Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5008-5020.doi: 10.3864/j.issn.0578-1752.2021.23.007

• PLANT PROTECTION • Previous Articles     Next Articles

The Infectivity of Aspergillus flavus in Peanut

JING Dan1,2(),YUE XiaoFeng1,2,3,4(),BAI YiZhen1,2,3,GUO Can1,2,DING XiaoXia1,2,3,LI PeiWu1,2,3,4(),ZHANG Qi1,2,3,4   

  1. 1Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062
    2Laboratory of Risk Assessment for Oil Seeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062
    3Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    4National Agricultural Testing Benchmark Laboratory (Biotoxin), Wuhan 430062
  • Received:2021-03-19 Accepted:2021-04-24 Online:2021-12-01 Published:2021-12-06
  • Contact: XiaoFeng YUE,PeiWu LI E-mail:18037891010@163.com;yuexf2017@caas.cn;peiwuli@oilcrops.cn

Abstract:

【Background】Aspergillus flavus can easily infect peanut and other agricultural products, and the aflatoxin produced by A. flavus is highly toxic, teratogenic and carcinogenic, threatening human and animal health and causing significant agricultural economic losses.【Objective】Based on the previous research about the distribution of A. flavus in China, this study aims to further investigate the infection characteristics of A. flavus strains with different toxigenicity and geographical sources, so as to provide scientific basis for screening and breeding of peanut cultivars with resistance to A. flavus, as well as the early risk warning and control of aflatoxin contamination.【Method】A total of 102 strains of A. flavus isolated from different regions (early maturing peanut region in northeast China, large peanut region in north China, intercropping peanut region in spring and summer in Yangtze River, and double cropping peanut region in spring and autumn in south China) of China were identified as non-toxigenicity (ND), medium-low toxigenicity (0-1 500 μg·kg-1) and high toxigenicity (>1 500 μg·kg-1). The soaking method of the spores suspension was used to inoculate peanut seeds to identify the infection grade and infection index of A. flavus, and the infection difference of the strains and their correlation between different toxigenicity and different geographical sources were analyzed.【Result】The infection index of the 102 A. flavus strains to peanut was ranged from 3.89% to 67.50%. The proportion of A. flavus strains with intermediate or strong infectivity (the infection grade was 3 or 4, infection index>31%) accounted for 54.90%, and 18.63% of the total strains, mainly from Zhangshu in Jiangxi Province and Zhanjiang in Guangdong Province, were identified as intermediate or strong infectivity and high toxigenicity strains. Clustering and correlation analysis indicated that there was no significant correlation between the toxigenicity and infection index of A. flavus, however, the infectivity of toxigenic strains was significantly higher than that of the non-toxigenic strains. The infection index of medium-low toxigenicity and high toxigenicity strains accounted for the highest proportion in grade 4 and 3, respectively. Regional differences in the infectivity among the strains were analyzed. The results showed that average infection index of the strains from the south and the Yangtze River regions was 46.59% and 36.12%, respectively, and accounted for the highest proportion in grade 3 and 4. By contrast, the infection index of the strains from the northeast and northern regions was only 15.72% and 27.52%, respectively, and mainly distributed in grade 1 and 2. Strains from Guangdong Province, in the south China, had the highest average infection index (51.89%), while the average infection index of A. flavus in Liaoning Province, the northeast producing area, was the lowest, which was only 15.72%.【Conclusion】The infection characteristics of A. flavus and its relationship with toxigenicity and geographical sources were preliminarily clarified in this research. There was pathogenic differentiation among the strains, and the infectivity of the strains with different toxigenicity grades and geographical origins was significantly different. Strains with strong infectivity are mainly distributed in the south and Yangtze River regions of China. The results of this study are of great importance for the screening and breeding of peanut cultivars with resistance to A. flavus and the accurate early risk warning, prevention and control of aflatoxin contamination.

Key words: Aspergillus flavus, aflatoxin, peanut, toxigenicity, infectivity

Table 1

Sources of A. flavus strains with different toxigenicity"

来源
Source
不产毒菌株数
Number of non-toxigenicity strains
中低产毒菌株数
Number of medium-low toxigenicity strains (0-1500 μg·kg-1)
高产毒菌株数
Number of high toxigenicity strains (>1500 μg·kg-1)
合计
Total
辽宁Liaoning 3 5 5 13
山东Shandong 5 3 2 10
河南Henan 4 3 3 10
河北Hebei 2 3 3 8
山西Shanxi 2 1 0 3
江苏Jiangsu 0 1 1 2
江西Jiangxi 5 4 5 14
湖北Hubei 5 3 3 11
四川Sichuan 1 4 4 9
广东Guangdong 2 6 4 12
西藏Tibet 1 3 4 8
云南Yunnan 0 0 2 2
合计Total 30 36 36 102

Table 2

The infectivity of different A. flavus strains"

产毒力水平
Toxigenicity
level
菌株编号
Strain number
产毒力
Toxigenicity
(μg·kg-1)
侵染指数
Infection index (%)
菌株编号
Strain number
产毒力
Toxigenicity (μg·kg-1)
侵染指数
Infection index (%)
菌株编号
Strain number
产毒力
Toxigenicity (μg·kg-1)
侵染指数
Infection index (%)
菌株编号
Strain number
产毒力
Toxigenicity (μg·kg-1)
侵染指数
Infection index (%)
不产毒
Non-toxigenicity
LNFX-28-2 ND 12.22 SCPA-25-6 ND 64.86 JXZS-116-1 ND 30.56 SX-1-4 ND 39.44
LNFX-26-2 ND 9.17 SDXT-3 ND 38.33 JXZS-103-14 ND 35.97 SX-1-5 ND 30.83
LNFXS-7 ND 6.67 SDPY-1 ND 20.56 JXZS-89-1 ND 25.42 HeNSQ-4 ND 24.72
HBHA-80-1 ND 38.47 SDPY-3 ND 26.53 GDYD-1 ND 46.67 HNZY-17 ND 23.06
HBYL-5-2 ND 32.08 SDPY-2 ND 20.00 GDMM-2 ND 58.61 HeNQF-3 ND 37.92
HBHA-116-8 ND 44.58 SDXT-2 ND 12.78 HeBBD-2 ND 15.83 HNZY-3 ND 25.42
HBHA-69-1 ND 29.86 JXZS-121-6 ND 54.86 HeBBD-5 ND 24.44 XZCY-18-5 ND 29.17
HuBXY-33 ND 29.72 JXZS-104-9 ND 34.17
中低产毒
Medium-low toxigenicity (0-1500 μg·kg-1)
HBTS-127-1 2.28 46.81 GDZJ-126-2 51.36 62.08 GDZJ-105-9 420.39 57.36 XZCY-16-2 900.83 24.83
XZCY-18-1 5.14 27.50 HBTS-147-3 221.37 28.33 GDZJ-103-3 502.53 57.78 HNZY-15 928.95 21.53
SX-1-7 5.18 25.69 LNFX-90-1 262.98 3.89 JXZS-118-6 518.35 36.11 LNFX-73-1 932.38 12.50
XZCY-18-4 5.74 32.08 JXZS-114-6 284.25 40.00 JXZS-117-1 575.56 46.67 HNZY-8 1112.40 19.17
HBTS-125-1 12.92 43.06 HBHA-130-2 293.48 67.50 JXZS-117-3 629.58 33.89 HBHA-137-1 1175.05 31.67
SCPA-20-3 43.00 40.42 SCPA-22-5 303.64 62.08 GDZJ-101-1 680.98 51.11 SDJY-104-1 1191.30 6.94
SCPA-23-4 43.28 42.42 GDZJ-101-2 346.15 57.36 HBHA-131-1 730.08 62.92 LNFX-26-1 1222.25 10.00
LNFX-4-5 43.99 13.06 GDZJ-106-1 356.06 53.06 SDJY-42-1 824.38 24.17 HeNQF-2 1227.90 42.50
LNFX-25-3 44.86 36.81 JSRS-17-2 369.88 19.86 SDJY-135-1 880.53 29.17 SCPA-32-12 1490.49 63.06
高产毒
High toxigenicity (>1500 μg·kg-1)
GDZJ-110-4 1531.99 42.08 HeNSQ-18 2660.25 24.44 LNFX-25-1 3545.22 25.56 JXZS-69-3 6087.31 43.06
HeNQF-1 1705.95 39.72 YNGN-20-6 2698.18 21.39 XZCY-30-1 3570.74 40.42 HBTS-28-2 6348.68 37.22
JXZS-119-1 2049.86 26.39 XZCY-21-5 2703.36 42.22 HBTS-94-2 3903.05 27.64 SDJY-50-1 6495.97 36.67
XZCY-16-4 2147.79 24.86 JXZS-126-9 2762.77 49.17 XZCY-21-2 3908.80 22.50 GDZJ-105-2 9354.93 22.92
LNFX-103-2 2155.32 28.33 YNGN-15-2 2844.27 40.00 SCPA-14-3 3957.07 25.69 LNFX-103-1 9469.96 13.89
GDZJ-119-4 2247.91 46.39 GDZJ-108-15 3085.41 53.89 LNFX-45-3 4436.47 14.44 HBHA-125-1 10643.80 21.94
JXZS-117-2 2314.62 31.94 HBHA-147-1 3197.12 45.56 SCPA-40-4 4913.89 22.36 JSRG-18-1 13272.40 31.53
JXZS-132-9 2362.42 49.44 LNFX-77-1 3245.92 17.78 HBTS-26-7 4976.00 25.00 SCPA-14-6 13456.28 64.58
HBHA-131-2 2480.35 52.08 HeNSQ-19 3389.85 26.11 SCPA-27-5 5486.87 37.50 SDJY-60-1 18038.50 30.69
CGMCC 3.4408 2296.53 45.00

Fig. 1

The levels of infection index (A) and the infection difference of different A. flavus strains to peanut (B)"

Fig. 2

The infection index distribution of different A. flavus strains"

Fig. 3

The distribution of infection index of A. flavus strains with different toxigenicity grades (A) and the proportion in different infection index grades (B)"

Table 3

The infection index of A. flavus strains with different toxigenicity grades"

产毒力水平
Toxigenicity level
侵染指数范围
Infection index range (%)
平均侵染指数Average of infection index (%)
中花6号
Zhonghua 6
粤油256
Yueyou 256
豫花37
Yuhua 37
均值
Average
不产毒Non-toxigenicity 6.67-64.86 47.19b 13.36b 31.74b 30.76b
中低产毒Medium-low toxigenicity 3.89-67.50 53.07a 17.63a 40.41a 37.04a
高产毒High toxigenicity 13.89-64.58 50.20ab 15.96ab 34.29ab 33.48ab

Fig. 4

The cluster analysis of infection index and toxigenicity of A. flavus"

Table 4

The difference significance analysis in infection of A. flavus strains from different provinces (Autonomous Region)"

省(自治区)
Province
(Autonomous
Region)
平均侵染指数
Average of infection
index (%)
广东
Guandong
河北
Hebei
河南
Henan
湖北
Hubei
江苏
Jiangsu
江西
Jiangxi
辽宁
Liaoning
山东
Shandong
山西
Shanxi
四川
Sichuan
西藏
Tibet
云南
Yunnan
广东Guangdong 51.89
河北Hebei 27.41 19.57*
河南Henan 29.14 25.07* 5.50
湖北Hubei 35.21 13.65* 5.92 11.41*
江苏Jiangsu 25.69 27.04* 7.47 1.97 13.38*
江西Jiangxi 38.40 15.77* 3.81 9.30* 2.11 11.27
辽宁Liaoning 15.72 36.65* 17.08* 11.59* 22.99* 9.60 20.89*
山东Shandong 24.48 29.95* 10.38* 4.89 16.30* 2.92 14.19* 6.70
山西Shanxi 31.99 18.61* 0.96 6.45 4.96 8.43 2.84 18.04* 11.34*
四川Sichuan 47.00 9.25* 10.32* 15.81* 4.40 17.78* 6.51 27.40* 20.70* 9.36
西藏Tibet 30.50 20.81* 1.24 4.26 7.16 6.23 5.04 15.85* 9.15* 2.20 11.56*
云南Yunnan 30.69 24.40* 4.83 0.67 10.75 2.64 8.63 12.25 5.56 5.79 15.15* 3.59

Table 5

The infection difference of A. flavus strains from different producing regions"

菌株来源
Source
侵染指数范围
Infection index range (%)
平均侵染指数
Average of infection index (%)
东北产区Northeast region 辽宁阜新Fuxin, Liaoning 3.89-36.81 15.72
北方产区North region 河北保定Baoding, Hebei 15.83-24.44 20.14
河北唐山Tangshan, Hebei 25.00-46.81 34.68
河南正阳Zhengyang, Henan 19.17-25.42 22.29
河南商丘Shangqiu, Henan 22.44-26.11 25.09
河南清风Qingfeng, Henan 37.92-42.50 40.05
山东平邑Pingyi, Shandong 20.00-26.56 22.36
山东新泰Xintai, Shandong 12.78-38.33 25.56
山东济阳Jiyang, Shandong 6.94-36.67 25.53
山西襄汾Linfen, Shanxi 25.69-39.44 31.99
长江流域产区Yangtze River region 江苏如皋Rugao, Jiangsu 19.86-31.53 25.69
湖北红安Hongan, Hubei 21.94-67.50 43.84
湖北襄阳Xiangyang, Hubei 29.72 29.72
湖北阳逻Yangluo, Hubei 32.08 32.08
四川蓬安Peng’an, Sichuan 22.36-64.86 47.00
江西樟树Zhangshu, Jiangxi 25.42-54.86 38.40
南方产区South region 云南广南Guangnan, Yunnan 21.39-40.00 30.69
广东英德Yingde, Guangdong 46.67 46.67
广东茂名Maoming, Guangdong 58.61 58.61
广东湛江Zhanjiang, Guangdong 22.92-62.08 50.40
西藏高原Tibetan Plateau region 西藏察隅Chayu, Tibet 22.50-42.22 30.50

Fig. 5

The proportion of A. flavus strains from the main peanut producing regions within different infection index ranges"

[1] AMAIKE S, KELLER N P. Aspergillus flavus. Annual Review of Phytopathology, 2011, 49:107-133.
doi: 10.1146/phyto.2011.49.issue-1
[2] WILLIAMS J H, PHILLIPS T D, JOLLY P E, STILES J K, JOLLY C M, AGGARWAL D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition, 2004, 80(5):1106-1122.
doi: 10.1093/ajcn/80.5.1106
[3] DING X X, WU L X, LI P W, ZHANG Z W, ZHOU H Y, BAI Y Z, CHEN X M, JIANG J. Risk assessment on dietary exposure to aflatoxin B1 in post-harvest peanuts in the Yangtze River ecological region. Toxins, 2015, 7(10):4157-4174.
doi: 10.3390/toxins7104157
[4] WU L X, DING X X, LI P W, DU X H, ZHOU H Y, BAI Y Z, ZHANG L X. Aflatoxin contamination of peanuts at harvest in China from 2010 to 2013 and its relationship with climatic conditions. Food Control, 2016, 60:117-123.
doi: 10.1016/j.foodcont.2015.06.029
[5] NIGAM S N, WALIYAR F, ARUNA R, REDDY S V, KUMAR P L, CRAUFURD P Q, DIALLO A T, NTARE B R, UPADHYAYA H D. Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Science, 2009, 36(1):42-49.
doi: 10.3146/AT07-008.1
[6] 邱西克, 康彦平, 郭建斌, 喻博伦, 陈伟刚, 姜慧芳, 黄莉, 李威涛, 罗怀勇, 雷永, 廖伯寿. 花生荚壳抗黄曲霉菌侵染的鉴定方法研究及抗性种质发掘. 中国油料作物学报, 2019, 41(1):109-114.
QIU X K, KANG J P, GUO J B, YU B L, CHEN W G, JIANG H F, HUANG L, LI W T, LUO H Y, LEI Y, LIAO B S. Method for screening resistance of peanut shell to Aspergillus flavus infection and identification of resistant genotypes. Chinese Journal of Oil Crop Sciences, 2019, 41(1):109-114. (in Chinese)
[7] 王后苗. 花生抗黄曲霉菌产毒机制的研究[D]. 北京: 中国农业科学院, 2016.
WANG H M. Mechanism of resistance to aflatoxin production in peanut (Arachis hypogaea L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[8] 李春娟, 闫彩霞, 王娟, 孙全喜, 苑翠玲, 单世华, 赵小波. 基于iTRAQ技术的黄曲霉胁迫花生蛋白质组分析. 花生学报, 2020, 49(1):25-30.
LI C J, YAN C X, WANG J, SUN Q X, YUAN C L, SHAN S H, ZHAO X B. Analysis of differential proteome in peanut under Aspergillus flavus stress based on iTRAQ technique. Journal of Peanut Science, 2020, 49(1):25-30. (in Chinese)
[9] ZHANG C, SELVARAJ J N, YANG Q, YANG L. A survey of aflatoxin-producing Aspergillus sp. from peanut field soils in four agroecological zones of China. Toxins, 2017, 9(1):40.
doi: 10.3390/toxins9010040
[10] KLICH M A. Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 2007, 8(6):713-722.
doi: 10.1111/mpp.2007.8.issue-6
[11] SMARTT J. The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, 1994.
[12] HOLBROOK C C, GUO B Z, WILSON D M, TIMPER P. The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Science, 2009, 36(1):50-53.
doi: 10.3146/AT07-009.1
[13] 朱婷婷. 花生土壤中产黄曲霉毒素菌的分布、产毒力与毒素污染研究[D]. 北京: 中国农业科学院, 2018.
ZHU T T. Study on the distribution, potential of aflatoxigenic fungi and toxins contamination in peanut soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[14] 余仲东, 余知和, 金世宇, 王龙. 我国黄曲霉遗传多样性与产毒特性. 生物多样性, 2019, 27(8):842-853.
doi: 10.17520/biods.2019034
YU Z D, YU Z H, JIN S Y, WANG L. Genetic diversity and toxin-producing characters of Aspergillus flavus from China. Biodiversity Science, 2019, 27(8):842-853. (in Chinese)
doi: 10.17520/biods.2019034
[15] ASIS R, MULLER V, BARRIONUEVO D L, ARAUJO S A, ALDAO M A. Analysis of protease activity in Aspergillus flavus and A. parasiticus on peanut seed infection and aflatoxin contamination. European Journal of Plant Pathology, 2009, 124(3):391-403.
doi: 10.1007/s10658-008-9426-7
[16] 唐兆秀, 纪荣昌, 李光星, 康玉妹, 种藏文. 花生A. flavus菌株产毒性与致病性研究. 福建农业学报, 2000, 15(2):19-22.
TANG Z X, JI R C, LI G X, KANG Y M, ZHONG Z W. Toxigenicity and pathogenicity of groundnut A. flavus strain. Fujian Journal of Agricultural Sciences, 2000, 15(2):19-22. (in Chinese)
[17] 李毓, 方树民, 蔡宁波, 程忠, 尹亚兵, 庄伟建. 不同产地花生黄曲霉菌致病力研究. 花生学报, 2007, 36(3):21-24.
LI Y, FANG S M, CAI N B, CHENG Z, YIN Y B, ZHUANG W J. Studies on peanut strains of A. flavus and their infection capacity from different areas. Journal of Peanut Science, 2007, 36(3):21-24. (in Chinese)
[18] 朱婷婷, 陈琳, 岳晓凤, 白艺珍, 丁小霞, 李培武, 张奇, 张文. 湖北省典型花生种植区土壤中黄曲霉菌分布及产毒力研究. 中国油料作物学报, 2019, 41(2):255-260.
ZHU T T, CHEN L, YUE X F, BAI Y Z, DING X X, LI P W, ZHANG Q, ZHANG W. Distribution, aflatoxin production of Aspergillus flavus in soils of typical peanut planting area in Hubei Province. Chinese Journal of Oil Crop Sciences, 2019, 41(2):255-260. (in Chinese)
[19] 王春玮, 张廷婷, 陈凯, 闫彩霞, 李春娟, 刘宇, 朱启忠, 单世华. 黄曲霉侵染对不同品种花生生理特性的影响. 资源开发与市场, 2012, 28(10):865-867.
WANG C W, ZHANG T T, CHEN K, YAN C X, LI C J, LIU Y, ZHU Q Z, SHAN S H. Effect of physiological traits on different peanut varieties treated with Aspergillus flavus. Resource Development and Market, 2012, 28(10):865-867. (in Chinese)
[20] TUBAJIKA K M, DAMANN K E. Sources of resistance to aflatoxin production in maize. Journal of Agricultural and Food Chemistry, 2001, 49(5):2652-2656.
doi: 10.1021/jf001333i
[21] LIAO B, ZHUANG W, TANG R, ZHANG X, SHAN S, JIANG H, HUANG J. Peanut aflatoxin and genomics research in China: Progress and perspectives. Peanut Science, 2009, 36(1):21-28.
doi: 10.3146/AT07-004.1
[22] 丁小霞. 中国产后花生黄曲霉毒素污染与风险评估方法研究[D]. 北京: 中国农业科学院, 2011.
DING X X. Study on post-harvest peanut aflatoxins contamination and risk assessment in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[23] 张杏, 岳晓凤, 丁小霞, 李培武, 余秋玉, 谢华里, 张奇, 张兆威, 张文. 中国西南花生产区黄曲霉菌分布、产毒力及花生黄曲霉毒素污染. 中国油料作物学报, 2019, 41(5):773-780.
ZHANG X, YUE X F, DING X X, LI P W, YU Q Y, XIE H L, ZHANG Q, ZHANG Z W, ZHANG W. Distribution and aflatoxin contamination by Aspergillus flavus in peanut from the southwest China. Chinese Journal of Oil Crop Sciences, 2019, 41(5):773-780. (in Chinese)
[24] 王后苗, 潘婷, 魏杰, 雷永, 吕建伟, 成良强, 徐辰武, 廖伯寿. 花生收获前黄曲霉毒素污染抗性及其与花生安全贮藏关系的分析. 扬州大学学报(农业与生命科学版), 2018, 39(3):58-62.
WANG H M, PAN T, WEI J, LEI Y, LÜ J W, CHENG L Q, XU C W, LIAO B T. Resistance to preharvest aflatoxin contamination in peanut and the relationship of the resistance with safe storage. Journal of Yangzhou University (Agriculture and Life Science Edition), 2018, 39(3):58-62. (in Chinese)
[25] MEHANATHAN M, BEDRE R, MANGU V, RAJASEKARAN K, BHATNAGAR D, BAISAKH N. Identification of candidate resistance genes of cotton against Aspergillus flavus infection using a comparative transcriptomics approach. Physiology and Molecular Biology of Plants, 2018, 24(3):513-519.
doi: 10.1007/s12298-018-0522-7
[26] WANG H, LEI Y, YAN L, WAN L, REN X, CHEN S, DAI X, GUO W, JIANG H, LIAO B. Functional genomic analysis of Aspergillus flavus interacting with resistant and susceptible peanut. Toxins, 2016, 8(2):46.
doi: 10.3390/toxins8020046
[27] 蒋艺飞, 喻博伦, 丁膺宾, 陈伟刚, 郭建斌, 陈海文, 罗怀勇, 刘念, 黄莉, 周小静, 姜慧芳, 雷永, 晏立英, 康彦平, 姜成红, 廖伯寿. 花生抗黄曲霉大果种质的创制与鉴定. 中国油料作物学报, 2021. DOI: 10.19802/j.issn.1007-9084.2020304.
doi: 10.19802/j.issn.1007-9084.2020304
JIANG Y F, YU B L, DING Y B, CHEN W G, GUO J B, CHEN H W, LUO H Y, LIU N, HUANG L, ZHOU X J, JIANG H F, LEI Y, YAN L Y, KANG Y P, JIANG C H, LIAO B S. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination. Chinese Journal of Oil Crop Sciences, 2021. DOI: 10.19802/j.issn.1007-9084.2020304. (in Chinese)
doi: 10.19802/j.issn.1007-9084.2020304
[28] 王后苗, 廖伯寿, 雷永, 黄家权, 晏立英. 黄曲霉菌主要真菌毒素次级代谢与调控的研究进展. 微生物学通报, 2014, 41(7):1425-1438.
WANG H M, LIAO B S, LEI Y, HUANG J Q, YAN L Y. Progresses on research of secondary metabolite and regulation of primary mycotoxins in Aspergillus flavus. Microbiology China, 2014, 41(7):1425-1438. (in Chinese)
[29] YU J, CHANG P K, EHRLICH K C, CARY J W, BHATNAGAR D, CLEVELAND T E, PAYNE G A, LINZ J E, WOLOSHUK C P, BENNETT J W. Clustered pathway genes in aflatoxin biosynthesis. Applied and Environmental Microbiology, 2004, 70(3):1253-1262.
doi: 10.1128/AEM.70.3.1253-1262.2004
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[7] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[8] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[9] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[10] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[11] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[12] Xiao WEI,Qi ZHANG,Wen ZHANG,Hui LI,PeiWu LI. Improving the Sensitivity of ELISA by Large-Capacity Reaction System of Aflatoxigenic Fungi-Biomarker in Agro-products [J]. Scientia Agricultura Sinica, 2020, 53(7): 1473-1481.
[13] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] HaiChao CAO,QingShun LIU,HaiXiu BAI,Jun HAN,ShiLing YANG,Ming XUE,Feng LIU. Development of 30% Clothianidin·Pyraclostrobin·Difenoconazole Flowable Concentrate for Seed-Coating and Its Application Effect in Peanut Field [J]. Scientia Agricultura Sinica, 2019, 52(20): 3595-3604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!