Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 90-103.doi: 10.3864/j.issn.0578-1752.2023.01.007


Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau

LOU YiBao1(),KANG HongLiang1,WANG WenLong1,2(),SHA XiaoYan1,FENG LanQian2,NIE HuiYing1,SHI QianHua1   

  1. 1. Institute of Soil and Water Conservation, Northwest A&F University/State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling 712100, Shaanxi
    2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi
  • Received:2021-11-15 Accepted:2022-02-15 Online:2023-01-01 Published:2023-01-17
  • Contact: WenLong WANG;


【Objective】The vertical distribution of gully vegetation root system and its effect on soil erosion resistance were explored, so as to provide a theoretical basis for optimizing the allocation of vegetation measures in gully erosion control. 【Method】 In this paper, the gully heads covered with different vegetation (weeds (farmland), Agropyron cristatum, Artemisia gmelinii, and Medicago sativa) were taken as the research object. The scouring experiment of undisturbed soils was carried out to determine the soil anti-scouribility. Moreover, the root characteristics and mechanical and physiochemical properties of root-soil complex were measured using root scanner and ZJ series strain controlled direct shear test apparatus, and so on, respectively. 【Result】(1) The root distribution characteristics at the gully head varied among different vegetation types. Agropyron cristatum had the greatest root characteristic indexes (root weight density, root length density, root surface area density, and root volume density), followed by alfalfa, Artemisia, and weeds in farmland. In addition, the root indexes in the gully head soil of farmland decreased with the deepening of soil layer, while those of Agropyron cristatum, Artemisia gmelinii and Medicago sativa firstly decreased and then increased with the deepening of soil layer. Furthermore, the roots with the diameter of <0.5 mm dominated in the root system of each vegetation. (2) The variability of soil bulk density among different vegetation type was low, ranging from 1.17 g·cm-3 to 1.37 g·cm-3. The contents of >0.25 mm water-stable aggregates of farmland and Agropyron cristatum land were higher than that of Artemisia gmelinii land and Medicago sativa land. (3) The average soil cohesions of gully heads under different vegetation types were as follows: 12.75 kPa for Medicago sativa land, 9.05 kPa for Agropyron cristatum land, 8.60 kPa for Artemisia gmelinii land, and 7.25 kPa for farmland, respectively. Additionally, the soil cohesion of the farmland, Agropyron cristatum land, and Medicago sativa land decreased first and then increased with the deepening of soil layer, while that of Artemisia gmelinii land showed a decreasing trend in the depth of soil. (4) The average anti-scouribility coefficients of 0-100 cm soil at the gully head under different vegetation types were as follows: 39.31 L·g-1 for Medicago sativa land, 25.49 L·g-1 for Agropyron cristatum land, > 22.39 L·g-1 for farmland and 14.75 L·g-1 for Artemisia gmelinii land. Moreover, the soil anti-scouribility coefficient of the 0-20 cm soil layer, varying between 34.91 and 53.30 L·g-1, was larger than that of the lower soil layers. 【Conclusion】 The combination of plants with tap roots and the plants with fibrous roots was suggested for the control of gully head erosion, and the results provided a theoretical basis for the research of gully headcut erosion and gully erosion control.

Key words: soil anti-scouribility, soil shear strength, root characteristics, soil erosion, gully vegetation, gullied Loess Plateau

Table 1

Basic information of the test site"

Sample type
Site code
Dominant plant species
Slop (°)
Elevation (m)
农地 Farmland FZL 玉米Zea mays L. 2 阳坡 Sunny 1293
冰草地 Agropyron cristatum land GAG 冰草Agropyron cristatum (L.) Gaertn. 4 阳坡 Sunny 1252
铁杆蒿地 Artemisia gmelinii land GAW 铁杆蒿Artemisia gmelinii Web. ex Stechm. 3 阳坡 Sunny 1278
苜蓿地 Medicago sativa land GML 紫花苜蓿Medicago sativa L. 3 阳坡 Sunny 1264

Fig. 1

Root morphological characteristics of different plants"

Fig. 2

Diagram of the components of soil anti-scouribility test device"

Fig. 3

Vertical distribution of root characteristics of different plant gully head"

Fig. 4

Contribution of root diameter to root length, root surface area and root volume in different soil layers at gully head"

Fig. 5

Variation characteristics of soil properties of different plant gully heads"

Fig. 6

Variation characteristics of soil cohesion and internal friction angle at gully head of different plants"

Fig. 7

Changes of soil anti-scourability in different plant gully head"

Fig. 8

Relationships between root system, soil properties, and soil anti-scourability of different plants in gully head ANS: Soil anti-scourability; RMD: Root mass density; RLD: Root length density; RAD: Root surface area density; RVD: Root volume density; SBD: Soil bulk density; SHC: Saturated hydraulic conductivity; SWA: Water-stable aggregates with a diameter of >0.25 mm; SOM: Soil organic matter; IFA: Internal friction angle; SCF: Soil cohesion. The same as below"

Table 2

Fitting equation of soil erosion resistance, root system, and soil properties in gully head"

Erosion resistance characteristics
Root and soil characteristics
Regression function
R2 P
ANS RMD y=31.76x+19.43 0.25 <0.05
RLD y=2.69x+15.49 0.22 <0.05
RAD y=3.72x+15.59 0.40 <0.01
RVD y=31.62x+14.63 0.33 <0.01
SOM y=4.69x-15.62 0.40 <0.01
SCF RMD y=12.24x+6.73 0.40 <0.01
RLD y=6.19x0.30 0.37 <0.01
RAD y=12.90x0.30 0.40 <0.01
RVD y=7.34x0.28 0.42 <0.01
SOM y=2.72e0.13x 0.22 <0.01

Fig. 9

Correlation between root indexes of different diameter classes and soil anti-scourability and cohesion"

[1] ZHENG F, WANG B. Soil erosion in the loess plateau region of China. Ecohydrology, 2014, 5: 77-92.
[2] LI Z, ZHANG Y, ZHU Q K, HE Y M, YAO W J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology, 2015, 228: 462-469. doi:10.1016/j.geomorph.2014.10.005.
doi: 10.1016/j.geomorph.2014.10.005
[3] CHEN H, CAI Q G. Impact of hillslope vegetation restoration on gully erosion induced sediment yield. Science in China Series D, 2006, 49(2): 176-192. doi:10.1007/s11430-005-0177-4.
doi: 10.1007/s11430-005-0177-4
[4] SHI Q H, WANG W L, GUO M M, CHEN Z X, FENG L Q, ZHAO M, XIAO H. The impact of flow discharge on the hydraulic characteristics of headcut erosion processes in the gully region of the Loess Plateau. Hydrological Processes, 2020, 34(3): 718-729. doi:10.1002/hyp.13620.
doi: 10.1002/hyp.13620
[5] VANNOPPEN W, VANMAERCKE M, DE BAETS S, POESEN J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Science Reviews, 2015, 150: 666-678. doi:10.1016/j.earscirev.2015.08.011.
doi: 10.1016/j.earscirev.2015.08.011
[6] GUO M M, WANG W L, KANG H L, YANG B. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. Journal of Arid Land, 2018, 10(5): 712-725. doi:10.1007/s40333-018-0121-z.
doi: 10.1007/s40333-018-0121-z
[7] KANG H L, WANG W L, GUO M M, LI J M, SHI Q H. How does land use/cover influence gully head retreat rates? An in situ simulation experiment of rainfall and upstream inflow in the gullied loess region, China. Land Degradation & Development, 2021, 32(9): 2789-2804. doi:10.1002/ldr.3892.
doi: 10.1002/ldr.3892
[8] 刘定辉, 李勇. 植物根系提高土壤抗侵蚀性机理研究. 水土保持学报, 2003, 17(3): 34-37, 117. doi:10.13870/j.cnki.stbcxb.2003.03.010.
doi: 10.13870/j.cnki.stbcxb.2003.03.010
LIU D H, LI Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion. Journal of Soil Water Conservation, 2003, 17(3): 34-37, 117. doi:10.13870/j.cnki.stbcxb.2003.03.010. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2003.03.010
[9] 李强, 刘国彬, 许明祥, 张正, 孙会. 黄土丘陵区撂荒地土壤抗冲性及相关理化性质. 农业工程学报, 2013, 29(10): 153-159.
LI Q, LIU G B, XU M X, ZHANG Z, SUN H. Soil anti-scouribility and its related physical properties on abandoned land in the Hilly Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 153-159. (in Chinese)
[10] KNAPEN A, POESEN J, GOVERS G, GYSSELS G, NACHTERGAELE J. Resistance of soils to concentrated flow erosion: A review. Earth-Science Reviews, 2007, 80(1/2): 75-109. doi:10.1016/j.earscirev.2006.08.001.
doi: 10.1016/j.earscirev.2006.08.001
[11] 刘国彬. 黄土高原草地土壤抗冲性及其机理研究. 土壤侵蚀与水土保持学报, 1998, 4(1): 93-96.
LIU G B. Study on soil anti-scourability and its mechanism of grassland on Loess Plateau. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(1): 93-96. (in Chinese)
[12] 张荣, 董洪君, 周润惠, 余飞燕, 王敏, 陈聪琳, 喻静, 郝建锋. 四川夹金山灌丛群落根系特征对土壤抗冲性的影响. 生态学杂志, 2020, 39(11): 3558-3566. doi:10.13292/j.1000-4890.202011.012.
doi: 10.13292/j.1000-4890.202011.012
ZHANG R, DONG H J, ZHOU R H, YU F Y, WANG M, CHEN C L, YU J, HAO J F. Effects of root characteristics of shrub community on soil anti-scourability in the Jiajin Mountains, Sichuan Province. Chinese Journal of Ecology, 2020, 39(11): 3558-3566. doi:10.13292/j.1000-4890.202011.012. (in Chinese)
doi: 10.13292/j.1000-4890.202011.012
[13] WANG B, LI P P, HUANG C H, LIU G B, YANG Y F. Effects of root morphological traits on soil detachment for ten herbaceous species in the Loess Plateau. Science of the Total Environment, 2021, 754: 142304. doi:10.1016/j.scitotenv.2020.142304.
doi: 10.1016/j.scitotenv.2020.142304
[14] KRAMER J. Relative efficiency of roots and shoots of plants in protecting the soil from erosion[D]. Lincoln, NE: University of Nebraska, 1936.
[15] 冯兰茜, 王文龙, 郭明明, 史倩华, 陈同德, 康宏亮. 根系密度对黄土塬沟头溯源侵蚀产沙和形态演化过程的影响. 农业工程学报, 2020, 36(6): 88-96.
FENG L Q, WANG W L, GUO M M, SHI Q H, CHEN T D, KANG H L. Effects of root density on gully headcut erosion and morphological evolution process in gully regions of Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 88-96. (in Chinese)
[16] 李鹏, 李占斌, 鲁克新. 黄土区草本植被根系与土壤垂直侵蚀产沙关系研究. 植物生态学报, 2006, 30(2): 302-306.
doi: 10.17521/cjpe.2006.0040
LI P, LI Z B, LU K X. Relationship between herbaceous root system and vertical soil sediment yield in loess area. Chinese Journal of Plant Ecology, 2006, 30(2): 302-306. (in Chinese)
doi: 10.17521/cjpe.2006.0040
[17] 史东梅, 陈晏. 紫色丘陵区农林混作模式的土壤抗冲性影响因素. 中国农业科学, 2008, 41(5): 1400-1409. doi:10.3864/j.issn.0578-1752.2008.05.018.
doi: 10.3864/j.issn.0578-1752.2008.05.018
SHI D M, CHEN Y. The influencing factors of soil anti-scouribility of tree-crop intercropping land in purple soil hilly region. Scientia Agricultura Sinica, 2008, 41(5): 1400-1409. doi:10.3864/j.issn.0578-1752.2008.05.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.05.018
[18] 李勇, 朱显谟, 田积莹. 黄土高原植物根系提高土壤抗冲性的有效性. 科学通报, 1991, 36(12): 935-938.
LI Y, ZHU X M, TIAN J Y. Effects of plant roots on soil scour resistance in the Loess Plateau. Chinese Science Bulletin, 1991, 36(12): 935-938. (in Chinese)
[19] STOKES A, ATGER C, BENGOUGH A G, FOURCAUD T, SIDLE R C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 2009, 324(1/2): 1-30. doi:10.1007/s11104-009-0159-y.
doi: 10.1007/s11104-009-0159-y
[20] GUO M M, WANG W L, KANG H L, YANG B, LI J M. Changes in soil properties and resistance to concentrated flow across a 25-year passive restoration chronosequence of grasslands on the Chinese Loess Plateau. Restoration Ecology, 2020, 28(1): 104-114. doi:10.1111/rec.13057.
doi: 10.1111/rec.13057
[21] LI Q, LIU G B, ZHANG Z, TUO D F, XU M X. Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in hilly Loess Plateau. Chinese Geographical Science, 2015, 25(6): 757-764. doi:10.1007/s11769-014-0723-0.
doi: 10.1007/s11769-014-0723-0
[22] 陈安强, 张丹, 熊东红, 刘刚才. 元谋干热河谷坡面表层土壤力学特性对其抗冲性的影响. 农业工程学报, 2012, 28(5): 108-113. doi:10.3969/j.issn.1002-6819.2012.05.018.
doi: 10.3969/j.issn.1002-6819.2012.05.018
CHEN A Q, ZHANG D, XIONG D H, LIU G C. Effects of mechanical properties of surface soil on soil anti-scourability in Yuanmou dry-hot valley. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 108-113. doi:10.3969/j.issn.1002-6819.2012.05.018. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.05.018
[23] DAZIO E R, CONEDERA M, SCHWARZ M. Impact of different chestnut coppice managements on root reinforcement and shallow landslide susceptibility. Forest Ecology and Management, 2018, 417: 63-76. doi:10.1016/j.foreco.2018.02.031.
doi: 10.1016/j.foreco.2018.02.031
[24] FATTET M, FU Y, GHESTEM M, MA W, FOULONNEAU M, NESPOULOUS J, BISSONNAIS Y L, STOKES A. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 2011, 87(1): 60-69. doi:10.1016/j.catena.2011.05.006.
doi: 10.1016/j.catena.2011.05.006
[25] KOMPANI-ZARE M, SOUFI M, HAMZEHZARGHANI H, DEHGHANI M. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran. Catena, 2011, 86(3): 150-159. doi:10.1016/j.catena.2011.03.008.
doi: 10.1016/j.catena.2011.03.008
[26] 熊燕梅, 夏汉平, 李志安, 蔡锡安. 植物根系固坡抗蚀的效应与机理研究进展. 应用生态学报, 2007, 18(4): 895-904.
XIONG Y M, XIA H P, LI Z A, CAI X A. Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: A research review. Chinese Journal of Applied Ecology, 2007, 18(4): 895-904. (in Chinese)
[27] 张爱国, 李锐, 杨勤科. 中国水蚀土壤抗剪强度研究. 水土保持通报, 2001, 21(3): 5-9. doi:10.13961/j.cnki.stbctb.2001.03.004.
doi: 10.13961/j.cnki.stbctb.2001.03.004
ZHANG A G, LI R, YANG Q K. Study on soil anti shearing intensity of water erosion in China. Bulletin of Soil and Water Conservation, 2001, 21(3): 5-9. doi:10.13961/j.cnki.stbctb.2001.03.004. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2001.03.004
[28] 胡斐南, 魏朝富, 许晨阳, 魏能峤, 钟茫, 钟守琴. 紫色土区水稻土抗剪强度的水敏性特征. 农业工程学报, 2013, 29(3): 107-114.
HU F N, WEI C F, XU C Y, WEI N Q, ZHONG M, ZHONG S Q. Water sensitivity of shear strength of purple paddy soils. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 107-114. (in Chinese)
[29] 林金石, 庄雅婷, 黄炎和, 蒋芳市, 林敬兰, 葛宏力. 不同剪切方式下崩岗红土层抗剪特征随水分变化规律. 农业工程学报, 2015, 31(24): 106-110. doi:10.11975/j.issn.1002-6819.2015.24.017.
doi: 10.11975/j.issn.1002-6819.2015.24.017
LIN J S, ZHUANG Y T, HUANG Y H, JIANG F S, LIN J L, GE H L. Shear strengths of collapsing hill in red soil as affected by soil moisture under different experimental methods. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 106-110. doi:10.11975/j.issn.1002-6819.2015.24.017. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2015.24.017
[30] 葛芳红, 周正朝, 刘俊娥, 王宁, 李静, 蒋平海. 黄土丘陵区4种典型植物根系分布特征及对土壤分离速率的影响. 水土保持学报, 2017, 31(6): 164-169. doi:10.13870/j.cnki.stbcxb.2017.06.027.
doi: 10.13870/j.cnki.stbcxb.2017.06.027
GE F H, ZHOU Z C, LIU J E, WANG N, LI J, JIANG P H. Distribution characteristics of root and their effect on soil separation rate of four typical plants in loess hilly region. Journal of Soil and Water Conservation, 2017, 31(6): 164-169. doi:10.13870/j.cnki.stbcxb.2017.06.027. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2017.06.027
[31] PARHIZKAR M, SHABANPOUR M, KHALEDIAN M, CERDÀ A, ROSE C W, ASADI H, LUCAS-BORJA M E, ZEMA D A. Assessing and modeling soil detachment capacity by overland flow in forest and woodland of northern Iran. Forests, 2020, 11(1): 65. doi:10.3390/f11010065.
doi: 10.3390/f11010065
[32] 吴彦, 刘世全, 王金锡. 植物根系对土壤抗侵蚀能力的影响. 应用与环境生物学报, 1997, 3(2): 119-124.
WU Y, LIU S Q, WANG J X. Effect of plant root system on soil anti-erosion. Chinese Journal of Applied and Environmental Biology, 1997, 3(2): 119-124. (in Chinese)
[33] JASTROW J D, MILLER R M, LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 1998, 30(7): 905-916. doi:10.1016/S0038-0717(97)00207-1.
doi: 10.1016/S0038-0717(97)00207-1
[34] 王向荣, 王政权, 韩有志, 谷加存, 郭大立, 梅莉. 水曲柳和落叶松不同根序之间细根直径的变异研究. 植物生态学报, 2005, 29(6): 871-877.
doi: 10.17521/cjpe.2005.0123
WANG X R, WANG Z Q, HAN Y Z, GU J C, GUO D L, MEI L. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations. Chinese Journal of Plant Ecology, 2005, 29(6): 871-877. (in Chinese)
doi: 10.17521/cjpe.2005.0123
[35] WANG B, ZHANG G H, YANG Y F, LI P P, LIU J X. Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agriculture, Ecosystems & Environment, 2018, 266: 68-75. doi:10.1016/j.agee.2018.07.016.
doi: 10.1016/j.agee.2018.07.016
[36] 毛瑢, 孟广涛, 周跃. 植物根系对土壤侵蚀控制机理的研究. 水土保持研究, 2006, 13(2): 241-243. doi:10.3969/j.issn.1005-3409.2006.02.076.
doi: 10.3969/j.issn.1005-3409.2006.02.076
MAO R, MENG G T, ZHOU Y. Mechanism of plant roots on soil erosion control. Research of Soil and Water Conservation, 2006, 13(2): 241-243. doi:10.3969/j.issn.1005-3409.2006.02.076. (in Chinese)
doi: 10.3969/j.issn.1005-3409.2006.02.076
[37] 蒋定生, 范兴科, 李新华, 赵合理. 黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究. 水土保持学报, 1995, 9(2): 1-8.
JIANG D S, FAN X K, LI X H, ZHAO H L. Study on horizontal and vertical regulation of soil anti-scourability in area with serious soil erosion on loess plateau. Journal of Soil and Water Conservation, 1995, 9(2): 1-8. (in Chinese)
[38] 胡敏, 李为萍, 史海滨, 梁建财. 布根方式及根系径级对根土复合体抗剪性能的影响. 水土保持通报, 2012, 32(1): 42-44. doi:10.13961/j.cnki.stbctb.2012.01.034.
doi: 10.13961/j.cnki.stbctb.2012.01.034
HU M, LI W P, SHI H B, LIANG J C. Effects of root layout and diameter on shear performance in root-soil composite. Bulletin of Soil and Water Conservation, 2012, 32(1): 42-44. doi:10.13961/j.cnki.stbctb.2012.01.034. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2012.01.034
[39] 谌芸, 何丙辉, 练彩霞, 刘志鹏, 彭石磊. 三峡库区陡坡根-土复合体抗冲性能. 生态学报, 2016, 36(16): 5173-5181. doi:10.5846/stxb201501270211.
doi: 10.5846/stxb201501270211
CHEN Y, HE B H, LIAN C X, LIU Z P, PENG S L. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2016, 36(16): 5173-5181. doi:10.5846/stxb201501270211. (in Chinese)
doi: 10.5846/stxb201501270211
[40] GUO M M, WANG W L, WANG T C, WANG W X, KANG H L. Impacts of different vegetation restoration options on gully head soil resistance and soil erosion in loess tablelands. Earth Surface Processes and Landforms, 2020, 45(4): 1038-1050. doi:10.1002/esp.4798.
doi: 10.1002/esp.4798
[41] BISCHETTI G B, CHIARADIA E A, SIMONATO T, SPEZIALI B, VITALI B, VULLO P, ZOCCO A. Root strength and root area ratio of forest species in Lombardy (northern Italy). Plant and Soil, 2005, 278(1/2): 11-22. doi:10.1007/s11104-005-0605-4.
doi: 10.1007/s11104-005-0605-4
[42] MATTIA C, BISCHETTI G B, GENTILE F. Biotechnical characteristics of root systems of typical Mediterranean species. Plant and Soil, 2005, 278(1/2): 23-32. doi:10.1007/s11104-005-7930-5.
doi: 10.1007/s11104-005-7930-5
[43] 肖培青, 姚文艺, 王国庆, 杨春霞, 申震洲. 植被作用下土壤抗剪强度和径流侵蚀力的耦合效应. 水科学进展, 2016, 27(2): 224-230. doi:10.14042/j.cnki.32.1309.2016.02.007.
doi: 10.14042/j.cnki.32.1309.2016.02.007
XIAO P Q, YAO W Y, WANG G Q, YANG C X, SHEN Z Z. Effects of soil shear strength and runoff erosivity on slopes with different vegetation cover. Advances in Water Science, 2016, 27(2): 224-230. doi:10.14042/j.cnki.32.1309.2016.02.007. (in Chinese)
doi: 10.14042/j.cnki.32.1309.2016.02.007
[44] 安然, 柴军瑞, 覃源, 许增光. 植被根系形态对边坡稳定性的影响分析. 水利水电技术, 2018, 49(3): 150-156. doi:10.13928/j.cnki.wrahe.2018.03.022.
doi: 10.13928/j.cnki.wrahe.2018.03.022
AN R, CHAI J R, QIN Y, XU Z G. Analysis on effect of vegetation root-system morphology on slope stability. Water Resources and Hydropower Engineering, 2018, 49(3): 150-156. doi:10.13928/j.cnki.wrahe.2018.03.022. (in Chinese)
doi: 10.13928/j.cnki.wrahe.2018.03.022
[1] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
[2] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[3] ZHANG CuiMei, SHI ShangLi, WU Fang. Effects of Drought Stress on Root and Physiological Responses of Different Drought-Tolerant Alfalfa Varieties [J]. Scientia Agricultura Sinica, 2018, 51(5): 868-882.
[4] BU HongYing, SONG WeiZhou, CAO CouGui, LI Ping. Root Growth Responses to Soil Water Deficit for a Water-Saving and Drought-Resistant Rice Genotype Hanyou113 [J]. Scientia Agricultura Sinica, 2017, 50(22): 4277-4289.
[5] REN Hao, CHENG Yi, LIU Peng, DONG ShuTing, ZHAO Jie, ZHANG JiWang, ZHAO Bin. Effects of Different Cultivation Patterns on Root Characteristics, Yield Formation and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2017, 50(12): 2270-2281.
[6] SHI DeYang, LI YanHong, XIA DeJun, ZHANG JiWang, LIU Peng, ZHAO Bin, DONG ShuTing. Effects of Planting Density on Root Characteristics and Nitrogen Uptake in Summer Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2006-2017.
[7] GAO Jia, SHI JianGuo, DONG ShuTing, LIU Peng, ZHAO Bin, ZHANG JiWang. Effect of Different Light Intensities on Root Characteristics and Grain Yield of Summer Maize (Zea Mays L.) [J]. Scientia Agricultura Sinica, 2017, 50(11): 2104-2113.
[8] GAO Fei, LI Xia, REN BaiZhao, DONG ShuTing, LIU Peng, ZHAO Bin, ZHANG JiWang. Root Characteristics and Grain Yield of Summer Maize Under Different Winter Wheat-Summer Maize Tillage Systems [J]. Scientia Agricultura Sinica, 2017, 50(11): 2141-2149.
[9] XIAO Ji-bing, SUN Zhan-xiang, JIANG Chun-guang, ZHENG Jia-ming, LIU Yang, YANG Ning, FENG Liang-shan, BAI Wei. Effect of Technique of Ridge Film Mulching and Furrow Seeding on Soil Erosion and Crop Yield on Sloping Farmland in Western Liaoning [J]. Scientia Agricultura Sinica, 2016, 49(20): 3904-3917.
[10] ZHANG Xiang-qian, CAO Cheng-fu, QIAO Yu-qiang, LI Wei, CHEN Huan. Response of Wheat Root Characteristics and Canopy Photosynthesis to Different Irrigation Methods in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2015, 48(8): 1506-1517.
[11] YAN Jian-mei, HE Bing-hui, TIAN Tai-qiang. Effects of Combined Foliar Zn Application with N or P Under Different Water and Nitrogen Managements on Zn Nutritional  Quality of Winter Wheat [J]. Scientia Agricultura Sinica, 2014, 47(20): 4027-4035.
[12] HE Xiao-Ling, ZHENG Zi-Cheng, LI Ting-Xuan. Effects of Tillage Practices on Soil Erosion and Phosphorus Loss in Sloping Cropland of Purple Soil [J]. Scientia Agricultura Sinica, 2013, 46(12): 2492-2500.
[13] LIN Chao-wen, LUO Chun-yan, PANG Liang-yu, HUANG Jing-jing, TU Shi-hua. Effect of Different Fertilization Methods and Rain Intensities on Soil Nutrient Loss from a Purple Soil [J]. Scientia Agricultura Sinica, 2011, 44(9): 1847-1854.
[14] WANG Jing-feng,LIU Peng,ZHAO Bing-qiang,DONG Shu-ting,ZHANG Ji-wang,ZHAO Ming,YANG Ji-shun,LI Geng
. Comparison of Root Characteristics and Nitrogen Uptake and Use Efficiency in Different Corn Genotypes
[J]. Scientia Agricultura Sinica, 2011, 44(4): 699-707 .
[15] MA Qian,YU Xing-xiu,LIU Qian-jin,Lü Guo-an
. Research on Dynamic Change of Soil Erosion Distribution and Its Controlling Factors in Yimeng Mountainous Area of China
[J]. Scientia Agricultura Sinica, 2010, 43(22): 4652-4662 .
Full text



No Suggested Reading articles found!