Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 4996-5007.doi: 10.3864/j.issn.0578-1752.2021.23.006
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
LI JiangLing1(),YANG Lan1,RUAN RenWu2,LI ZhongAn1()
[1] |
GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327(5967):812-818.
doi: 10.1126/science.1185383 |
[2] | KEMPE K, RUBTSOVA M, GILS M. Split-gene system for hybrid wheat seed production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25):9097-9102. |
[3] |
TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967):818-822.
doi: 10.1126/science.1183700 |
[4] |
LI S, YANG D, ZHU Y. Characterization and use of male sterility in hybrid rice breeding. Journal of Integrative Plant Biology, 2007, 49(6):791-804.
doi: 10.1111/jipb.2007.49.issue-6 |
[5] |
CHEN L, LIU Y G. Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014, 65(1):579-606.
doi: 10.1146/arplant.2014.65.issue-1 |
[6] |
GUPTA P K, BALYAN H S, GAHLAUT V, SARIPALLI G, PAL B, BASNET B R, JOSHI A K. Hybrid wheat: past, present and future. Theoretical and Applied Genetics, 2019, 132(9):2463-2483.
doi: 10.1007/s00122-019-03397-y |
[7] | 李中安. 一种以蓝粒为标记性状的两系法杂交小麦的选育方法: CN200610042629.8.(2006-09-06)[2021-02-11]. |
LI Z A. A breeding method of two-line hybrid wheat marked by blue grain: CN200610042629.8[P].(2006-09-06)[2021-02-11]. (in Chinese) | |
[8] |
MURCHIE E H, PINTO M, HORTON P. Agriculture and the new challenges for photosynthesis research. The New Phytologist, 2009, 181(3):532-552.
doi: 10.1111/nph.2009.181.issue-3 |
[9] |
CHEN X J, MIN D H, TAUQEER A H, HU G Y. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Research, 2012, 137:195-201.
doi: 10.1016/j.fcr.2012.09.008 |
[10] |
TSHIKUNDE N M, MASHILO J, SHIMELIS H, ODINDO A. Agronomic and physiological traits, and associated Quantitative Trait Loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Frontiers in Plant Science, 2019, 10(5):1428.
doi: 10.3389/fpls.2019.01428 |
[11] |
FISCHER R A, REES D, SAYRE K D, CONDON G A, LARQUE S. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies. Crop Science, 1998, 38(6):1467-1475.
doi: 10.2135/cropsci1998.0011183X003800060011x |
[12] |
ZHENG T C, ZHANG X K, YIN G H, WANG L N, HAN Y L, CHEN L, HE F, TANG J W, XIA X C, HE Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan province of China between 1981 and 2008. Field Crops Research, 2011, 122(3):225-233.
doi: 10.1016/j.fcr.2011.03.015 |
[13] |
ZHOU Y, HE Z H, SUI X X, XIA X C, ZHANG X K, ZHANG G S. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science, 2007, 47(1):245-253.
doi: 10.2135/cropsci2006.03.0175 |
[14] |
ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S. Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 2007, 157(3):465-473.
doi: 10.1007/s10681-007-9376-8 |
[15] |
REYNOLDS M P, PASK A J D, HOPPITT W J E, SONDER K, SUKUMARAN S, MOLERO G, PIERRE C S, PAYNE T, SINGH R P, BRAUN H J, et al. Strategic crossing of biomass and harvest index-source and sink-achieves genetic gains in wheat. Euphytica, 2017, 213(11):257-270.
doi: 10.1007/s10681-017-2040-z |
[16] | 刘红梅, 周新跃, 陈杰, 李海林, 邱颖波, 刘建丰. 籼型杂交稻光合特性的杂种优势分析. 华北农学报, 2014, 29(3):122-127. |
LIU H M, ZHOU X Y, CHEN J, LI H L, QIU Y B, LIU J F. Heterosis analysis of photosynthetic characteristics in indica hybrid rice. Acta Agriculturae Boreali-Sinica, 2014, 29(3):122-127. (in Chinese) | |
[17] | 赵仁杰, 周紫阳. 高粱杂交种吉杂319及其亲本叶片光合相关参数的比较. 东北农业科学, 2020, 45(2):9-12. |
ZHAO R J, ZHOU Z Y. Comparison of photosynthetic parameters of sorghum hybrid Jiza 319 and its parents. Northeast Agricultural Science, 2020, 45(2):9-12. (in Chinese) | |
[18] | 王秀莉, 胡兆荣, 彭惠茹, 杜金昆, 孙其信, 王敏, 倪中福. 普通小麦光合碳同化与产量性状杂种优势的关系. 作物学报, 2010, 36(6):1003-1010. |
WANG X L, HU Z R, PENG H R, DU J K, SUN Q X, WANG M, NI Z F. Relationship of photosynthetic carbon assimilation related traits of flag leaves with yield heterosis in a wheat diallel cross. Acta Agronomica Sinica, 2010, 36(6):1003-1010. (in Chinese) | |
[19] |
YANG X, CHEN X, GE Q Y, LI B, TONG Y P, LI Z S, KUANG T Y, LU C M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. Journal of Plant Physiology, 2007, 164(3):318-326.
doi: 10.1016/j.jplph.2006.01.007 |
[20] |
SONG Q H, SU R N, CHAI Y M, BACHIR D G, CHEN L, HU Y. High photosynthetic capability of wheat germplasm with rye chromosome. Journal of Plant Physiology, 2017, 216:202-211.
doi: 10.1016/j.jplph.2017.06.012 |
[21] | 吴讷, 陈炫, 姜瑶瑶, 张天烨, 羊健, 朱统泉, 张恒木, 陈剑平. 中国小麦花叶病毒(CWMV)侵染条件下小麦内参基因的选择. 浙江农业学报, 2018, 30(7):1182-1187. |
WU N, CHEN X, JIANG Y Y, ZHANG T Y, YANG J, ZHU T Q, ZHANG H M, CHEN J P. Selection of reference genes in wheat infected by Chinese wheat mosaic virus (CWMV)s. Acta Agriculturae Zhejiangensi, 2018, 30(7):1182-1187. (in Chinese) | |
[22] | 许大全. 光合速率、光合效率与作物产量. 生物学通报, 1999, 34(8):8-10. |
XU D Q. Photosynthetic rate, photosynthetic efficiency and crop yield. Chinese Bulletin of Biology, 1999, 34(8):8-10. (in Chinese) | |
[23] |
TOLLENAAR M, AHMADZADEH A, LEE E A. Physiological basis of heterosis for grain yield in maize. Crop Science, 2004, 44(6):2086-2094.
doi: 10.2135/cropsci2004.2086 |
[24] | WEI G, TAO Y, LIU G Z, CHEN C, LUO R, XIA H A, GAN Q, ZENG H P, LU Z L, HAN Y N, et al. A transcriptomic analysis of super hybrid rice LYP9 and its parents. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19):7695-7701. |
[25] |
NI Z F, KIM E D, HA M, LACKEY E, LIU J X, ZHANG Y R, SUN Q X, CHEN Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457(7277):327-331.
doi: 10.1038/nature07523 |
[26] | 张其德, 卢从明, 张世平, 张启峰. 几组有优和无优杂交组合中杂交稻及其亲本光合功能的比较. 植物学通报, 1998, 15(1):51-56. |
ZHANG Q D, LU C M, ZHANG S P, ZHANG Q F. The comparison of photosynthetic functions among hybrid rice and their parents in some heterosis and nonheterosis hybrid combinations. Chinese Bulletin of Botany, 1998, 15(1):51-56. (in Chinese) | |
[27] |
AISAWI K A B, REYNOLDS M P, SINGH R P, FOULKES M J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 2015, 55(4):1749-1764.
doi: 10.2135/cropsci2014.09.0601 |
[28] |
TAUSZ-POSCH S, DEMPSEY R W, SENEWEERA S, NORTON R M, FITZGERALD G, TAUSZ M. Does a freely tillering wheat cultivar benefit more from elevated CO2 than a restricted tillering cultivar in a water-limited environment. European Journal of Agronomy, 2015, 64:21-28.
doi: 10.1016/j.eja.2014.12.009 |
[29] |
BECHE E, BENIN D, DA SILVA C L, MUNARO L B, MARCHESE J A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014, 61:49-59.
doi: 10.1016/j.eja.2014.08.005 |
[30] | SUZUKI Y, KIHARA-DOI T, KAWAZU T, MIYAKE C, MAKINO A. Differences in Rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell Environment, 33(8):1314-1323. |
[31] |
SASANUMA T. Characterization of the rbcS multigene family in wheat: Subfamily classification, determination of chromosomal location and evolutionary analysis. Molecular Genetics and Genomics, 2001, 265(1):161-171.
doi: 10.1007/s004380000404 |
[32] |
RODERMEL S. Subunit control of Rubisco biosynthesis-A relic of an endosymbiotic past. Photosynthesis Research, 1999, 59(2):105-123.
doi: 10.1023/A:1006122619851 |
[33] |
DEAN C, PICHERSKY E. DUNSMUIR P. Structure, evolution and regulation of rbcS genes in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1):415-439.
doi: 10.1146/arplant.1989.40.issue-1 |
[34] |
EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78(1):9-19.
doi: 10.1007/BF00377192 |
[35] |
MAKINO A, MAE T, OHIRA K. Differences between wheat and rice in the enzyme properties of ribulose-1,5-bisphosphate carboxylase/ oxygenase and their relationship to photosynthetic gas exchange. Planta, 1988, 174(1):30-38.
doi: 10.1007/BF00394870 |
[36] | 杨小苗, 吴新亮, 刘玉凤, 李天来, 齐明芳. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用. 应用生态学报, 2018, 29(6):1983-1989. |
YANG X M, WU X L, LIU Y F, LI T L, QI M F. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS. Chinese Journal of Applied Ecology, 2018, 29(6):1983-1989. (in Chinese) | |
[37] |
LI Y, REN B, GAO L, DING L, JIANG D, XU X, SHEN Q, GUO S. Less chlorophyll does not necessarily restrain light capture ability and photosynthesis in a chlorophyll-deficient rice mutant. Journal of Agronomy and Crop Science, 2012, 199(1):49-56.
doi: 10.1111/jac.2013.199.issue-1 |
[38] |
SUZUKI Y, OHKUBO M, HATAKEYAMA H, OHASHI K, YOSHIZAWA R, KOJIMA S, HAYAKAWA T, YAMAYA T, MAE T, MAKINO A. Increased Rubisco content in transgenic rice transformed with the “sense” rbcs gene. Plant Cell Physiology, 2008, 48(4):626-637.
doi: 10.1093/pcp/pcm035 |
[39] |
SUZUKI Y, MIYAMOTO T, YOSHIZAWA R, MAE T, MAKINO A. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environment, 2010, 32(4):417-427.
doi: 10.1111/pce.2009.32.issue-4 |
[40] |
SAWCHUK M G, DONNER T J, HEAD P, SCARPELLA E. Unique and overlapping expression patterns among members of photosynthesis- associated nuclear gene families in Arabidopsis. Plant Physiology, 2008, 148(4):1908-1924.
doi: 10.1104/pp.108.126946 |
[41] |
YOON M, PUTTERILL J J, ROSS G S, LAING W A. Determination of the relative expression levels of Rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends. Analytical Biochemistry, 2001, 291(2):237-244.
doi: 10.1006/abio.2001.5042 |
[42] |
SAEED I, BACHIR D G, CHEN L, HU Y G. The expression of TaRca2-α gene associated with net photosynthesis rate, biomass and grain yield in bread wheat (Triticum aestivum L.) under field conditions. PLoS ONE, 2016, 11(8):e0161308.
doi: 10.1371/journal.pone.0161308 |
[43] | DRIEVER S M, SIMKIN A J, ALOTAIBI S, FISK S J, MADGWICK P J, SPARKS C A, JONES H D, LAWSON T, PARRY M, RAINES C A. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philosophical Transactions: Biological Sciences 2017, 372(1730):1-10. |
[44] |
LIU J, LI M, ZHANG Q, WEI X, HUANG X. Exploring the molecular basis of heterosis for plant breeding. Journal of Integrative Plant Biology. 2020, 62(3):287-298.
doi: 10.1111/jipb.v62.3 |
[45] |
LIU Y J, GAO S Q, TANG Y M, GONG J, ZHANG X, WANG Y B, Zhang L P, Sun R W, Zhang Q, Chen Z B. Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta, 2018, 247(6):1307-1321.
doi: 10.1007/s00425-018-2848-3 |
[46] |
BAO J Y, LEE S, CHEN C, ZHANG X Q, YU J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiology, 2005, 138(3):1216-1231.
doi: 10.1104/pp.105.060988 |
[1] | LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762. |
[2] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[3] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[4] | CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478. |
[5] | XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807. |
[6] | WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457. |
[7] | ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566. |
[8] | WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. |
[9] | RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320. |
[10] | MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169. |
[11] | GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725. |
[12] | LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. |
[13] | LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409. |
[14] | PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438. |
[15] | CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511. |
|