Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 4996-5007.doi: 10.3864/j.issn.0578-1752.2021.23.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations

LI JiangLing1(),YANG Lan1,RUAN RenWu2,LI ZhongAn1()   

  1. 1Citrus Research Institute, Southwest University, Chongqing 400712
    2College of Agronomy and Biotechnology, Southwest University, Chongqing 400716
  • Received:2021-02-25 Accepted:2021-06-21 Online:2021-12-01 Published:2021-12-06
  • Contact: ZhongAn LI E-mail:1146682338@qq.com;zhongan@cric.cn

Abstract:

【Objective】The aim of this study was to provide a theoretical basis for early heterosis prediction of hybrid wheat by analyzing photosynthetic characteristics of leaves of different hybrid wheat combinations and their parents at the seedling stage, so that it was easy to select hybrids with strong heterosis. 【Method】 Six hybrid wheat combinations and their parents, including two restorer lines and four male sterile lines, were used as materials to measure the photosynthetic characteristics of wheat leaves at the seedling stage in the field, including net photosynthetic rate (Pn), stomatal conductance (Gs) and intercellular CO2 concentration (Ci), transpiration rate (Tr), water use efficiency (WUE), chlorophyll content (Chl.), Rubisco content and the relative expression of rbcL and rbcS genes encoding Rubisco subunits as well as their heterosis and correlation. The yield traits were investigated at the wheat maturity stage, including plant height, length of main spike, biomass per plant, spike number per plant, grains per spike, grain yield per plant, spikelets of main spike, thousand grain weight, and harvest index. And then, correlation between grain yield and their photosynthetic characteristics was analyzed. 【Result】 Pn, Gs and Tr of six hybrid wheat showed significant heterosis over high parents. The average heterosis of Pn over high parents was 15.4%, Gs was 21.3%, and Tr was 11.46%. The higher Pn and stronger heterosis of hybrids resulted from the restorer lines with higher Pn, while Ci and WUE of some hybrids showed negative heterosis. The number of spikes per plant, yield per plant and biomass per plant had greater heterosis over high parents, in which the number of spikes per plant performed the highest heterosis with 34.21% on average. Correlation analysis showed that Pn was significantly or super-significantly positively correlated with Gs, Tr, grain yield per plant and biomass per plant, suggesting that Gs and Tr could help to screen high photosynthetic wheat, and Pn at the seedling stage had important relationship with yield. Among them, the Rubisco activity of hybrid wheat was higher than that of its parents, and it had a significant heterosis over high parents, with an average heterosis of 5.38% over high parents. Compared with rbcL, rbcS had a higher over high-parent heterosis and over mid-parent heterosis. The chlorophyll content mainly showed a negative advantage, few over mid-parent heterosis, and very few showed over high-parent heterosis. There was no significant correlation between Pn and other photosynthetic characteristics.【Conclusion】 The results indicated that the leaf photosynthesis of hybrid wheat at the seedling stage showed significant over high-parent heterosis, especially Pn, Gs and Tr, and Pn was significantly positively correlated with the yield per plant and the biomass per plant, so the level of net photosynthetic rate could be one of the important traits for early prediction of yield potential of hybrid combination.

Key words: hybrid wheat, photosynthesis, grain yield, heterosis

Table 1

Comparison of photosynthetic characters in hybrid wheat and its parents"

亲本及F1
Parents and F1 hybrid
净光合速率
Pn
(μmol·m-2·s-1)
气孔导度
Gs
(mmol·m-2·s-1)
胞间二氧
化碳浓度
Ci
(μmol·mol-1)
水分利用
效率
WUE
(mmol·mol-1)
蒸腾速率
Tr
(mmol·m-2·s-1)
叶绿素a
Chl.a (mg·g-1)
叶绿素b
Chl.b (mg·g-1)
叶绿素(a+b)
Chl.(a+b) (mg·g-1)
不育系
Male sterile lines
18L7077 28.28 373.78 255.09 13.45 2.10 0.842 0.253 1.095
15L7084 25.58 340.2 228.01 17.35 1.56 0.848 0.262 1.109
12L8012 23.72 315.66 271.39 12.11 1.97 0.782 0.245 1.027
12L8015 22.38 269.2 237.99 14.73 1.54 0.798 0.245 1.043
恢复系
Restorer lines
川麦93 Chuanmai93 24.94 365.86 231.84 15.7 1.64 0.850 0.259 1.108
川14品16 Chuan14pin16 23.53 318.98 233.02 15.32 1.55 0.896 0.269 1.164
F1
F1 hybrid
12L8015×川14品16
12L8015×Chuan 14 pin 16
27.92 434.69 256.59 16.92 1.67 0.851 0.244 1.095
15L7084×川14品16
15L7084×Chuan 14 pin 16
27.83 439.33 239.79 16.58 1.75 0.826 0.245 1.071
18L7077×川14品16
18L7077×Chuan 14 pin 16
30.26 454.31 235.03 13.94 2.17 0.809 0.243 1.052
12L8012×川麦93
12L8012×Chuanmai 93
30.03 454.59 246.35 14.08 2.20 0.808 0.247 1.055
12L8015×川麦93
12L8015×Chuanmai 93
31.48 461.67 220.00 17.75 1.89 0.778 0.236 1.014
15L7084×川麦93
15L7084×Chuanmai 93
28.25 396.67 230.21 14.61 1.96 0.859 0.267 1.126
均值 Mean 27.02 385.41 240.44 15.21 1.83 0.829 0.251 1.080
标准差 Std 2.814 62.018 13.874 1.640 0.236 0.033 0.010 0.042
变异系数CV (%) 10.42 16.09 5.77 10.78 12.88 4.04 4.03 3.90
组间差异Difference in combinations (F) 111.460** 438.683** 8.840** 105.507** 59.222** 23.849** 11.24* 12.46**

Table 2

Performance of heterosis for photosynthetic characters in hybrid wheat"

性状
Trait
超高亲优势
Over high-parent heterosis
中亲优势
Over mid-parent heterosis
超低亲优势
Below low-parent heterosis
正向组合数
HPH>0
平均
AH (%)
范围
Range (%)
正向组合数
MPH>0
平均
AH (%)
范围
Range (%)
负向组合数LPH<0 平均
AH (%)
范围
Range (%)
净光合速率 Pn 6 15.40 7.00-26.23 6 20.08 11.82-33.05 0 25.34 13.25-40.66
气孔导度 Gs 6 24.30 8.42-36.27 6 35.82 20.35-47.81 0 39.35 16.60-61.47
胞间二氧化碳浓度 Ci 3 -0.61 -9.22-7.82 3 0.16 -6.35-8.95 1 3.04 -5.11-10.11
水分利用效率 WUE 3 -2.67 -15.80-13.06 4 2.88 -11.58-16.67 1 9.42 -9.00-23.27
蒸腾速率 Tr 6 11.36 3.59-19.09 6 16.93 8.00-22.07 0 23.82 8.28-40.43
叶绿素a Chl.a 1 -5.78 -9.72-1.13 2 -2.65 -7.22-1.46 3 0.79 -4.59-8.88
叶绿素b Chl.b 1 -6.44 -9.50-2.17 1 -4.18 -8.32-2.72 4 0.16 -7.11-3.28
叶绿素(a+b) Chl.(a+b) 1 -5.90 -9.67-1.94 1 -3.00 -7.48-1.59 3 0.16 -5.18-6.67

Table 3

Over high-parent heterosis of photosynthetic characters in hybrid wheat (%)"

F1
F1 hybrid
净光合速率
Pn
气孔导度
Gs
胞间二氧化碳浓度
Ci
水分利用效率
WUE
蒸腾速率
Tr
叶绿素a
Chl.a
叶绿素b
Chl.b
叶绿素(a+b)
Chl.(a+b)
12L8015×川14品16
12L8015×Chuan 14 pin 16
18.63** 36.28** 7.82* 10.46** 7.73* -5.01* -9.13* -5.96
15L7084×川14品16
15L7084×Chuan 14 pin 16
8.80* 29.14** 2.90 -4.44 11.64** -9.72** -9.50* -9.67*
18L7077×川14品16
18L7077×Chuan 14 pin 16
7.00* 21.54** 3.08 -9.01* 3.59 -7.76* -8.82* -8.00*
12L8012×川麦93
12L8012×Chuanmai 93
20.39** 24.25** -9.23* -10.34** 11.45** -4.88 -4.58 -4.81
12L8015×川麦93
12L8015×Chuanmai 93
26.23** 26.19** -7.56* 13.06** 14.66** -8.44* -8.79* -8.52*
15L7084×川麦93
15L7084×Chuanmai 93
10.44** 8.42* -0.70 -15.80** 19.09** 1.13 2.17 1.54

Table 4

Correlation coefficient between heterosis in photosynthetic related traits"

性状
Trait
净光合速率
Pn
气孔导度
Gs
胞间二氧化碳浓度
Ci
水分利用效率
WUE
蒸腾速率
Tr
叶绿素a
Chl.a
叶绿素b
Chl.b
气孔导度 Gs 0.939**
胞间二氧化碳浓度 Ci -0.534 -0.189
水分利用效率 WUE 0.382 0.396 -0.626*
蒸腾速率 Tr 0.680* 0.559 0.329 -0.196
叶绿素a Chl.a -0.257 0.002 0.017 0.113 -0.670*
叶绿素b Chl.b -0.414 -0.269 -0.107 -0.017 -0.619* 0.843**
叶绿素(a+b) Chl.(a+b) -0.199 -0.062 -0.010 0.082 -0.678* 0.992** 0.904**

Table 5

Correlation coefficients of photosynthetic characters between hybrid wheat combinations and their parents"

性状
Trait
净光合速率
Pn
气孔导度
Gs
胞间二氧化碳浓度
Ci
水分利用效率
WUE
蒸腾速率
Tr
叶绿素a
Chl.a
叶绿素b
Chl.b
叶绿素(a+b)
Chl.(a+b)
杂交小麦组合与不育系值HMC -0.219 -0.437 0.128 -0.234 -0.704 0.361 0.585 0.416
杂交小麦组合与恢复系值HRC 0.359 -0.508 -0.668 -0.089 -0.177 0.249 -0.313 0.109
杂交小麦组合与中亲值HMPC -0.192 -0.565 -0.029 -0.239 -0.270 0.374 0.283 0.340

Table 6

Over high-parent heterosis in yield and its components in hybrid wheat (%)"

F1
F1 hybrid
主穗小穗数
SN
主穗长
SL
穗粒数
GNPS
有效穗数
SNPP
单株产量
GYPP
千粒重
TGW
单株生物量
BMPP
收获指数
HI
12L8015×川14品16
12L8015×Chuan 14 pin 16
4.15* -6.67* -20.66** 40.94** 17.67** 6.16* 17.10** 1.03
15L7084×川14品16
15L7084×Chuan 14 pin 16
5.09** 3.99* -1.94 15.44** 17.85* 5.85* 15.34* 0.82
18L7077×川14品16
18L7077×Chuan 14 pin 16
0.94 -0.82 -10.41** 24.83** 16.83* 4.46 14.05* 1.51
12L8012×川麦93
12L8012×Chuanmai 93
0.13 -11.25** -20.28** 42.11** 7.45* -5.95* 4.60 1.38
12L8015×川麦93
12L8015×Chuanmai 93
-1.39 -12.35** -25.86** 46.62** 17.51* 9.40** 12.30** 6.62*
15L7084×川麦93
15L7084×Chuanmai 93
2.71 -4.97* -19.61** 35.34** 7.73* -0.76 4.41 4.25

Table 7

Partial correlation coefficients between heterosis in yield and photosynthetic carbon assimilation"

株高
PH
主穗长
SL
单株生物量
BMPP
单株产量
GYPP
有效穗数
SNPP
穗粒数
GNPS
主穗小穗数
SN
千粒重
TGW
收获系数
HI
主穗长 SL 0.625*
单株生物量 BMPP 0.734** 0.789**
单株产量 GYPP 0.291 -0.429 0.981**
有效穗数 SNPP -0.288 -0.882** -0.262 0.815*
穗粒数 GNPS 0.612** 0.928** 0.903** 0.209 0.799**
主穗小穗数 SN 0.797** 0.841** 0.790** -0.701 -0.575 0.805**
千粒重 TGW 0.415 0.001 0.687 0.651 0.118 0.157 -0.349
收获指数 HI -0.442 -0.538 0.422 0.572 0.275 -0.377 -0.413 0.431
净光合速率 Pn 0.348 0.420 0.578* 0.862** 0.150 0.420 0.423 0.343 0.392

Fig. 1

Rubisco activity and relative expression levels of genes encoding rbcL and rbcS in hybrid wheat The expression level of the control is 1; ** indicates significant difference at P<0.01"

Table 8

Heterosis of Rubisco activity and relative expression levels of genes encoding rbcL and rbcS in hybrid wheat"

编号
Number
F1
F1 hybrid
指标
Index
中亲优势
Over mid-parent heterosis (%)
超高亲优势
Over high-parent heterosis (%)
超低亲优势
Below low-parent heterosis (%)
19-200 12L8015×川14品16
12L8015×Chuan 14 pin 16
Rubisco活性 Rubisco activity 13.00** 5.72* 21.37**
rbcL相对表达量 Relative expression of rbcL 73.17** 42.53** 120.58**
rbcS相对表达量 Relative expression of rbcS 64.22** 61.50** 67.03**
19-204 18L7077×川14品16
18L7077×Chuan 14 pin 16
Rubisco活性 Rubisco activity 10.52** 8.28* 12.86**
rbcL相对表达量 Relative expression of rbcL -25.26** -28.56** -21.65**
rbcS相对表达量 Relative expression of rbcS -35.69** -52.26** -1.47
19-205 15L7084×川14品16
15L7084×Chuan 14 pin 16
Rubisco活性 Rubisco activity 10.18** 8.31* 27.32**
rbcL相对表达量 Relative expression of rbcL 86.76** 60.10** 124.08**
rbcS相对表达量 Relative expression of rbcS 131.43** 99.58** 175.37**
19-218 12L8012×川麦93
12L8012×Chuanmai 93
Rubisco活性 Rubisco activity 9.30* 3.30 16.04**
rbcL相对表达量 Relative expression of rbcL -22.73** -43.64** 22.85**
rbcS相对表达量 Relative expression of rbcS -44.97** -59.00** -16.36
19-219 12L8015×川麦93
12L8015×Chuanmai 93
Rubisco活性 Rubisco activity 8.99* 6.03* 12.13**
rbcL相对表达量 Relative expression of rbcL 16.70* -8.32 60.51**
rbcS相对表达量 Relative expression of rbcS 38.33** 23.41** 57.35**
19-220 15L7084×川麦93
15L7084×Chuanmai 93
Rubisco活性 Rubisco activity 7.07* 0.84 14.11**
rbcL相对表达量 Relative expression of rbcL -10.73 -37.30** 54.91**
rbcS相对表达量 Relative expression of rbcS 76.60** 20.74** 228.64**
[1] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327(5967):812-818.
doi: 10.1126/science.1185383
[2] KEMPE K, RUBTSOVA M, GILS M. Split-gene system for hybrid wheat seed production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25):9097-9102.
[3] TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967):818-822.
doi: 10.1126/science.1183700
[4] LI S, YANG D, ZHU Y. Characterization and use of male sterility in hybrid rice breeding. Journal of Integrative Plant Biology, 2007, 49(6):791-804.
doi: 10.1111/jipb.2007.49.issue-6
[5] CHEN L, LIU Y G. Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014, 65(1):579-606.
doi: 10.1146/arplant.2014.65.issue-1
[6] GUPTA P K, BALYAN H S, GAHLAUT V, SARIPALLI G, PAL B, BASNET B R, JOSHI A K. Hybrid wheat: past, present and future. Theoretical and Applied Genetics, 2019, 132(9):2463-2483.
doi: 10.1007/s00122-019-03397-y
[7] 李中安. 一种以蓝粒为标记性状的两系法杂交小麦的选育方法: CN200610042629.8.(2006-09-06)[2021-02-11].
LI Z A. A breeding method of two-line hybrid wheat marked by blue grain: CN200610042629.8[P].(2006-09-06)[2021-02-11]. (in Chinese)
[8] MURCHIE E H, PINTO M, HORTON P. Agriculture and the new challenges for photosynthesis research. The New Phytologist, 2009, 181(3):532-552.
doi: 10.1111/nph.2009.181.issue-3
[9] CHEN X J, MIN D H, TAUQEER A H, HU G Y. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Research, 2012, 137:195-201.
doi: 10.1016/j.fcr.2012.09.008
[10] TSHIKUNDE N M, MASHILO J, SHIMELIS H, ODINDO A. Agronomic and physiological traits, and associated Quantitative Trait Loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Frontiers in Plant Science, 2019, 10(5):1428.
doi: 10.3389/fpls.2019.01428
[11] FISCHER R A, REES D, SAYRE K D, CONDON G A, LARQUE S. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies. Crop Science, 1998, 38(6):1467-1475.
doi: 10.2135/cropsci1998.0011183X003800060011x
[12] ZHENG T C, ZHANG X K, YIN G H, WANG L N, HAN Y L, CHEN L, HE F, TANG J W, XIA X C, HE Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan province of China between 1981 and 2008. Field Crops Research, 2011, 122(3):225-233.
doi: 10.1016/j.fcr.2011.03.015
[13] ZHOU Y, HE Z H, SUI X X, XIA X C, ZHANG X K, ZHANG G S. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science, 2007, 47(1):245-253.
doi: 10.2135/cropsci2006.03.0175
[14] ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S. Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 2007, 157(3):465-473.
doi: 10.1007/s10681-007-9376-8
[15] REYNOLDS M P, PASK A J D, HOPPITT W J E, SONDER K, SUKUMARAN S, MOLERO G, PIERRE C S, PAYNE T, SINGH R P, BRAUN H J, et al. Strategic crossing of biomass and harvest index-source and sink-achieves genetic gains in wheat. Euphytica, 2017, 213(11):257-270.
doi: 10.1007/s10681-017-2040-z
[16] 刘红梅, 周新跃, 陈杰, 李海林, 邱颖波, 刘建丰. 籼型杂交稻光合特性的杂种优势分析. 华北农学报, 2014, 29(3):122-127.
LIU H M, ZHOU X Y, CHEN J, LI H L, QIU Y B, LIU J F. Heterosis analysis of photosynthetic characteristics in indica hybrid rice. Acta Agriculturae Boreali-Sinica, 2014, 29(3):122-127. (in Chinese)
[17] 赵仁杰, 周紫阳. 高粱杂交种吉杂319及其亲本叶片光合相关参数的比较. 东北农业科学, 2020, 45(2):9-12.
ZHAO R J, ZHOU Z Y. Comparison of photosynthetic parameters of sorghum hybrid Jiza 319 and its parents. Northeast Agricultural Science, 2020, 45(2):9-12. (in Chinese)
[18] 王秀莉, 胡兆荣, 彭惠茹, 杜金昆, 孙其信, 王敏, 倪中福. 普通小麦光合碳同化与产量性状杂种优势的关系. 作物学报, 2010, 36(6):1003-1010.
WANG X L, HU Z R, PENG H R, DU J K, SUN Q X, WANG M, NI Z F. Relationship of photosynthetic carbon assimilation related traits of flag leaves with yield heterosis in a wheat diallel cross. Acta Agronomica Sinica, 2010, 36(6):1003-1010. (in Chinese)
[19] YANG X, CHEN X, GE Q Y, LI B, TONG Y P, LI Z S, KUANG T Y, LU C M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. Journal of Plant Physiology, 2007, 164(3):318-326.
doi: 10.1016/j.jplph.2006.01.007
[20] SONG Q H, SU R N, CHAI Y M, BACHIR D G, CHEN L, HU Y. High photosynthetic capability of wheat germplasm with rye chromosome. Journal of Plant Physiology, 2017, 216:202-211.
doi: 10.1016/j.jplph.2017.06.012
[21] 吴讷, 陈炫, 姜瑶瑶, 张天烨, 羊健, 朱统泉, 张恒木, 陈剑平. 中国小麦花叶病毒(CWMV)侵染条件下小麦内参基因的选择. 浙江农业学报, 2018, 30(7):1182-1187.
WU N, CHEN X, JIANG Y Y, ZHANG T Y, YANG J, ZHU T Q, ZHANG H M, CHEN J P. Selection of reference genes in wheat infected by Chinese wheat mosaic virus (CWMV)s. Acta Agriculturae Zhejiangensi, 2018, 30(7):1182-1187. (in Chinese)
[22] 许大全. 光合速率、光合效率与作物产量. 生物学通报, 1999, 34(8):8-10.
XU D Q. Photosynthetic rate, photosynthetic efficiency and crop yield. Chinese Bulletin of Biology, 1999, 34(8):8-10. (in Chinese)
[23] TOLLENAAR M, AHMADZADEH A, LEE E A. Physiological basis of heterosis for grain yield in maize. Crop Science, 2004, 44(6):2086-2094.
doi: 10.2135/cropsci2004.2086
[24] WEI G, TAO Y, LIU G Z, CHEN C, LUO R, XIA H A, GAN Q, ZENG H P, LU Z L, HAN Y N, et al. A transcriptomic analysis of super hybrid rice LYP9 and its parents. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19):7695-7701.
[25] NI Z F, KIM E D, HA M, LACKEY E, LIU J X, ZHANG Y R, SUN Q X, CHEN Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457(7277):327-331.
doi: 10.1038/nature07523
[26] 张其德, 卢从明, 张世平, 张启峰. 几组有优和无优杂交组合中杂交稻及其亲本光合功能的比较. 植物学通报, 1998, 15(1):51-56.
ZHANG Q D, LU C M, ZHANG S P, ZHANG Q F. The comparison of photosynthetic functions among hybrid rice and their parents in some heterosis and nonheterosis hybrid combinations. Chinese Bulletin of Botany, 1998, 15(1):51-56. (in Chinese)
[27] AISAWI K A B, REYNOLDS M P, SINGH R P, FOULKES M J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 2015, 55(4):1749-1764.
doi: 10.2135/cropsci2014.09.0601
[28] TAUSZ-POSCH S, DEMPSEY R W, SENEWEERA S, NORTON R M, FITZGERALD G, TAUSZ M. Does a freely tillering wheat cultivar benefit more from elevated CO2 than a restricted tillering cultivar in a water-limited environment. European Journal of Agronomy, 2015, 64:21-28.
doi: 10.1016/j.eja.2014.12.009
[29] BECHE E, BENIN D, DA SILVA C L, MUNARO L B, MARCHESE J A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014, 61:49-59.
doi: 10.1016/j.eja.2014.08.005
[30] SUZUKI Y, KIHARA-DOI T, KAWAZU T, MIYAKE C, MAKINO A. Differences in Rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell Environment, 33(8):1314-1323.
[31] SASANUMA T. Characterization of the rbcS multigene family in wheat: Subfamily classification, determination of chromosomal location and evolutionary analysis. Molecular Genetics and Genomics, 2001, 265(1):161-171.
doi: 10.1007/s004380000404
[32] RODERMEL S. Subunit control of Rubisco biosynthesis-A relic of an endosymbiotic past. Photosynthesis Research, 1999, 59(2):105-123.
doi: 10.1023/A:1006122619851
[33] DEAN C, PICHERSKY E. DUNSMUIR P. Structure, evolution and regulation of rbcS genes in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1):415-439.
doi: 10.1146/arplant.1989.40.issue-1
[34] EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78(1):9-19.
doi: 10.1007/BF00377192
[35] MAKINO A, MAE T, OHIRA K. Differences between wheat and rice in the enzyme properties of ribulose-1,5-bisphosphate carboxylase/ oxygenase and their relationship to photosynthetic gas exchange. Planta, 1988, 174(1):30-38.
doi: 10.1007/BF00394870
[36] 杨小苗, 吴新亮, 刘玉凤, 李天来, 齐明芳. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用. 应用生态学报, 2018, 29(6):1983-1989.
YANG X M, WU X L, LIU Y F, LI T L, QI M F. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS. Chinese Journal of Applied Ecology, 2018, 29(6):1983-1989. (in Chinese)
[37] LI Y, REN B, GAO L, DING L, JIANG D, XU X, SHEN Q, GUO S. Less chlorophyll does not necessarily restrain light capture ability and photosynthesis in a chlorophyll-deficient rice mutant. Journal of Agronomy and Crop Science, 2012, 199(1):49-56.
doi: 10.1111/jac.2013.199.issue-1
[38] SUZUKI Y, OHKUBO M, HATAKEYAMA H, OHASHI K, YOSHIZAWA R, KOJIMA S, HAYAKAWA T, YAMAYA T, MAE T, MAKINO A. Increased Rubisco content in transgenic rice transformed with the “sense” rbcs gene. Plant Cell Physiology, 2008, 48(4):626-637.
doi: 10.1093/pcp/pcm035
[39] SUZUKI Y, MIYAMOTO T, YOSHIZAWA R, MAE T, MAKINO A. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environment, 2010, 32(4):417-427.
doi: 10.1111/pce.2009.32.issue-4
[40] SAWCHUK M G, DONNER T J, HEAD P, SCARPELLA E. Unique and overlapping expression patterns among members of photosynthesis- associated nuclear gene families in Arabidopsis. Plant Physiology, 2008, 148(4):1908-1924.
doi: 10.1104/pp.108.126946
[41] YOON M, PUTTERILL J J, ROSS G S, LAING W A. Determination of the relative expression levels of Rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends. Analytical Biochemistry, 2001, 291(2):237-244.
doi: 10.1006/abio.2001.5042
[42] SAEED I, BACHIR D G, CHEN L, HU Y G. The expression of TaRca2-α gene associated with net photosynthesis rate, biomass and grain yield in bread wheat (Triticum aestivum L.) under field conditions. PLoS ONE, 2016, 11(8):e0161308.
doi: 10.1371/journal.pone.0161308
[43] DRIEVER S M, SIMKIN A J, ALOTAIBI S, FISK S J, MADGWICK P J, SPARKS C A, JONES H D, LAWSON T, PARRY M, RAINES C A. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philosophical Transactions: Biological Sciences 2017, 372(1730):1-10.
[44] LIU J, LI M, ZHANG Q, WEI X, HUANG X. Exploring the molecular basis of heterosis for plant breeding. Journal of Integrative Plant Biology. 2020, 62(3):287-298.
doi: 10.1111/jipb.v62.3
[45] LIU Y J, GAO S Q, TANG Y M, GONG J, ZHANG X, WANG Y B, Zhang L P, Sun R W, Zhang Q, Chen Z B. Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta, 2018, 247(6):1307-1321.
doi: 10.1007/s00425-018-2848-3
[46] BAO J Y, LEE S, CHEN C, ZHANG X Q, YU J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiology, 2005, 138(3):1216-1231.
doi: 10.1104/pp.105.060988
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[4] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[5] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[6] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[7] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[8] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[11] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[12] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[13] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[14] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[15] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!