Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2916-2930.doi: 10.3864/j.issn.0578-1752.2021.13.019
• RESEARCH NOTES • Previous Articles
ZHANG MaoNing1,2(),HUANG BingYan1,MIAO LiJuan1,XU Jing1,SHI Lei1,ZHANG ZhongXin1,SUN ZiQi1,LIU Hua1,QI FeiYan1,DONG WenZhao1,ZHENG Zheng1,ZHANG XinYou1()
[1] |
BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D, CANNON E K S, LIU X, GAO D, CLEVENGER J, DASH S, REN L, MORETZSOHN MC, SHIRASAWA K, HUANG W, VIDIGAL B, ABERNATHY B, CHU Y, NIEDERHUTH C E, UMALE P, ARAÚJO A C G, KOZIK A, KIM K D, BUROW M D, VARSHNEY R K, WANG X, ZHANG X, BARKLEY N, GUIMARÃES P M, ISOBE S, GUO B, LIAO B, STALKER H T, SCHMITZ R J, SCHEFFLER B E, LEAL-BERTIOLI S C M, XUN X, JACKSON S A, MICHELMORE R, OZIAS-AKINS P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48(4):438-446.
doi: 10.1038/ng.3517 |
[2] | 董文召, 张新友, 韩锁义, 易明林. 中国与美国花生生产成本及收益比较分析. 农业科技管理, 2017, 36(5):56-60. |
DONG W Z, ZHANG X Y, HAN S Y, YI M L. Comparative analysis of peanut production cost and profit in China and USA. Management of Agricultural Science and Technology, 2017, 36(5):56-60. (in Chinese) | |
[3] | CHEN X, LI H, PANDEY MK, YANG Q, WANG X, GARG V, LI H, CHI X, DODDAMANI D, HONG Y, UPADHYAYA H, GUO H, KHAN AW, ZHU F, ZHANG X, PAN L, PIERCE GJ, ZHOU G, KRISHNAMOHAN KA, CHEN M, ZHONG N, AGARWAL G, LI S, CHITIKINENI A, ZHANG GQ, SHARMA S, CHEN N, LIU H, JANILA P, LI S, WANG M, WANG T, SUN J, LI X, LI C, WANG M, YU L, WEN S, SINGH S, YANG Z, ZHAO J, ZHANG C, YU Y, BI J, ZHANG X, LIU ZJ, PATERSON AH, WANG S, LIANG X, VARSHNEY RK, YU S. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Science of the USA, 2016, 113(24):6785-6790. |
[4] | 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42(2):161-166. |
LIAO B S. A review on progress and prospects of peanut industry in China. Chinese Journal of Oil Crop Sciences, 2020, 42(2):161-166. | |
[5] |
LU Q, LIU H, HONG Y, LI H, LIU H, LI X, WEN S, ZHOU G, LI S, CHEN X, LIANG X. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 2018, 19(1):887-896.
doi: 10.1186/s12864-018-5288-3 |
[6] | 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用型花生育种利用分析. 植物遗传资源学报, 2018, 19(5):875-886. |
FANG Y J, SUN Z Q, MIAO L J, QI F Y, HUANG B Y, ZHENG Z, DONG W Z, TANG F S, ZHANG X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and its application for food-use peanut breeding. Journal of Genetic Resources, 2018, 19(5):875-886. (in Chinese) | |
[7] | SONG Y B, LUO H Y, HUANG L, CHEN Y N, CHEN W G, LIU N, REN X P, YU B L, GUO J B, JIANG H F. Integrated genetic linkage map of cultivated peanut by three RIL populations. Oil Crop Science, 2017(3):146-159. |
[8] |
LUO H, GUO J, REN X, CHEN W, HUANG L, ZHOU X, CHEN Y, LIU N, XIONG F, LEI Y, LIAO B, JIANG H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2018, 131(2):267-282.
doi: 10.1007/s00122-017-3000-7 |
[9] | 周小静, 雷永, 夏友霖, 漆燕, 晏立英, 任小平, 黄莉, 罗怀勇, 刘念, 陈伟刚, 陈玉宁, 廖伯寿, 姜慧芳. 花生荚果大小和重量相关性状的QTL定位分析. 中国油料作物学报, 2019, 41(6):869-877. |
ZHOU X J, LEI Y, XIA Y L, QI Y, YAN L Y, REN X P, HUANG L, LUO H Y, LIU N, CHEN W G, CHEN Y N, LIAO B S, JIANG H F. QTL mapping for traits of pod size and weight in cultivated peanut (Arachis hypogaea L.) . Chinese Journal of Oil Crop Sciences, 2019, 41(6):869-877. (in Chinese) | |
[10] |
LUO H, XU Z, LI Z, LI X, LV J, REN X, HUANG L, ZHOU X, CHEN Y, YU J, CHEN W, LEI Y, LIAO B, JIANG H. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2017, 130(8):1635-1648.
doi: 10.1007/s00122-017-2915-3 |
[11] | 曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周晓静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019, 45(8):1200-1207. |
ZENG X Y, GUO J B, ZHAO J J, CHEN W G, QIU X K, HUANG L, LUO H Y, ZHOU X J, JIANG H F, HUANG J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.) . Acta Agronomica Sinica, 2019, 45(8):1200-1207. (in Chinese) | |
[12] |
GAI J Y, WANG Y J, WU X L, CHEN S Y. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Frontiers of Agriculture in China, 2007, 1(1):1-7.
doi: 10.1007/s11703-007-0001-3 |
[13] | 解松峰, 吉万全, 王长有, 胡卫国, 李俊, 张耀元, 师晓曦, 张俊杰, 张宏, 陈春环. 小麦穗部性状的主基因+多基因混合遗传模型分析. 中国农业科学, 2019, 52(24):4437-4452. |
XIE S F, JI W Q, WANG C Y, HU W G, LI J, ZHANG Y Y, SHI X X, ZHANG J J, ZHANG H, CHEN C H. Genetic analysis of panicle related traits in wheat with major gene plus polygenes mixed model. Scientia Agricultura Sinica, 2019, 52(24):4437-4452. (in Chinese) | |
[14] |
CAO X W, CUI H M, LI J, XIONG A S, HOU X L, LI Y. Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis. Scientia Horticulturae, 2016, 203:199-206.
doi: 10.1016/j.scienta.2016.03.018 |
[15] | 张中伟, 杨海龙, 付俊, 谢文锦, 丰光. 玉米粒长性状主基因+多基因遗传分析. 作物杂志, 2019(5):37-40. |
ZHANG Z W, YANG H L, FU J, XIE W J, FENG G. Genetic analysis of the kernel length of maize with mixed model of major gene plus polygene. Crops, 2019(5):37-40. (in Chinese) | |
[16] | 闫立英, 娄丽娜, 李晓丽, 娄群峰, 冯志红, 陈劲枫. 雌雄同株黄瓜单性结实性遗传分析. 中国农业科学, 2010, 43(6):1295-1301. |
YAN L Y, LOU L N, LI X L, LOU Q F, FENG Z H, CHEN J F. Inheritance of parthenocarpy in monoecious cucumber. Scientia Agricultura Sinica, 2010, 43(6):1295-1301. (in Chinese) | |
[17] |
QI Z, LI J, RAZA M A, ZOU X X, CAO L W, RAO L L, CHEN L P. Inheritance of fruit cracking resistance of melon (Cucumis melo L.) fitting E-0 genetic model using major gene plus polygene inheritance analysis, Scientia Horticulturae, 2015, 189:168-174.
doi: 10.1016/j.scienta.2015.04.004 |
[18] | 张新友, 韩锁义, 徐静, 刘华, 祝水金. 花生蛋白质含量的主基因加多基因遗传分析. 中国油料作物学报, 2011, 33(2):118-122. |
ZHANG X Y, HAN S Y, XU J, LIU H, ZHU S J. Genetic analysis of protein using major gene plus polygene methods in peanut (Arachis hypogaeaL.) . Chinese Journal of Oil Crop Sciences, 2011, 33(2):118-122. (in Chinese) | |
[19] | 黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇. 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012, 45(4):617-624. |
HUANG B Y, ZHANG X Y, MIAO L J, LIU H, QIN L, XU J, ZHANG Z X, TANG F S, DONG W Z, HAN S Y, LIU Z Y. Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea L . Scientia Agricultura Sinica, 2012, 45(4):617-624. (in Chinese) | |
[20] | 刘炜, 刘行, 丁小霞, 杨晓凤. 花生中白藜芦醇含量的主基因+多基因遗传分析. 山西农业科学, 2018, 46(12): 1990-1992+2056. |
LIU W, LIU X, DING X X, YANG X F. A genetic analysis of resveratrol content in peanut by major gene plus polygene. Journal of Shanxi Agricultural Sciences, 2018, 46(12): 1990-1992+2056. (in Chinese) | |
[21] | 张胜忠, 焦坤, 胡晓辉, 苗华荣, 陈静. 花生百仁质量和含油量的遗传分析. 花生学报, 2018, 47(4):7-12. |
ZHANG S S, JIAO K, HU X H, MIAO H R, CHEN J. Genetic analysis for seed mass and oil content of peanut. Journal of Peanut Science, 2018, 47(4):7-12. (in Chinese) | |
[22] | 张胜忠, 苗华荣, 赵立波, 崔凤高, 张智猛, 孙令强, 胡晓辉, 陈静. 花生种子长宽比性状遗传分析和相关SSR标记筛选. 花生学报, 2019, 48(3):1-8. |
ZHANG S Z, MIAO H R, ZHAO L B, CUI F G, ZHANG Z M, SUN L Q, HU X H, CHEN J, Genetic analysis of seed length-to-width ratio of peanut and screening for correlated SSR markers. Journal of Peanut Science, 2019, 48(3):1-8. (in Chinese) | |
[23] | 张晓霞, 杨会, 张秀荣, 骆璐, 吕玉英, 张昆, 刘风珍, 万勇善. 花生子仁长宽及单仁重的遗传分析. 山东农业科学, 2019, 51(9): 73-78+86. |
ZHANG X X, YANG H, ZHANG X R, LUO L, LÜ Y Y, ZHANG K, LIU F Z, WAN Y S. Genetic analysis of kernel length, width and single kernel weight in peanut (Arachis hypogaea L.). Shandong Agricultural Sciences, 2019, 51(9): 73-78+86. (in Chinese) | |
[24] | 姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京:中国农业出版社, 2006. |
JIANG H F, DUAN N X. Specification and Data Standard for Peanut Germplasm Resource Description. Beijing:China Agricultural Press, 2006. (in Chinese) | |
[25] | 章元明, 盖钧镒, 戚存扣. 植物数量性状遗传体系检测中回交或自交家系重复试验数据的分析方法. 遗传, 2001, 23(4):329-332. |
ZHANG Y M, GAI J Y, QI C K. Detection of genetic system of quantitative traits using backcross and selfing families. Hereditas (Beijing), 2001, 23(4):329-332. (in Chinese) | |
[26] | 殷冬梅, 尚明照, 崔党群. 花生主要农艺性状的遗传模型分析. 中国农学通报, 2006, 23(7):261-265. |
YIN D M, SHANG M Z, CUI D Q. Studies on genetic analysis of major agronomic characters in peanut. Chinese Agricultural Science Bulletin, 2006, 23(7):261-265. (in Chinese) | |
[27] | 张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究[D]. 杭州: 浙江大学, 2011. |
ZHANG X Y. Inheritance of main traits related to yield, quality and disease resistance and their QTLs mapping in peanut (Arachis hypogaea L.) [D]. Hangzhou: Zhejiang University, 2011. (in Chinese) | |
[28] | 刘华. 栽培花生产量和品质相关性状遗传分析与QTL定位研究[D]. 郑州: 河南农业大学, 2011. |
LIU H. Inheritance of main traits related to yield and quality, and their QTLs mapping in peanut (Arachis hypogaea L.) [D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese) | |
[29] |
HU Z, LU S J, WANG M J, HE H, SUN L, WANG H, LIU X H, JIANG L, SUN J L, XIN X, KONG W, CHU C, XUE H W, YANG J, LUO X, LIU J X. A novel QTL qTGW3 encodes the GSK3/ SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Molecular Plant, 2018, 11(5):736-749.
doi: 10.1016/j.molp.2018.03.005 |
[30] |
DABA S D, TYAGI P, BROWN-GUEDIRA G, MOHAMMADI M. Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical united states wheat population. Frontiers in Plant Science, 2018, 9:1045.
doi: 10.3389/fpls.2018.01045 |
[31] |
ZHANG X, GUAN Z, WANG L, FU J, ZHANG Y, LI Z, MA L, LIU P, ZHANG Y, LIU M, LI P, ZOU C, HE Y, LIN H, YUAN G, GAO S, PAN G, SHEN Y. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Molecular Genetics and Genomics, 2020, 295(2):409-420.
doi: 10.1007/s00438-019-01631-2 |
[32] |
CHEN W, JIAO Y, CHENG L, HUANG L, LIAO B, TANG M, REN X, ZHOU X, CHEN Y, JIANG H. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genetics, 2016, 17(1):25.
doi: 10.1186/s12863-016-0337-x |
[33] | 宋延滨. 花生籽粒形态相关性状QTL分析[D]. 北京: 中国农业科学院, 2018. |
SONG Y B. QTL analysis for seed morphology related traits in cultivated peanut (Arachis hypogaea L.) [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[34] |
PANDEY M K, UPADHYAYA H D, RATHORE A, VADEZ V, SHESHSHAYEE M S, SRISWATHI M, GOVIL M, KUMAR A, GOWDA M V, SHARMA S, HAMIDOU F, KUMAR V A, KHERA P, BHAT R S, KHAN A W, SINGH S, LI H, MONYO E, NADAF H L, MUKRI G, JACKSON S A, GUO B, LIANG X, VARSHNEY R K. Genome wide association studies for 50 agronomic traits in peanut using the 'reference set' comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE, 2014, 9(8):e105228.
doi: 10.1371/journal.pone.0105228 |
[35] |
KIDANE Y G, GESESSE C A, HAILEMARIAM B N, DESTA E A, MENGISTU D K, FADDA C, PÈ M E, DELL'ACQUA M. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnology Journal, 2019, 17(7):1380-1393.
doi: 10.1111/pbi.2019.17.issue-7 |
[36] |
LI C, WU X, LI Y, SHI Y, SONG Y, ZHANG D, LI Y, WANG T. Genetic architecture of phenotypic means and plasticities of kernel size and weight in maize. Theoretical and Applied Genetics, 2019, 132(12):3309-3320.
doi: 10.1007/s00122-019-03426-w |
[37] |
ALI M J, XING G N, HE J B, ZHAO T J, GAI J Y. Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean. The Crop Journal, 2020, 8(5):781-792.
doi: 10.1016/j.cj.2020.06.008 |
[38] | XAVIER A, JARQUIN D, HOWARD R, RAMASUBRAMANIAN V, SPECHT J E, GRAEF G L, BEAVIS W D, DIERS B W, SONG Q, CREGAN P B, NELSON R, MIAN R, SHANNON J G, MCHALE L, WANG D, SCHAPAUGH W, LORENZ A J, XU S, MUIR W M, RAINEY K M. Genome-wide analysis of grain yield stability and environmental interactions in a multi parental soybean population. Genes Genomes Genetics (Bethesda), 2018, 8(2):519-529. |
[39] |
SONG J M, GUAN Z, HU J, GUO C, YANG Z, WANG S, LIU D, WANG B, LU S, ZHOU R, XIE W Z, CHENG Y, ZHANG Y, LIU K, YANG Q Y, CHEN L L, GUO L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6(1):34-45.
doi: 10.1038/s41477-019-0577-7 |
[40] |
GANGURDE S S, WANG H, YADURU S, PANDEY M K, FOUNTAIN J C, CHU Y, ISLEIB T, HOLBROOK C C, XAVIER A, CULBREATH A K, OZIAS-AKINS P, VARSHNEY R K, GUO B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnology Journal, 2020, 18(6):1457-1471.
doi: 10.1111/pbi.v18.6 |
No related articles found! |
|