 13.4±0.14a 5.55±0.16b 2433±363c
HCP 13.7±0.16a 7.75±0.47a 28.2 5276±642b 115.2
RFCP 13.6±0.20a 7.74±0.22a 28.2 6252±495ab 165.9
IDCP 13.4±0.03a 8.12±0.25a 31.5 7980±568a 239.1
FF-value 1.08ns 15.42* 12.06*
2019 仪征
TCP 12.4±0.24b 6.47±0.17b 4488±371a
HCP 13.5±0.27a 7.32±0.26a 13.2 4318±578a -3.8
RFCP 13.2±0.08ab 6.89±0.09ab 6.6 4352±200a -3.1
IDCP 12.5±0.25b 6.79±0.19ab 5.0 5008±428a 11.6
FF-value 5.31ns 3.57ns 0.59ns
TCP 13.1±0.20a 8.04±0.26a 8013±581a
HCP 13.5±0.31a 8.69±0.25a 8.1 7399±566a -7.7
RFCP 13.2±0.26a 8.29±0.14a 3.0 7467±324a -6.8
IDCP 12.7±0.18a 8.13±0.03a 1.0 7998±176a -0.2
FF-value 1.86ns 2.20ns 0.57ns

Table 3

Effects of cultivation patterns on nitrogen partial factor productivity (NPFP), nitrogen use efficiency (NUE), nitrogen uptake efficiency (NUpE), and nitrogen utilization efficiency (NUtE)"

NPFP (kg·kg-1)
Increase (%)
NUE (kg·kg-1)
Increase (%)
NUpE (kg·kg-1)
NUtE (kg·kg-1)
2018 邗江
TCP 23.9±0.6c 10.7±0.6b 37.7±1.0b 0.28±0.01b
HCP 30.5±0.9b 27.4 12.5±0.9b 16.8 40.4±0.6b 0.31±0.02ab
RFCP 32.2±1.4b 34.4 12.5±1.4b 16.4 39.0±0.3ab 0.32±0.04ab
IDCP 41.1±0.7a 71.6 17.3±0.7a 61.1 43.7±1.6a 0.40±0.03a
FF-value 56.94** 9.06* 6.01ns 3.94ns

TCP 20.6±0.6c 9.3±0.6b 34.9±1.8b 0.27±0.01b
HCP 28.7±1.7b 39.6 11.3±1.7ab 21.4 40.1±1.9ab 0.28±0.02b
RFCP 32.3±0.9b 56.9 13.7±0.9ab 46.1 39.5±1.4ab 0.35±0.01a
IDCP 38.7±1.2a 88.0 15.7±1.2a 67.8 43.3±1.1a 0.36±0.02a
FF-value 40.32** 5.35ns 4.57ns 12.95*
2019 仪征
TCP 23.9±0.6c 11.1±0.6b 24.9±1.9b 0.45±0.01a
HCP 27.1±1.0b 13.2 15.4±1.0a 38.6 37.3±4.0a 0.41±0.07a
RFCP 28.7±0.4b 19.9 14.9±0.4a 34.6 36.5±2.0a 0.41±0.01a
IDCP 32.3±0.9a 34.9 15.4±0.9a 39.0 34.8±2.9ab 0.44±0.06a
FF-value 21.57** 7.71** 4.05ns 0.16ns

TCP 29.8±1.0c 12.2±1.0b 20.6±1.0b 0.59±0.04a
HCP 32.2±0.9b 8.1 15.6±0.9a 27.5 38.6±1.9a 0.40±0.04b
RFCP 34.5±0.6b 15.9 15.6±0.6a 27.5 37.6±5.5a 0.42±0.03b
IDCP 38.7±0.2a 29.9 15.7±0.2a 28.6 33.8±5.7ab 0.47±0.05ab
FF-value 26.32** 5.32ns 4.02ns 5.12ns

Table 4

Effects of cultivation patterns on yield components"

Spike number
Grains per spike
1000-kernels weight (g)
Grains (×104·m-2)
Spike yield (g)
2018 邗江
TCP 552±6a 36.3±0.3c 36.7±0.15c 2.00±0.04b 1.33±0.01b
HCP 602±25a 39.6±0.6ab 37.3±0.04b 2.38±0.13a 1.48±0.02a
RFCP 570±13a 37.9±0.4bc 37.8±0.04a 2.16±0.07ab 1.43±0.02a
IDCP 609±7a 38.8±0.3b 37.9±0.14a 2.36±0.01a 1.47±0.02a
FF-value 2.87ns 11.71* 27.03** 4.91ns 11.61*
TCP 565±26a 33.6±0.4c 35.9±0.10d 1.89±0.06a 1.20±0.02b
HCP 586±31a 35.8±0.1a 40.2±0.05c 2.10±0.11a 1.44±0.01a
RFCP 563±19a 34.4±0.5b 41.8±0.24b 1.93±0.04a 1.44±0.03a
IDCP 595±37a 34.5±0.1b 42.5±0.09a 2.05±0.13a 1.47±0.01a
FF-value 0.30ns 13.83* 49.81** 1.46ns 56.61**
2019 仪征
TCP 393±10a 41.7±0.4b 42.0±0.07b 1.64±0.06a 1.75±0.02b
HCP 368±11a 45.8±0.8a 44.7±0.05a 1.68±0.08a 2.05±0.04a
RFCP 353±12a 45.2±0.6a 45.0±0.31a 1.60±0.03a 2.03±0.01a
IDCP 384±8a 43.3±1.1ab 42.4±0.13b 1.66±0.01a 1.84±0.04b
FF-value 2.92ns 5.70ns 79.07** 0.59ns 20.78**
TCP 460±5a 41.6±0.5b 44.0±0.11b 1.91±0.04a 1.83±0.03b
HCP 428±10ab 45.8±1.0a 45.9±0.44ab 1.96±0.01a 2.10±0.02a
RFCP 416±11b 45.1±1.0a 46.5±0.56a 1.87±0.01a 2.09±0.07a
IDCP 435±9ab 44.6±1.2a 44.9±0.87ab 1.94±0.01a 2.00±0.02ab
FF-value 4.17ns 3.69ns 3.57ns 2.03ns 8.92*

Table 5

Effects of cultivation patterns on culm number at the stages of the beginning of wintering (BWCN) and stem elongation (SECN), culm fertility, BWCN/spike number, leaf area index (LAI) at booting, and the ratio of grain weight and leaf area (GLR)"

BWCN (culms/m2)
SECN (culms/m2)
Culm fertility (%)
BWCN/spike number
LAI at booting
GLR (g·cm-2)
2018 邗江
TCP 711±11a 1257±22a 43.9±1.3b 1.29±0.03a 6.1±0.06c 92.8±1.3b
HCP 557±7bc 1093±12b 55.2±2.2a 0.93±0.05b 6.6±0.08b 108.8±4.4a
RFCP 540±4c 1051±34b 54.2±3.0a 0.95±0.01b 6.3±0.07c 107.1±3.5a
IDCP 579±3b 1124±94ab 54.2±1.9a 0.95±0.02b 7.3±0.06a 103.3±0.9a
FF-value 119.97** 3.02ns 6.50* 26.45** 59.34** 6.26*

TCP 699±11a 1186±16a 47.6±1.5b 1.24±0.08a 5.4±0.16a 90.1±0.1b
HCP 543±16b 945±26b 62.0±1.5a 0.93±0.08b 5.6±0.07a 121.0±5.7a
RFCP 530±14b 909±52b 62.0±1.8a 0.94±0.01b 5.5±0.10a 123.4±5.8a
IDCP 565±13b 972±21b 61.4±2.5a 0.95±0.04b 5.8±0.08a 122.2±5.5a
FF-value 32.27** 43.98** 14.01* 6.80* 2.77ns 10.68*
2019 仪征
TCP 529±10a 752±3a 53.7±1.1c 1.35±0.01a 4.6±0.13b 122.3±6.6a
HCP 366±12c 551±15d 66.8±0.1a 1.00±0.06b 5.3±0.15a 119.4±1.0a
RFCP 379±18bc 613±8c 57.5±1.3b 1.07±0.01b 4.8±0.31ab 126.0±6.6a
IDCP 426±6b 708±9b 54.2±1.8bc 1.11±0.01b 5.1±0.02ab 116.5±2.7a
FF-value 35.38** 81.62** 26.25** 22.46** 3.09ns 0.74ns

TCP 514±9a 769±28a 59.9±1.6b 1.12±0.03a 5.6±0.23c 124.5±0.8a
HCP 405±17c 624±17c 68.6±0.2a 0.95±0.06bc 7.1±0.13a 106.2±5.0a
RFCP 373±3c 662±8bc 63.8±2.3ab 0.90±0.03c 6.4±0.18bc 112.8±5.0a
IDCP 461±13b 699±15ab 62.3±2.7ab 1.06±0.01ab 6.7±0.09ab 105.7±1.8a
FF-value 29.31** 10.97* 3.65ns 7.34* 11.13* 3.33ns

Table 6

Effects of cultivation patterns on green leaf area per stem (GLA) and flag leaf net photosynthetic rate (Pn)"

单茎绿叶面积 GLA (cm2) 净光合速率 Pn (μmol·m-2·s-1)
2018 邗江
TCP 109.8±5.1a 82.3±2.1a 42.6±1.2a 25.1±0.2b 16.6±0.1b
HCP 109.3±3.2a 80.6±2.5a 44.2±0.8a 27.5±0.6ab 19.4±0.9a
RFCP 110.0±3.2a 83.5±0.6a 44.4±2.2a 26.6±1.0ab 18.2±0.2ab
IDCP 119.3±4.3a 86.3±3.2a 45.3±3.9a 27.8±0.4a 19.9±0.3a
FF-value 1.39ns 1.04ns 0.27ns 3.81ns 4.33ns
TCP 94.9±1.5a 79.0±1.5a 33.8±0.4b 21.2±0.4b 15.8±0.4c
HCP 95.1±3.8a 83.8±2.6a 38.6±0.7b 24.1±0.8ab 18.2±0.2ab
RFCP 97.1±1.6a 81.8±1.1a 38.6±1.7b 22.5±1.0ab 17.1±0.7bc
IDCP 97.2±4.8a 83.1±2.9a 57.5±6.2a 25.4±0.6a 19.1±0.1a
FF-value 0.15ns 1.02ns 10.16* 7.55* 12.06*
2019 仪征
TCP 117.0±2.9b 101.0±8.0b 41.0±4.5b 24.8±0.7a 18.7±0.3a
HCP 144.8±2.4a 137.8±2.0a 70.4±2.5a 27.4±0.6a 20.4±0.7a
RFCP 134.8±9.0ab 124.4±11.0ab 61.2±0.6a 26.6±0.8a 19.8±0.3a
IDCP 132.1±1.0ab 122.2±5.9ab 50.6±0.4b 25.0±0.7a 18.9±0.2a
FF-value 5.50ns 4.16ns 23.59** 2.28ns 2.01ns
TCP 126.8±7.9b 113.6±7.0c 60.1±1.5c 26.7±0.2ab 20.1±0.1a
HCP 166.5±6.4a 153.2±4.6a 80.2±0.6a 27.9±0.7a 21.1±0.2a
RFCP 153.7±6.0a 140.9±6.0ab 73.3±2.7ab 24.3±0.8bc 19.6±0.7a
IDCP 153.9±1.2a 130.2±4.7bc 67.6±2.8bc 23.2±1.0c 16.9±0.5b
FF-value 10.16* 8.74* 16.24** 7.99* 16.31*

Table 7

Effects of cultivation patterns on nitrogen (N) accumulation and transportation"

氮素积累量 N accumulation (kg·hm-2) 氮素转运量
N transportation (kg·hm-2)
越冬始期 BW 拔节期 SE 开花期 AN 成熟期 MA
2018 邗江
TCP 14.6±0.9a 52.5±0.5a 178.0±0.3a 205.6±5.4b 100.2±0.7c
HCP 10.6±0.9b 36.0±0.3b 186.8±2.6a 223.5±4.5a 116.2±1.9b
RFCP 10.1±0.3b 35.5±1.1b 182.5±7.1a 216.9±5.1ab 109.1±2.0bc
IDCP 10.8±0.7b 47.0±0.6a 195.2±5.5a 233.4±2.6a 129.7±4.9a
FF-value 7.45* 22.03** 2.46ns 7.25* 19.13**
TCP 10.8±0.1a 43.0±1.7a 169.8±4.3b 185.8±5.4b 90.3±1.1c
HCP 8.7±0.7b 31.8±2.7b 181.8±4.6ab 209.4±2.4ab 111.4±2.3b
RFCP 7.5±0.3b 31.4±2.1b 173.3±1.9b 198.1±1.8ab 103.1±0.1bc
IDCP 8.8±0.4b 39.4±4.1ab 191.2±3.8a 221.8±9.5a 128.6±3.6a
FF-value 8.27* 4.24ns 6.20ns 5.59ns 16.01*
2019 仪征
TCP 11.4±0.6a 40.6±3.3ab 171.4±7.1b 193.0±4.7b 99.4±2.4b
HCP 9.9±0.4a 36.3±1.1bc 201.5±4.7a 232.2±10.5a 126.7±4.3a
RFCP 10.8±0.3a 33.1±1.5c 189.6±3.8ab 217.0±6.2ab 117.9±2.4ab
IDCP 11.4±0.3a 47.8±0.3ab 179.8±4.9b 204.4±5.6ab 106.4±0.7ab
FF-value 2.77ns 11.47* 6.01ns 3.00ns 3.64ns
TCP 16.0±0.2a 54.8±0.3ab 184.4±5.2b 210.8±10.8b 117.1±3.5c
HCP 12.2±0.6b 54.0±3.7ab 221.0±8.9a 255.6±7.7a 153.4±3.8a
RFCP 13.7±0.5b 42.2±4.1b 204.9±4.6ab 236.6±3.4ab 137.6±3.6b
IDCP 15.4±0.3a 60.9±3.9a 193.6±5.1b 221.9±8.6b 128.0±1.2bc
FF-value 15.26* 5.27ns 6.47ns 5.75ns 22.88**

Fig. 2

Relationship of culm fertility with grain yield, spike yield, green leaf area per stem (MRGLA), and flag leaf Pn at milk-ripening stage (MRPn) under different cultivation patterns and ecological conditions"

Fig. 3

Relationship of culm fertility with nitrogen use efficiency (NUE), nitrogen accumulation at maturity (MANA) and anthesis stages (ANNA), and nitrogen transportation under different cultivation patterns and ecological conditions"

于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28(5): 577-585.
YU Z W, TIAN Q Z, PAN Q M, YUE S S, WANG D, DUAN Z L, DUAN L L, WANG Z J, NIU Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts. Acta Agronomica Sinica, 2002, 28(5): 577-585. (in Chinese)
高海涛, 王育红, 孟战赢, 吴少辉, 张园. 超高产小麦产量及旗叶生理特性的研究. 麦类作物学报, 2010, 30(6): 1080-1084.
GAO H T, WANG Y H, MENG Z Y, WU S H, ZHANG Y. Study on grain yield and physiological characteristics of flag leaves in super high yield winter wheat. Journal of Triticeae Crops, 2010, 30(6): 1080-1084. (in Chinese)
郝代成, 高国华, 朱云集, 郭天财, 叶优良, 王晨阳, 谢迎新.施氮量对超高产冬小麦花后光合特性及产量的影响. 麦类作物学报, 2010, 30(2):346-352. HAO D C, GAO G H, ZHU Y J, GUO T C, YE Y L, WANG C Y, XIE Y X. Effects of nitrogen application rate on photosynthesis characteristics after anthesis and high grain yield of winter wheat. Journal of Triticeae Crops, 2010, 30(2): 346-352. (in Chinese)
DING J F, LI F J, XU D Y, WU P, ZHU M, LI C Y, ZHU X K, CHEN Y L, GUO W S. Tillage and nitrogen managements increased wheat yield through promoting vigor growth and production of tillers. Agronomy Journal, 2021, 113(2): 1640-1652.

doi: 10.1002/agj2.20562
丁锦峰, 黄正金, 袁毅, 朱新开, 李春燕, 彭永欣, 郭文善.稻-麦轮作下9000 kg hm-2产量水平扬麦20的群体质量及花后光合特征. 作物学报, 2015, 41(7): 1086-1097.
DING J F, HUANG Z J, YUAN Y, ZHU X K, LI C Y, PENG Y X, GUO W S. Population quality and photosynthetic characteristics after anthesis in Yangmai 20 with yield potential of 9000 kg ha-1 in rice-wheat rotation system. Acta Agronomica Sinica, 2015, 41(7): 1086-1097. (in Chinese)

doi: 10.3724/SP.J.1006.2015.01086
丁锦峰. 稻茬小麦超高产群体形成机理与调控[D]. 扬州大学, 2013.
DING J F. Formation mechanism and regulation of super-high- yielding population in wheat following rice[D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
丁锦峰, 訾妍, 成亚梅, 潘婷, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善.稻茬小麦公顷产量9000 kg群体糖氮代谢特征. 中国农业科学, 2014, 47(1): 182-190.
DING J F, ZI Y, CHENG Y M, PAN T, FENG C N, ZHU X K, LI C Y, PENG Y X, GUO W S. Sugar-nitrogen characteristics of wheat at yield level of 9 000 kg·hm-2 following rice. Scientia Agricultura Sinica, 2014, 47(1): 182-190. (in Chinese)
丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 稻茬小麦公顷产量9000kg群体氮素积累、分配与利用特性. 植物营养与肥料学报, 2013, 19(3): 543-551.
DING J F, YANG J F, WANG Y C, CHEN F F, FENG C N, ZHU X K, LI C Y, PENG Y X, GUO W S. Nitrogen accumulation, distribution and utilization characteristics of wheat at yield level of 9 000 kg/ha in rice-wheat rotation. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 543-551. (in Chinese)
卢百关, 杜永, 李筠, 王宝祥, 周振玲, 孙中伟, 杨波, 秦德荣, 徐大勇. 黄淮地区稻茬小麦超高产群体特征研究. 中国生态农业学报, 2015, 23(1): 43-51.
LU B G, DU Y, LI J, WANG B X, ZHOU Z L, SUN Z W, YANG B, QIN D R, XU D Y. Population characteristics of super-high-yielding wheat under rice stubble in Huanghuai area. Chinese Journal of Eco-Agriculture, 2015, 23(1): 43-51. (in Chinese)
汤永禄, 李朝苏, 吴春, 吴晓丽, 黄钢, 何刚.四川盆地单产9000 kg hm-2以上超高产小麦品种产量结构与干物质积累特点. 作物学报, 2014, 40(1): 134-142.
TANG Y L, LI C S, WU C, WU X L, HUANG G, HE G. Yield component and dry matter accumulation in wheat varieties with 9000 kg ha-1 yield potential in Sichuan Basin. Acta Agronomica Sinica, 2014, 40(1): 134-142. (in Chinese)

doi: 10.3724/SP.J.1006.2014.00134
吴晓丽, 李朝苏, 汤永禄, 李俊, 马孝玲, 李式昭, 黄明波. 四川盆地9000 kg hm-2产量潜力小麦品种的花后冠层结构、生理及同化物分配特性. 作物学报, 2017, 43(7): 1043-1056.
WU X L, LI C S, TANG Y L, LI J, MA X L, LI S Z, HUANG M B. Canopy architecture, physiological characteristics and assimilate partitioning in wheat cultivars with 9000 kg ha-1 yield potential in Sichuan Basin. Acta Agronomica Sinica, 2017, 43(7): 1043-1056. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01043
李鸿伟, 杨凯鹏, 曹转勤, 王志琴, 杨建昌. 稻麦连作中超高产栽培小麦和水稻的养分吸收与积累特征. 作物学报, 2013, 39(3): 464-477.
LI H W, YANG K P, CAO Z Q, WANG Z Q, YANG J C. Characteristics of nutrient uptake and accumulation in wheat and rice with continuous cropping under super-high-yielding cultivation. Acta Agronomica Sinica, 2013, 39(3): 464-477. (in Chinese)

doi: 10.3724/SP.J.1006.2013.00464
熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49(12): 2267-2279.
XIONG S P, WU K Y, WANG X C, ZHANG J, DU P, WU Y X, MA X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279. (in Chinese)
李淑文, 文宏达, 周彦珍, 李雁鸣, 肖凯. 不同氮效率小麦品种氮素吸收和物质生产特性. 中国农业科学, 2006, 39(10): 1992-2000.
LI S W, WEN H D, ZHOU Y Z, LI Y M, XIAO K. Characterization of nitrogen uptake and dry matter production in wheat varieties with different N efficiency. Scientia Agricultura Sinica, 2006, 39(10): 1992-2000. (in Chinese)
张洋, 张继, 强晓敏, 翟丙年, 王朝辉. 不同氮效率基因型冬小麦生理特征的比较研究. 植物营养与肥料学报, 2010, 16(6): 1319-1324.
ZHANG Y, ZHANG J, QIANG X M, ZHAI B N, WANG Z H. Comparative study on physiological characteristics in winter wheat with different nitrogen use efficiency. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1319-1324. (in Chinese)
丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征. 作物学报, 2020, 46(4): 544-556.

doi: 10.3724/SP.J.1006.2020.91041
DING Y G, LI F J, WANG Y H, TANG X Q, DU T Q, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Characteristics of yield components and population quality in high-nitrogenutilization wheat cultivars. Acta Agronomica Sinica, 2020, 46(4): 544-556. (in Chinese)

doi: 10.3724/SP.J.1006.2020.91041
丁锦峰, 成亚梅, 黄正金, 李春燕, 郭文善, 朱新开. 稻茬小麦不同氮效率群体花后物质生产与衰老特性差异分析. 中国农业科学, 2015, 48(6): 1063-1073.
DING J F, CHENG Y M, HUANG Z J, LI C Y, GUO W S, ZHU X K. Difference analysis of post-anthesis matter production and senescence characteristics among different nitrogen efficiency populations in wheat following rice. Scientia Agricultura Sinica, 2015, 48(6): 1063-1073. (in Chinese)
DING J F, DING Y G, LI F J, WU P, ZHU M, LI C Y, ZHU X K, GUO W S. Promoting pre-anthesis nitrogen accumulation in wheat to achieve high yield and nitrogen-use efficiency through agronomic measures. Journal of Plant Nutrition, 2021, 44(17): 2640-2652.

doi: 10.1080/01904167.2021.1918716
DING J F, ZI Y, LI C Y, PENG Y X, ZHU X K, GUO W S. Dry matter accumulation, partitioning, and remobilization in high-yielding wheat under rice-wheat rotation in China. Agronomy Journal, 2016, 108(2): 604-614.

doi: 10.2134/agronj2015.0114
LI C, WANG X S, GUO Z K, HUANG N, HOU S B, HE G, BATCHELOR W D, SIDDIQUE K H M, WANG Z H, ZHANG D. Optimizing nitrogen fertilizer inputs and plant populations for greener wheat production with high yields and high efficiency in dryland areas. Field Crops Research, 2022, 276: 108374.

doi: 10.1016/j.fcr.2021.108374
DONG S X, ZHANG X, CHU J P, ZHENG F N, FEI L W, DAI X L, HE M R. Optimized seeding rate and nitrogen topdressing ratio for simultaneous improvement of grain yield and bread-making quality in bread wheat sown on different dates. Journal of the Science of Food and Agriculture, 2022, 102(1): 360-369.

doi: 10.1002/jsfa.11366
MAHMOOD H, CAI J, ZHOU Q, WANG X, SAMO A, HUANG M, DAI T B, JAHAN M S, JIANG D. Optimizing nitrogen and seed rate combination for improving grain yield and nitrogen uptake efficiency in winter wheat. Plants, 2022, 11(13): 1745.

doi: 10.3390/plants11131745
郭文善, 封超年, 严六零, 彭永欣, 朱新开, 宗爱国. 小麦开花后源库关系分析. 作物学报, 1995, 21(3): 334-340.
GUO W S, FENG C N, YAN L L, PENG Y X, ZHU X K, ZONG A G. Analysis on source-sink relationship after anthesis in wheat. Acta Agronomica Sinica, 1995, 21(3): 334-340. (in Chinese)
封超年, 郭文善, 王甫同, 朱新开, 彭永欣. 小麦高粒叶比群体建成特点研究. 中国农业科学, 1999, 32(6): 47-55.
FENG C N, GUO W S, WANG F T, ZHU X K, PENG Y X. Mechanism of the population formation with high grain-leaf ratio in wheat. Scientia Agricultura Sinica, 1999, 32(6): 47-55. (in Chinese)
GOOD A G, SHRAWAT A K, MUENCH D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 2004, 9(12): 597-605.
TIAN Z W, LI Y, LIANG Z H, GUO H, CAI J, JIANG D, CAO W X, DAI T B. Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Research, 2016, 196: 251-260.

doi: 10.1016/j.fcr.2016.07.007
吕广德, 王超, 靳雪梅, 徐加利, 王瑞霞, 孙宪印, 钱兆国, 吴科. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31(8): 2593-2603.

doi: 10.13287/j.1001-9332.202008.029
LYU G D, WANG C, JIN X M, XU J L, WANG R X, SUN X Y, QIAN Z G, WU K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat. Chinese Journal of Applied Ecology, 2020, 31(8): 2593-2603. (in Chinese)
刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响. 作物学报, 2022, 48(3): 716-725.

doi: 10.3724/SP.J.1006.2022.11012
LIU Y J, ZHENG F N, ZHANG X, CHU J P, YU H T, DAI X L, HE M R. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat. Acta Agronomica Sinica, 2022, 48(3): 716-725. (in Chinese)

doi: 10.3724/SP.J.1006.2022.11012
DING Y G, TANG X Q, ZHANG X B, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Effects of weak- and semi-winter cultivars of wheat on grain yield and agronomic traits by breaking through traditional area planting. Agronomy, 2022, 12(1): 196.

doi: 10.3390/agronomy12010196
HU C X, TIAN Z W, GU S L, GUO H, FAN Y H, ABID M, CHEN K, JIANG D, CAO W X, DAI T B. Winter and spring night-warming improve root extension and soil nitrogen supply to increase nitrogen uptake and utilization of winter wheat (Triticum aestivum L.). European Journal of Agronomy, 2018, 96: 96-107.

doi: 10.1016/j.eja.2018.03.008
SINHA S K, KUMAR A, TYAGI A, VENKATESH K, PAUL D, SINGH N K, MANDAL P K. Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations. Plant Physiology and Biochemistry, 2020, 148: 246-259.

doi: S0981-9428(20)30018-8 pmid: 31982860
何盛莲, 吴政卿, 雷振生, 杨攀, 周正富, 晁岳恩, 李文旭, 徐福新, 汪庆昌, 李巍. 播期、 播量对小麦郑麦101生长发育和产量的影响. 江苏农业科学, 2018, 46(15): 48-50.
HE S L, WU Z Q, LEI Z S, YANG P, ZHOU Z F, CHAO Y E, LI W X, XU F X, WANG Q C, LI W. Effects of sowing date and planting density on growth and yield of wheat cultivar Zhengmai 101. Jiangsu Agricultural Sciences, 2018, 46(15): 48-50. (in Chinese)
徐晖, 崔怀洋, 张伟, 丁锦峰, 李春燕, 郭文善, 朱新开. 播期、 密度和施氮量对稻茬小麦光明麦1号氮肥表观利用率的调控. 作物学报, 2016, 42(1): 123-130.
XU H, CUI H Y, ZHANG W, DING J F, LI C Y, GUO W S, ZHU X K. Effects of sowing date, density and nitrogen application amount on nitrogen utilization rate of Guangmingmai 1 grown in rice-wheat system. Acta Agronomica Sinica, 2016, 42(1): 123-130. (in Chinese)

doi: 10.3724/SP.J.1006.2016.00123
淮贺举, 陆洲, 秦向阳, 李奇峰, 于莹, 臧辰龙. 种植密度对小麦产量和群体质量影响的研究进展. 中国农学通报, 2013, 29(9): 1-4.
HUAI H J, LU Z, QIN X Y, LI Q F, YU Y, ZANG C L. Advances of researches in plant density effects on the wheat yield and population quality. Chinese Agricultural Science Bulletin, 2013, 29(9): 1-4. (in Chinese)
王月福, 于振文, 李尚霞, 张永丽. 不同土壤肥力下强筋小麦适宜施氮量的研究. 山东农业科学, 2001, 33(5): 14-15.
WANG Y F, YU Z W, LI S X, ZHANG Y L. Study on optimum amount of nitrogen for strong gluten wheat under different soil fertility conditions. Shandong Agricultural Sciences, 2001, 33(5): 14-15. (in Chinese)
黄明, 吴金芝, 李友军, 付国占, 赵凯男, 张振旺, 杨中帅, 侯园泉. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响. 中国农业科学, 2021, 54(24): 5206-5219.
HUANG M, WU J Z, LI Y J, FU G Z, ZHAO K N, ZHANG Z W, YANG Z S, HOU Y Q. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219. (in Chinese)
朱新开, 郭文善, 周正权, 封超年, 彭永欣, 凌启鸿. 氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应. 中国农业科学, 2004, 37(12): 1831-1837.
ZHU X K, GUO W S, ZHOU Z Q, FENG C N, PENG Y X, LING Q H. Effects of nitrogen fertilizer on N absorption, yield and quality of medium-gluten wheat Yangmai 10. Scientia Agricultura Sinica, 2004, 37(12): 1831-1837. (in Chinese)
田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34(1): 101-103.
TIAN J C, CHEN J S, WANG Y X, ZHANG Y X. Effects of delayed-nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars. Scientia Agricultura Sinica, 2001, 34(1): 101-103. (in Chinese)
No related articles found!
Full text



No Suggested Reading articles found!