Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (4): 695-706.doi: 10.3864/j.issn.0578-1752.2020.04.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea)

ZhiJun XU1,Sheng ZHAO2,Lei XU1,XiaoWen HU1,DongSheng AN1,Yang LIU1()   

  1. 1 Zhanjiang Experiment Station, Chinese Academy of Tropical Agricultural Sciences/Guangdong Engineering Technology Research Center for Dryland Water-saving Agriculture, Zhanjiang 524013, Guangdong
    2 Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong
  • Received:2019-07-28 Accepted:2019-10-21 Online:2020-02-16 Published:2020-03-09
  • Contact: Yang LIU E-mail:lyfull@163.com

Abstract:

【Objective】 This study aimed to identify SSRs in peanut RNA-seq data,clarify their distribution and structural characteristics,and develop gene-associated SSR markers. The study may lay the foundation for the excavation of important functional genes of peanut, the study of isometric variation and molecular markers assisted breeding. 【Method】From 22 different cultivated peanut tissue types and ontogenies that represent its full development, the reported RNA-Seq data, were used to analyze the distribution and characteristics of SSR using MISA software. Gene-associated SSR primers were designed by Primer 3.0 and its quality were detected by e-PCR 2.3.9. 38 pairs of primers were randomly synthesized for polymorphism testing. 【Result】A total of 19 143 SSRs were identified from 52 280 transcripts, distributed in 14 084 transcripts, with a frequency of 26.94%. The dominant SSR repeat unit types were mononucleotide and trinucleotide in mononucleotide to pentanucleotide, accounting for 39.24% and 38.40% of the total SSR locus. Dominant motif types of each repeat unit were A/T, AG/CT, AAG/CTT, AAAG/CTTT, AACAC/GTGTT, accounting for 97.62%, 72.01%, 30.96%, 24.59%, and 16.67% in the corresponding repeat units, respectively. The repetition of repeat units was 5-47 times, and the length distribution range of single SSR site was 10-47bp, mainly concentrated at 10-14 bp. The length range of compound SSR locus was 21-249 bp, mainly concentrated at 31-40 bp. Among all the SSR,13 477 SSR could be used to develop SSR markers, of which 5 020 transcript sequences were annotated to specific genes, containing 5 859 SSR markers locus. These SSRs were unevenly distributed on the 20 chromosomes of A and B genomes, and chromosomes B03 had the most SSR locus of 484. Using electronic PCR, 4 468, 4 929 and 10 188 effective loci were amplified in the genome of A. duranensis, A. ipaensis, A. hypogaea, with 3 968 (67.74%), 4 232 (72.25%) and 5 174 (88.33%) effective markers, respectively. In the genome of A. hypogaea, SSR primers amplified mainly with 2 loci, while 1 477 pairs of SSR primers were single-locus markers. And the physical map of amplified SSR loci was drawn according to the loci position in cultivated peanut genome. Among the randomly synthesized primers, 35 pairs (92.1%) of SSR primers amplified stable and clear bands in two peanut varieties, among which 11 pairs (28.9%) of SSR primers amplified different band. 【Conclusion】 In this study, 13 477 potential primer design SSRs were identified, 5 859 gene-associated SSR markers were developed and detected,with high amplification efficiency in cultivated peanut genome,and the physical map of gene-associated SSR were constructed.

Key words: peanut, RNA-seq data, SSR loci, gene-associated SSR markers, physical map

Table 1

Distribution of RNA-seq SSR locus characteristics in cultivated peanut"

重复单元类型
Repeat unit type
基序种类
Motif
SSR位点数量
SSR number
比例
Ratio (%)
分布频率
Distribution frequency (%)
优势基序 Dominating motif
基序类型 Motif type 数量 Number 比例 Ratio (%)
单核苷酸 Mononucleotide 4 7513 39.24 14.37 A/T 7334 97.62
二核苷酸 Dinucleotide 12 3926 20.51 7.51 AG/CT 2827 72.01
三核苷酸 Trinucleotide 60 7351 38.40 14.06 AAG/CTT 2276 30.96
四核苷酸 Tetranucleotide 87 305 1.59 0.58 AAAG/CTTT 75 24.59
五核苷酸 Pentanucleotide 39 48 0.25 0.09 AACAC/GTGTT 8 16.67
总计 Total 202 19143 36.62

Table 2

Repetition times and distribution frequency of each SSR repeat unit in cultivated peanut"

重复单元类型
Repeat unit type
重复次数Repetition times
5 6 7 8 9 10 11 12 13 14 ≥15
单核苷酸Mononucleotide 2985 1519 943 657 468 941
二核苷酸 Dinucleotide 1446 896 640 475 340 115 14
三核苷酸 Trinucleotide 4352 2108 761 130
四核苷酸 Tetranucleotide 246 59
五核苷酸 Pentanucleotide 48
总计 Total 4646 3613 1657 770 475 3325 1634 957 657 468 941
分布频率
Distribution frequency(%)
24.2 18.87 8.66 4.02 2.48 17.37 8.54 5.00 3.43 2.44 4.92

Fig. 1

Distribution of SSR motif length"

Table 3

Statistics of primer design specific gene-associated SSR"

染色体
Chromosome
SSR位点数Number of SSR loci 对应基因数Number of genes 平均SSR位点密度
Average density of SSR loci
单一位点
Single loci
复合位点
Compound loci
总计
Total
单位点基因
Gene contain single loci
多位点基因
Gene contain multiple loci
总计
Total
A01 252 9 261 136 37 217 1.21
A02 170 15 185 145 13 172 1.08
A03 380 17 397 220 53 335 1.19
A04 222 18 240 160 24 212 1.13
A05 314 13 327 179 48 277 1.18
A06 229 11 240 160 26 213 1.13
A07 175 11 186 110 24 160 1.16
A08 255 13 268 146 36 225 1.19
A09 265 16 281 168 35 242 1.16
A10 198 18 216 148 22 193 1.12
B01 273 16 289 177 34 250 1.16
B02 264 15 279 157 36 236 1.18
B03 451 33 484 328 48 430 1.13
B04 323 21 344 169 49 281 1.22
B05 291 15 306 201 33 270 1.13
B06 293 16 309 152 45 253 1.22
B07 281 20 301 190 31 261 1.15
B08 249 15 264 135 39 219 1.21
B09 339 17 356 188 52 298 1.19
B10 309 17 326 182 44 276 1.18
全基因组
Whole genome
5533 326 5859 3451 729 5020 1.17

Table 4

Statistics of gene-associated SSR primer amplified in peanut genome by e-PCR"

DNA模板
DNA template
扩增位点
Amplified loci
有效扩增位点
Effective amplified loci
引物扩增位点统计 Primer amplified loci statistics 有效引物数
Number of effective primer pairs
1 2 3 >3
A.duranensis 4760 4468
(93.86%)
3721
(93.75%)
152
(3.83%)
47
(1.18%)
49
(1.23%)
3969
(67.74%)
A.ipaensis 5264 4929
(93.64%)
3866
(91.33%)
249
(5.88%)
52
(1.23%)
66
(1.56%)
4233
(72.25%)
A.hypogaea 10818 10188
(94.17%)
1477
(28.54%)
3221
(62.24%)
252
(4.87%)
225
(4.35%)
5175
(88.33%)

Fig. 2

Amplification site distribution of gene-associated SSR markers in peanut genome"

Fig. 3

Physical map of SSR markers in peanut genome The red line represents for peanut genes, the blue line represent for SSR locus located on the positive chain, the green line represent for SSR locus located on the negative chain"

Fig. 4

QTL analysis of bacteria wilt resistance in peanut The red line represent for peanut genes, the blue line represent for SSR locus located on the positive chain, the green line represent for SSR locus located on the negative chain"

Fig. 5

Randomly SSR markers amplification in Yuanza 9102 and Huayu 910 (part) M: Marker; Y: Yuanza 9102; H: Huayu 910. 13-24: SSR marker A05D8UNY-1-1, A0686JNN-1-1, A06R0Z7V-1-1, A06RB83Y-1-1, A076T298-1-1, A07F0Y1Z-1-1, A07F4DXF-1-1, A08648HW-2-1, A089H31H-1-1, A08A0WFX-1-1, A091GS41-1-1, A09D2340-1-1"

[1] 尹亮, 李双铃, 任艳, 石延茂, 袁美 . 42个花生品种的SSR标记指纹图谱构建. 花生学报, 2017,46(1):8-13.
YIN L, LI S L, REN Y, SHI Y M, YUAN M . Construction of molecular fingerprint for 42 peanut varieties using SSR markers. Journal of Peanut Science, 2017,46(1):8-13. (in Chinese)
[2] 任小平, 郑艳丽, 黄莉, 陈玉宁, 周小静, 陈伟刚, 雷永, 晏立英, 万丽云, 廖伯寿, 姜慧芳 . 花生SSR核心引物筛选及育成品种DNA指纹图谱构建. 中国油料作物学报, 2016,38(5):563-571.
REN X P, ZHENG Y L, HUANG L, CHEN Y N, ZHOU X J, CHEN W G, LEI y, YAN L Y, WAN L Y, LIAO B S, JIANG H F . Selection of core SSR markers and identification of fingerprint on peanut cultivars. Chinese Journal of Oil Crop Sciences, 2016,38(5):563-571. (in Chinese)
[3] REN X P, JIANG H F, YAN Z, CHEN Y, ZHOU X, HUANG L, LEI Y, HUANG J, YAN L, QI Y, WEI W, LIAO B S . Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS ONE, 2014,9(2):e88091.
[4] JIANG H F, REN X P, CHEN Y N, HUANG L, ZHOU X J, HUANG J, FROENICKE L, YU J, GUO B, LIAO B S . Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genetic Resources, 2013,11(1):77-83.
[5] JIANG H F, HUANG L, REN X P, CHEN Y N, ZHOU X, XIA Y, HUANG J, LEI Y, YAN L Y, WAN L, LIAO B S . Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini‐core collection. Journal of Integrative Plant Biology, 2014,56(2):159-169.
[6] HUANG L, REN X P, WU B, LI X, CHEN W, ZHOU X, CHEN Y, PANDEY M K, JIAO Y, LUO H, LEI Y, VARSHNEY R K, LIAO B S, JIANG H F . Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Scientific Reports, 2016,6:39478.
[7] LUO H, PANDEY M K, KHAN A W, GUO J, WU B, CAI Y, HUANG L, ZHOU X, CHEN Y, CHEN W, LIU N, LEI Y, LIAO B, VARSHNEY R K, JIANG H . Discovery of genomic regions and candidate genes controlling shelling percentage using QTL‐seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 2019,17(7):1248-1260.
[8] LUO H, REN X, LI Z, XU Z, LI X, HUANG L, ZHOU X, CHEN Y, CHEN W, LEI Y, LIAO B, PANDEY M K, VARSHNEY R K, GUO B, JIANG X, LIU F, JIANG H F . Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017,18(1):58.
[9] LUO H, XU Z, LI Z, LI X, LV J, REN X, HUANG L, ZHOU X, CHEN Y, YU J, CHEN W, LEI Y, LIAO B, JIANG H . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut( Arachis hypogaea L.). Theoretical and Applied Genetics, 2017,130(8):1635-1648.
[10] VARSHNEY R K, THUNDI M, MAY G D, JACKSON S A . Legume genomics and breeding. Plant Breeding Reviews, 2010,33:257-304.
[11] VARSHNEY R K, PANDEY M K, JANILA P, NIGAM S N, SUDINI H, GOWDA M V, SRISWATHI M, RADHAKRISHNAN T, MANOHAR S S, NAGESH P . Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2014,127(8):1771-1781.
[12] CHU Y, WU C L, HOLBROOK C C, TILLMAN B L, PERSON G, OZIAS-AKINS P . Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. The Plant Genome, 2011,4(2):110-117.
[13] SUKRUTH M, PARATWAGH S A, SUJAY V, KUMARIM V, GOWDA M V C, NADAF H L, MOTAGI B N, LINGARAJU S, PANDEY M K, VARSHNEY R K, BHAT R S . Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut (Arachis hypogaea L.). Euphytica, 2015,204(2):343-351.
[14] JANILA P, VARIATH M T, PANDEY M K, DESMAE H, MOTAGI B N, OKORI P, MANOHAR S S, RATHNAKUMAR A L, RADHAKRISHNAN T, LIAO B, VARSHNEY R K . Genomic tools in groundnut breeding program: Status and perspectives. Frontiers in Plant Science, 2016,7:289.
[15] HOPKINS M S, CASA A M, WANG T, MITCHELL S E, DEAN R E, KOCHERT G D, KRESOVICH S . Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Science, 1999,39(4):1243-1247.
[16] HE G, MENG R, NEWMAN M, GAO G, PITTMAN R N, PRAKASH C S . Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 2003,3(1):3.
[17] FERGUSON M E, BUROW M D, SCHULZE S R, BRAMEL P J, PATERSON A H, KRESOVICH S, MITCHELL S . Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2004,108(6):1064-1070.
[18] MORETZSOHN M D C, HOPKINS M S, MITCHELL S E, KRESOVICH S, VALLS J F M, FERREIRA M E . Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biology, 2004,4(1):11.
[19] MORETZSOHN M C, LEOI L, PROITE K GUIMARÃES P M, LEAL-BERTIOLI S C M, GIMENES M A, MARTINS W S, VALLS J F M, GRATTAPAGLIA D, BERTIOLI D J . A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 2005,111(6):1060-1071.
[20] CUC L M, MACE E S, CROUCH J H, QUANG V D, LONG T D, VARSHNEY R K . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biology, 2008,8(1):55.
[21] YUAN M, GONG L, MENG R, LI S, DANG P, GUO B, HE G . Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.). Electronic Journal of Biotechnology, 2010,13(6):5-6.
[22] SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C, NAITO Y, KUBOYAMA T, NAKAYA A, SASAMOTO S, WATANABE A, KATO M, KAWASHIMA K, KISHIDA Y, KOHARA M, KURABAYASHI A, TAKAHASHI C, TSURUOKA H, WADA T, ISOBE S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012,12(1):80.
[23] MACEDO S E, MORETZSOHN M C, M LEAL-BERTIOLI S C, ALVES D M, GOUVEA E G, AZEVEDO V C, BERTIOLI D J . Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Research Notes, 2012,5(1):86.
[24] WANG H, PENMETSA R V, YUAN M, GONG L, ZHAO Y, GUO B, FARMER A D, ROSEN B D, GAO J, ISOBE S, BERTIOLI D J, VARSHNEY R K, COOK D R, HE G . Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 2012,12(1):10.
[25] LUO M, DANG P, GUO B Z, HE G, HOLBROOK C C, BAUSHER M G, LEE R D . Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Science, 2005,45(1):346-353.
[26] PROITE K, LEAL-BERTIOLI S C, BERTIOLI D J, MORETZSOHN M C, SILVA F R D, MARTINS N F, GUIMARÃES P M . ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biology, 2007,7(1):7.
[27] LIANG X, CHEN X, HONG Y, LIU H, ZHOU G, LI S, GUO B . Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biology, 2009,9(1):35.
[28] WANG J, PAN L, YANG Q, YU S . Development and characterization of EST-SSR markers from NCBI and cDNA library in cultivated peanut ( Arachis hypogaea L.). Legume Genomics and Genetics, 2010,1(6):30-33.
[29] KOILKONDA P, SATO S, TABATA S, SHIRASAWA K, HIRAKAWA H, SAKAI H, SASAMOTO S, WATANABE A, WADA T, KISHIDA Y, TSURUOKA H, FUJISHIRO T, YAMADA M, KOHARA M, SUZUKI S, HASEGAWA M, KIYOSHIMA H, ISOBE S . Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Molecular Breeding, 2012,30(1):125-138.
[30] GUO Y, KHANAL S, TANG S, BOWERS J E, HEESACKER A F, KHALILIAN N, NAGY E D, ZHANG D, TAYLOR C A, STALKER H T, OZIAS-AKINS P, KNAPP S J . Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A-and B-genome diploid species of peanut. BMC Genomics, 2012,13(1):608.
[31] BOSAMIA T C, MISHRA G P, THANKAPPAN R, DOBARIA J R . Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS ONE, 2015,10(6):e0129127.
[32] HUANG L, WU B, ZHAO J, LI H, CHEN W, ZHENG Y, REN X, CHEN Y, ZHOU X, LEI Y, LIAO B, JIANG H . Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS ONE, 2016,11(5):e0156633.
[33] ZHANG J, LIANG S, DUAN J, WANG J, CHEN S, CHENG Z, ZHANG Q, LIANG X, LI Y . De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut ( Arachis hypogaea L.). BMC Genomics, 2012,13(1):90.
[34] PENG Z, GALLO M, TILLMAN B L, ROWLAND D, WANG J . Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut ( Arachis hypogaea L.). Molecular Genetics and Genomics, 2016,291(1):363-381.
[35] WANG H M, LEI Y, YAN L Y, WAN L Y, CAI Y, YANG Z F, LÜ J W, ZHANG X J, XU C W, LIAO B S . Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences. The Crop Journal, 2018,2(6):172-180.
[36] ZHAO C, QIU J, AGARWAL G, WANG J, REN X, XIA H, GUO B, MA C, WAN S, BERTIOLI D J, VARSHNEY R K, PANDEY M K, WANG X . Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis, and their application in cultivated peanut(A. hypogaea). Frontiers in Plant Science, 2017,8:1209.
[37] 王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友 . 四倍体野生种花生A.monticola全基因组SSR的开发与特征分析. 中国农业科学, 2019,52(15):2567-2580.
WANG Y L, HUANG B Y, WANG S Y, DU P, QI F Y, FANG Y J, SUN Z Q, ZHENG Z, DONG W Z, ZHANG X Y . Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola). Scientia Agricultura Sinica, 2019,52(15):2567-2580. (in Chinese)
[38] HE G, WOULLARD F E, MARONG I, GUO B Z . Transferability of soybean SSR markers in peanut ( Arachis hypogaea L.). Peanut Science, 2006,33(1):22-28.
[39] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018,51(9):1641-1652.
ZHANG Z H, WANG Z H, HUAI D X, TAN J Z, CHEN J H, YAN L Y, WANG X J, WAN L Y, CHEN A, KANG Y P, JIANG H F, LEI Y, LIAO B S . Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Scientia Agricultura Sinica, 2018,51(9):1641-1652. (in Chinese)
[40] LÜ J, LIU N, GUO J, XU Z, LI X, LI Z, LUO H, REN X, HUANG L, ZHOU X, CHEN Y, CHEN W, LEI Y, TU J, JIANG H, LIAO B . Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut ( Arachis hypogaea L.). Frontiers in Plant Science, 2018,9:684.
[41] HUANG L, HE H, CHEN W, REN X, CHEN Y, ZHOU X, XIA Y, WANG X, JIANG X, LIAO B, JIANG H . Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut ( Arachis hypogaea L.). Theoretical and Applied Genetics, 2015,128(6):1103-1115.
[42] PANDEY M K, UPADHYAYA H D, RATHORE A, VADEZ V, SHESHSHAYEE M S, SRISWATHI M, GOVIL M, KUMAR A, GOWDA M V, SHARMA S, HAMIDOU F, KUMAR V A, KHERA P, BHAT R S, KHAN A W, SINGH S, LI H, MONYO E, NADAF H L, MUKRI G, JACKSON S A, GUO B, LIANG X, VARSHNEY R K . Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE, 2014,9(8):e105228.
[43] ZHAO J, HUANG L, REN X, PANDEY M K, WU B, CHEN Y, ZHOU X, CHEN W, XIA Y, LI Z, LUO H, LEI Y, VARSHNEY R K, LIAO B, JIANG H . Genetic variation and association mapping of seed-related traits in cultivated peanut ( Arachis hypogaea L.) using single-locus simple sequence repeat markers. Frontiers in Plant Science, 2017,8:2105.
[44] SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C, NAITO Y, KUBOYAMA T, NAKAYA A, SASAMOTO S, WATANABE A, KATO M, KAWASHIMA K, KISHIDA Y, KOHARA M, KURABAYASHI A, TAKAHASHI C, TSURUOKA H, WADA T, ISOBE S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012,12(1):80.
[45] RAVI K, VADEZ V, ISOBE S, MIR R R, GUO Y, NIGAM S N, GOWDA M V, RADHAKRISHNAN T, BERTIOLI D J, KNAPP S J, VARSHNEY R K . Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut ( Arachis hypogaea L.). Theoretical and Applied Genetics, 2011,122(6):1119-1132.
[46] KHEDIKAR Y P, GOWDA M V, SARVAMANGALA C, PATGAR K V, UPADHYAYA H D, VARSHNEY R K . A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut ( Arachis hypogaea L.). Theoretical and Applied Genetics, 2010,121(5):971-984.
[47] 洪彦彬, 温世杰, 钟旎, 李杏瑜, 朱方何, 梁炫强 . SSR标记与花生青枯病、锈病抗性的相关性研究 广东农业科学, 2011(s1):61-63.
HONG Y B, WEN S J, ZHONG N, LI X Y, ZHU F H, LIANG X Q . Correlation analysis of SSR markers with bacterial wilt and rust resistance of peanut(Arachis hypogaea L.). Guangdong Agricultural Sciences, 2011(s1):61-63. (in Chinese)
[48] 王韵, 徐正进, 陈温福, 赵明辉, 方萍 . 辽宁水稻直立穗型基因位点SSR标记变异分析. 沈阳农业大学学报, 2007,38(3):395-397.
WANG Y, XU Z J, CHEN W F, ZHAO M H, FANG P . Characteristic of alleles at RM5833-11 locus associated with erect panicle gene of Liaoning rice accesions. Journal of Shengyang Agricultural University, 2007,38(3):395-397. (in Chinese)
[49] 王文辉, 邱丽娟, 常汝镇, 马凤鸣, 谢华, 林凡云 . 中国大豆种质抗SCN基因rhg1位点SSR标记等位变异特点分析. 大豆科学, 2003,22(4):246-250.
WANG W H, QIU L J, CHANG R Z, MA F M, XIE H, LIN F Y . Characteristics of alleles at satt309 locus associated with rhg1 gene resistant to SCN for Chinese soybean germplasm. Soybean Science, 2003,22(4):246-250. (in Chinese)
[50] 杨留启, 杨文鹏, 牛素贞, 王明春 . 玉米O2和Wx基因内及O16基因连锁SSR位点的等位变异研究. 玉米科学, 2009,17(3):10-14.
YANG L Q, YANG W P, NIU S Z, WANG M C . Allelic variations of SSR sites within opaque-2 and Wx gene and linkage opaque-16 gene in maize. Journal of Maize Sciences, 2009,17(3):10-14. (in Chinese)
[51] JOSH C, CHU Y, SCHEFFLER B, OZIAS-AKINS P . A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science, 2016,7:1446.
[52] DENG P, WANG M, FENG K, CUI L, TONG W, SONG W, NIE X . Genome-wide characterization of microsatellites in Triticeae species: Abundance, distribution and evolution. Scientific Reports, 2016,6:32224.
[53] CHEN C, XIA R, CHEN H, HE Y . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. BioRxiv, 2018: 289660.
[54] BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D, CANNON E K, LIU X, GAO D, CLEVENGER J, DASH S, REN L, MORETZSOHN M C, SHIRASAWA K, HUANG W, VIDIGAL B, ABERNATHY B, CHU Y, NIEDERHUTH C E, UMALE P ARAÚJO A C, KOZIK A, KIM K D, BUROW M D, VARSHNEY R K, WANG X, ZHANG X, BARKLEY N, GUIMARÃES P M, ISOBE S, GUO B, LIAO B, STALKER H T, SCHMITZ R J, SCHEFFLER B E, LEAL-BERTIOLI S C, XUN X, JACKSON S A, MICHELMORE R, OZIAS-AKINS P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016,48(4):438.
[55] 陈竟男, 马晓兰, 王振, 李仕金, 谢皓, 叶兴国, 林志珊 . 基于簇毛麦No.1026转录组的SSR序列分析及其PCR标记开发. 中国农业科学, 2019,52(1):1-10.
CHEN J N, MA X L, WANG Z, LI S J, XIE H, YE X G, LIN Z S . SSR sequences and development of PCR markers based on transcriptome of Dasypyrum villosum No.1026. Scientia Agricultura Sinica, 2019,52(1):1-10. (in Chinese)
[56] 徐志军 . 花生青枯病抗性相关的QTL分析[D]. 北京: 中国农业科学院, 2016.
XU Z J . Quantitative trait locus analysis of bacterial wilt resistance in peanut (Arachis hypogaea). Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[1] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[2] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[3] WU Yue, SUI XinHua, DAI LiangXiang, ZHENG YongMei, ZHANG ZhiMeng, TIAN YunYun, YU TianYi, SUN XueWu, SUN QiQi, MA DengChao, WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[4] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[5] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[6] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[7] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[8] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[9] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[10] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[11] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[12] GU BoWen, YANG JinFeng, LU XiaoLing, WU YiHui, LI Na, LIU Ning, AN Ning, HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[13] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[14] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[15] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!