Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5021-5031.doi: 10.3864/j.issn.0578-1752.2021.23.008

• PLANT PROTECTION • Previous Articles     Next Articles

Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism

GE XinZhu(),SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin()   

  1. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121
  • Received:2021-06-02 Accepted:2021-07-02 Online:2021-12-01 Published:2021-12-06
  • Contact: Bin TANG E-mail:gexinzhu2019@163.com;tbzm611@hznu.edu.cn

Abstract:

【Objective】Pyruvate kinase (PYK) is a regulatory glycolytic enzyme that regulates the balance between glycolysis and gluconeogenesis, so it has an important physiological role in insects. This study aims to explore the biological functions of HaPYK in Harmonia axyridis by analyzing the sequence structure of the three HaPYKs and RNA interference technology.【Method】Based on the three HaPYK sequences (named HaPYK1-1, HaPYK1-2, HaPYK2, respectively) obtained from the whole genome of H. axyridis, the physicochemical properties, sequence structure and homology with other insects through bioinformatics knowledge were analyzed. Then, the dsRNA synthesized in vitro was injected into the adult on the 1st day of emergence by microinjection. The experimental materials were collected 48 and 72 h after injection, and the total RNA extraction and reverse transcription experiments were performed. In order to evaluate the inhibitory effect, real-time fluorescent quantitative PCR (qRT-PCR) technology was used to determine the expression levels of three HaPYKs. Finally, the expression levels of genes related to trehalose metabolism, the content of glucose, glycogen, trehalose, and the activities of two trehalase enzymes were detected.【Result】The open reading frames of HaPYK1-1, HaPYK1-2 and HaPYK2 were 1 350, 1 569 and 1 656 bp, respectively. The protein sizes were 449, 522 and 551 aa, and the theoretical isoelectric points were 5.04, 5.02 and 5.01, respectively. The conserved domains predicted that the three HaPYKs belonged to the Pyruvate_kinase superfamily. The secondary structure of HaPYK was mainly α-helix and random coil, but also contained extended chain and β-corner. The oligomer types of the three sequences were all homologous tetramer. The phylogenetic tree showed that HaPYK was closely related to the same Coleoptera insects, such as Leptinotarsa decemlineata and Tribolium castaneum. After injection of dsHaPYK1-1, the expression levels of HaPYK1-2 and HaTRE1-4 were significantly down-regulated, while the expression levels of HaPYK2, HaTRE1-1, HaTRE1-2, HaTRE2-like, and HaTPS were significantly up-regulated; after injection of dsHaPYK1-2, the expression levels of HaTRE1-1, HaTRE1-2, HaTRE1-3, HaTRE1-5, HaTRE2, and HaTPS increased significantly; after injection of dsHaPYK2, only HaTRE1-1 was significantly up-regulated at 48 h, and the expression levels of HaTRE1-3, HaTRE1-4, HaTRE1-5, HaTRE2, HaTRE2-like were down-regulated. Compared with the control group, in the dsHaPYK1-2 group, the activity of TRE1 reduced significantly at 48 h, and the content of trehalose and glycogen increased significantly; in dsHaPYK1-1 or dsHaPYK2, the glucose content decreased at 48 h, the glucose and trehalose content increased at 72 h, and the enzyme activity of TRE2 increased significantly; at 48 h in dsHaPYK2 group, the trehalose content significantly reduced, while glycogen content significantly increased.【Conclusion】There are three HaPYKs in H. axyridis. By injecting exogenous dsHaPYK, the expression level of target genes can be successfully reduced. Suppressing their expression levels can affect the metabolism of trehalose, and the regulatory mechanisms of the three HaPYKs are not the same.

Key words: Harmonia axyridis, bioinformatics, pyruvate kinase (PYK), trehalose metabolism, RNA interference (RNAi)

Table 1

Primers used for dsRNA synthesis and real-time fluorescent quantitative PCR (qRT-PCR)"

引物名称 Primer name 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′) 用途 Application
dsHaPYK1-1 ACATGGTCTTCGCCTCCTTCA TGCAGCCAGACACTTAGCAGA 合成dsRNA
dsRNA synthesis
dsHaPYK1-2 ACAAGGGACGCTGACACTGT TCAAGTGTGCAGATCGTCCAGT
dsHaPYK2 ATAGTAACGTCGCGGTCACT GATCCTCCTTTGATGCGCTG
dsGFP AAGGGCGAGGAGCTGTTCACCG CAGCAGGACCATGTGATCGCGC
dsHaPYK1-1-T7 T7-ACATGGTCTTCGCCTCCTTCA T7-TGCAGCCAGACACTTAGCAGA
dsHaPYK1-2-T7 T7-ACAAGGGACGCTGACACTGT T7-TCAAGTGTGCAGATCGTCCAGT
dsHaPYK2-T7 T7-ATAGTAACGTCGCGGTCACT T7-ATAGTAACGTCGCGGTCACT
dsGFP-T7 T7-AAGGGCGAGGAGCTGTTCACCG T7-CAGCAGGACCATGTGATCGCGC
qHaPYK1-1 AGTTGACCACAGACAAGGCT AGACAGCAGGTAGATCGACG qRT-PCR
qHaPYK1-2 CTGGACGATCTGCACACTTG CACGAGCGTTCACATCTTGT
qHaPYK2 GCAAACTTGTTCAGCCAGGA GCAGCCTGATGTTTCTCTCG
qHaTRE1-1 CTTCGCCAGTCAAATCGTCA CCGTTTGGGACATTCCAGAT
qHaTRE1-2 TGACAACTTCCAACCTGGTAATG TTCCTTCGAGACATCTGGCTTA
qHaTRE1-3 ACAGTCCCTCAGAATCTATCGTC GGAGCCAAGTCTCAAGCTCATC
qHaTRE1-4 TTACTGCCAGTTTGATGACCAT CATTTCGCTAATCAGAAGACCCT
qHaTRE1-5 TGATGATGAGGTACGACGAGA GTAGCAAGGACCTAACAAACTG
qHaTRE2-like TTCCAGGTGGGAGATTCAGG GGGATCAATGTAGGAGGCTGTG
qHaTRE2 CAATCAGGGTGCTGTAATGTCG CGTAGTTGGCTCATTCGTTTCC
qHaTPS GACCCTGACGAAGCCATACC AAAGTTCCATTACACGCAC
qrp49 GCGATCGCTATGGAAAACTC TACGATTTTGCATCAACAGT

Table 2

Basic physicochemical properties of HaPYK sequences"

基因
Gene
登录号
Accession number
开放阅读框长度
ORF length
(bp)
分子量
Molecular weight (Da)
理论等电点Theoretical pI 大小
Size
(aa)
原子总数
Total number of atoms
脂肪系数
Aliphatic index
不稳定系数
Instability index
HaPYK1-1 MZ327965 1350 110346.47 5.04 449 14206 30.52 36.04
HaPYK1-2 MZ327966 1569 127708.83 5.02 522 16470 32.63 41.01
HaPYK2 MZ327967 1656 134975.87 5.01 551 17416 32.55 38.92

Fig. 1

Prediction of conserved domain of HaPYK amino acid sequences"

Fig. 2

Prediction of the secondary structure of HaPYKs"

Fig. 3

Three-dimensional structure prediction of HaPYK proteins"

Fig. 4

Phylogenetic tree of HaPYK and pyruvate kinases from other insect species based on amino acid sequence"

Fig. 5

Relative mRNA expression levels of HaPYKs after RNAi Data were presented as mean±SE. * indicated significant differences (P<0.05), **indicated extremely significant differences (P<0.01). The same as below"

Fig. 6

Changes in the expression levels of genes related to the trehalose metabolism pathway of H. axyridis after RNAi"

Fig. 7

Changes in trehalase activities of H. axyridis after RNAi"

Fig. 8

Changes in carbohydrate content of H. axyridis after RNAi"

[1] GUPTA V, BAMEZAI R N. Human pyruvate kinase M2: A multifunctional protein. Protein Science, 2010, 19(11):2031-2044.
doi: 10.1002/pro.505
[2] THOMPSON S N. Pyruvate cycling and implications for regulation of gluconeogenesis in the insect, Manduca sexta L. Biochemical and Biophysical Research Communications, 2000, 274(3):787-793.
doi: 10.1006/bbrc.2000.3238
[3] 李东坡. 温度对滞育期大豆食心虫体内代谢酶及储存蛋白基因表达的影响[D]. 哈尔滨: 东北农业大学, 2018.
LI D P. Effects of temperature on the expression of metabolic enzymes and stored protein gene of soybean pod borer in diapause[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[4] WANG T, GENG S L, GUAN Y M, XU W H. Deacetylation of metabolic enzymes by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging, 2018, 10(5):1053-1072.
doi: 10.18632/aging.v10i5
[5] BAILEY E, WALKER P R. A comparison of the properties of the pyruvate kinases of the fat body and flight muscle of the adult male desert locust. The Biochemical Journal, 1969, 111(3):359-364.
[6] STOREY K B. Kinetic and regulatory properties of pyruvate kinase isozymes from flight muscle and fat body of the cockroach, Periplaneta americana. Journal of Comparative Physiology B, 1985, 155(3):339-345.
doi: 10.1007/BF00687476
[7] PAPADOPOULOS A I, ANAGNOSTIS A, LAZAROU D. Effect of insecticide injection on pyruvate kinase of the insect Tenebrio molitor (Coleopteran). Pesticide Biochemistry and Physiology, 2005, 82(2):115-124.
doi: 10.1016/j.pestbp.2005.01.002
[8] 朱本全, 杜馨. 昆虫海藻糖酶及其抑制剂研究进展. 生物化工, 2019, 5(6):156-158.
ZHU B Q, DU X. Research progress of trehalase and its inhibitors in insects. Biological Chemical Engineering, 2019, 5(6):156-158. (in Chinese)
[9] 于彩虹, 卢丹, 林荣华, 王晓军, 姜辉, 赵飞. 海藻糖——昆虫的血糖. 昆虫知识, 2008, 45(5):832-837.
YU C H, LU D, LIN R H, WANG X J, JIANG H, ZHAO F. Trehalose——the blood sugar in insects. Chinese Bulletin of Entomology, 2008, 45(5):832-837. (in Chinese)
[10] 唐斌, 魏苹, 陈洁, 王世贵, 张文庆. 昆虫海藻糖酶的基因特性及功能研究进展. 昆虫学报, 2012, 55(11):1315-1321.
TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q. Progress in gene features and functions of insect trehalase. Acta Entomologica Sinica, 2012, 55(11):1315-1321. (in Chinese)
[11] 秦加敏, 罗术东, 和绍禹, 吴杰. 昆虫海藻糖与海藻糖酶的特性及功能研究. 环境昆虫学报, 2015, 37(1):163-169.
QIN J M, LUO S D, HE S Y, YU J. Researching in characters and functions of trehalose and trehalase in insects. Journal of Environmental Entomology, 2015, 37(1):163-169. (in Chinese)
[12] MITSUMASU K, AZUMA M, NIIMI T, YAMASHITA O, YAGINUMA T. Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Molecular Biology, 2005, 14(5):501-508.
doi: 10.1111/imb.2005.14.issue-5
[13] TANG B, CHEN X, LIU Y, TIAN H, LIU J, HU J, XU W, ZHANG W. Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Molecular Biology, 2008, 9:51.
doi: 10.1186/1471-2199-9-51
[14] 汪慧娟. 褐飞虱糖原合成酶与糖原磷酸化酶基因特性、功能鉴定与调控分析[D]. 杭州: 杭州师范大学, 2018.
WANG H J. Genetic characteristics, functional identification and regulation analysis of glycogen synthase and glycogen phosphorylase in Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2018. (in Chinese)
[15] YANG X, PAN H, YUAN L, ZHOU X. Reference gene selection for RT-qPCR analysis in Harmonia axyridis, a global invasive lady beetle. Scientific Reports, 2018, 8(1):2689.
doi: 10.1038/s41598-018-20612-w
[16] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
[17] PETCHAMPAI N, MURILLO-SOLANO C, ISOE J, PIZARRO J C, SCARAFFIA P Y. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. Insect Biochemistry and Molecular Biology, 2019, 104:82-90.
doi: 10.1016/j.ibmb.2018.12.010
[18] HSIAO P F, ZHU Y J, CHIEN Y C. Cloning and functional analysis of pyruvate kinase promoter region from Drosophila melanogaster. DNA and Cell Biology, 2002, 21(1):1-10.
doi: 10.1089/10445490252810267
[19] GE L Q, HUANG B, LI X, GU H T, ZHENG S, ZHOU Z, MIAO H, WU J C. Silencing pyruvate kinase (NlPYK) leads to reduced fecundity in brown planthoppers, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Archives of Insect Biochemistry and Physiology, 2017, 96(4): doi: 10.1002/arch.21429.
doi: 10.1002/arch.21429
[20] PARK W R, LIM D J, SANG H, KIM E, MOON J H, CHOI H S, KIM I S, KIM D K. Aphid estrogen-related receptor controls glycolytic gene expression and fecundity. Insect Biochemistry and Molecular Biology, 2021, 130:103529.
doi: 10.1016/j.ibmb.2021.103529
[21] 管君霞. 乙酰化修饰对黑胸散白蚁分飞蚁能量代谢酶PK活性的影响[D]. 武汉: 华中农业大学, 2019.
GUAN J X. Effect of acetylation on the activity of the enzyme PK related with energy metabolism in alates of the termite Reticulitermes chinensis Snyder[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[22] LONG W, WU J, SHEN G, ZHANG H, LIU H, XU Y, GU J, JIA L, LIN Y, XIA Q. Estrogen-related receptor participates in regulating glycolysis and influences embryonic development in silkworm Bombyx mori. Insect Molecular Biology, 2020, 29(2):160-169.
doi: 10.1111/imb.v29.2
[23] 张志林, 齐静茹, 尚瑞沙, 陈红丽, 张轶岭, 沈中元. 家蚕微孢子虫丙酮酸激酶基因的克隆与表达特征分析. 蚕业科学, 2019, 45(2):212-217.
ZHANG Z L, QI J R, SHANG R S, CHEN H L, ZHANG Y L, SHEN Z Y. Cloning and expression characteristics of pyruvate kinase gene of Nosema bombycis. Acta Sericologica Sinica, 2019, 45(2):212-217. (in Chinese)
[24] VALENTINI G, CHIARELLI L, FORTIN R, SPERANZA M L, GALIZZI A, MATTEVI A. The allosteric regulation of pyruvate kinase. A site-directed mutagenesis study. The Journal of Biological Chemistry, 2000, 275(24):18145-18152.
doi: 10.1074/jbc.M001870200
[25] SCHORMANN N, HAYDEN K L, LEE P, BANERJEE S, CHATTOPADHYAY D. An overview of structure, function, and regulation of pyruvate kinases. Protein Science: A Publication of the Protein Society, 2019, 28(10):1771-1784.
doi: 10.1002/pro.v28.10
[26] XIA N, YE S, LIANG X, CHEN P, ZHOU Y, FANG R, ZHAO J, GUPTA N, YANG S, YUAN J, SHEN B. Pyruvate homeostasis as a determinant of parasite growth and metabolic plasticity in Toxoplasma gondii. mBio, 2019, 10(3):e00898-19.
[27] 崔淑燕. 昆虫中海藻糖代谢的研究进展. 安徽农业科学, 2008, 36(23):9998-9999.
CUI S Y. Research progress of trehalose metabolism in insects. Journal of Anhui Agricultural Sciences, 2008, 36(23):9998-9999. (in Chinese)
[28] 邱玲玉. GFATPFK调控褐飞虱几丁质及能量代谢的差异研究[D]. 杭州: 杭州师范大学, 2019.
QIU L Y. Study on the difference between GFAT and PFK in regulating chitin and energy metabolism of Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2019. (in Chinese)
[29] YAMADA K, NOGUCHI T. Nutrient and hormonal regulation of pyruvate kinase gene expression. The Biochemical Journal, 1999, 337(1):1-11.
doi: 10.1042/bj3370001
[30] FAN J J, TANG X H, BAI J J, MA D M, JIANG P. Pyruvate kinase genes in grass carp Ctenopharyngodon idella: Molecular characterization, expression patterns, and effects of dietary carbohydrate levels. Fish Physiology and Biochemistry, 2019, 45(6):1919-1931.
doi: 10.1007/s10695-019-00688-5
[31] TENNESSEN J M, BAKER K D, LAM G, EVANS J, THUMMEL C S. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metabolism, 2011, 13(2):139-148.
doi: 10.1016/j.cmet.2011.01.005
[32] VITAL W, REZENDE G L, ABREU L, MORAES J, LEMOS F J, VAZ IDA S JR, LOGULLO C. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis. BMC Developmental Biology, 2010, 10:25.
doi: 10.1186/1471-213X-10-25
[1] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[2] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[3] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[4] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[5] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[6] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[9] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[10] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
[11] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[12] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[13] WANG XinYue,SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li. The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle [J]. Scientia Agricultura Sinica, 2020, 53(14): 2956-5963.
[14] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[15] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!