Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1599-1612.doi: 10.3864/j.issn.0578-1752.2021.08.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.)

MENG XinHao1(),DENG HongTao1(),LI Li2,CUI ShunLi1,Charles Y. CHEN3,HOU MingYu1,YANG XinLei1(),LIU LiFeng1()   

  1. 1College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Baoding 071001, Hebei, China
    2College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
    3Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
  • Received:2020-09-23 Accepted:2020-12-07 Online:2021-04-16 Published:2021-04-25
  • Contact: XinLei YANG,LiFeng LIU E-mail:mxinhao1994@126.com;3462096839@qq.com;peanut@hebau.edu.cn;liulifeng@hebau.edu.cn

Abstract:

【Objective】Cultivated peanut (Arachis hypogaea L.) is an important oil and economic crop in worldwide. Plant type is a typical quantitative trait and an important agronomic trait, which is closely related to yield and mechanized harvesting in peanut. Genetic analysis, QTL mapping and identifying tightly linked molecular markers of plant type, will be conducive to the germplasm protection and cultivar identification, and provide an important theoretical basis for the molecular breeding of plant type in cultivated peanut. 【Method】In the present study, a RIL population as research material was established, which consisted of 321 families and derived from Jihua 5 with erect plant type and M130 with prostrate type. Two parents and RIL population were planted at Hainan city, Handan city, Baoding city and Tangshan city during the growing season (May to September) from 2016 to 2018. The phenotypic data of plant type related traits, such as lateral branch angle, main stem height, lateral branch length, index of plant type and extension radius, were investigated at harvesting season under seven environments. Meanwhile, SSR, AhTE, SRAP and TRAP were used to identify genotypic data of parents and RIL that was applied to construct the molecular genetic linkage map. Later, we combined phenotypic data of seven environments, and identified QTLs for plant type related traits using ICIM of QTL Icimapping V4.2. 【Result】A molecular genetic linkage map containing 363 polymorphism sites was constructed, and all markers were assigned to 20 chromosomes and an unknown linkage group. The total length of the map covered 1 360.38 cM of the whole genome, and the average distance between the markers was 3.75 cM. The length of a single linkage group was 39.599-101.056 cM, including 4-50 molecular markers. Subsequently, 30 additive QTLs for plant type related traits were detected by ICIM-ADD method, which were distributed on A04, A05, A06, A08, A09, B02 and B09 chromosomes. Among these QTLs, 5 QTLs for LBA with PVE was 3.48%-11.22%, 15 QTLs for MSH with PVE was 3.58%-10.05%, 2 QTLs for LBL with PVE was 6.03%-8.56%, 4 QTLs for IOPT with PVE was 4.68%-15.08%, 4 QTLs for ER with PVE was 3.30%-9.33%. Of these, qLBAA05.1, qLBAA05.2, qMSHA04.2, and qIOPTA05.1 were main-effect QTLs, explaining 11.22%, 10.59%, 10.23%, 10.05% and 15.08% of the phenotypic variance, respectively. In addition, 59 pairs epistatic QTLs were detected by ICIM-EPI method. Among them, 6 pairs of epistatic QTLs for LBL with PVE were 2.23% to 2.78%, 50 pairs of epistatic QTLs for IOPT with PVE were 0.25% to 1.44%, and 3 pairs of epistatic QTLs for ER with PVE were 7.28% to 12.25%. Finally, we also found 3 QTL clusters for LBA, MSH, IOPT and ER on GM1867-AHGS1967 interval of A04, me14em5-116-PM418 interval of A05 and HBAUAh177-AhTE0658 interval of A08, respectively. 【Conclusion】In brief, we constructed a molecular genetic linkage map containing 363 loci, and identified 30 additive QTLs and 59 pairs of epistatic QTLs for plant type related traits, and found 3 QTL clusters.

Key words: peanut, plant type, QTL, RILs

Fig. 1

Normal test and frequency distribution map for five traits of the RILs and their parents in seven environments Environments 16BD, 16HN, 17BD, 17HD, 18BD, 18HD and 18TS represent sampling in 2016, 2017 and 2018 from Baoding (BD), Hainan (HD), Handan (HD) and Tangshan (TS); LBA: Lateral branch angle; MSH: Main stem height; LBL: Lateral branch length; IOPT: Index of plant type; ER: Extent radius"

Table 1

Statistics analysis of phenotypic data for two parents and its RIL population"

性状
Trait
环境
Env.
亲本 Parent RIL群体RILs population
冀花5号
Jihua 5
M130 最小值
Minimum
最大值
Maximum
平均值
Mean
标准差
SD
变异系数
CV (%)
Shapiro-
wilk (w)
偏度
Skewness
峰度
Kurtosis
侧枝夹角
LBA (°)
16BD 45.93 81.22 34.15 87.08 57.61 11.64 20.20 0.955*** 0.330 -0.993
16HN 37.41 77.05 34.03 80.07 55.90 11.75 21.02 0.953*** 0.362 -1.094
17BD 43.50 83.43 33.07 87.52 60.47 12.80 21.17 0.964*** 0.277 -1.050
17HD 39.20 79.01 35.35 90.10 58.63 13.09 22.33 0.949*** 0.344 -1.128
18BD 37.23 72.47 39.01 85.73 65.93 7.64 11.58 0.996 -0.344 0.408
18HD 45.30 81.83 35.05 88.38 58.78 10.53 17.91 0.989 0.252 -0.246
18TS 47.50 78.73 36.05 89.00 58.93 9.87 16.76 0.989 0.327 -0.136
主茎高
MSH (cm)
16BD 45.05 23.71 19.10 59.57 36.33 6.97 19.18 0.988** 0.348 0.221
16HN 35.05 17.31 10.36 45.00 22.67 5.82 25.66 0.969*** 0.702 0.415
17BD 38.40 19.37 10.15 56.62 32.25 7.17 22.25 0.996 0.120 -0.038
17HD 45.26 25.52 13.37 52.34 34.30 7.62 22.22 0.991 -0.039 -0.481
18BD 38.00 19.70 10.71 52.52 27.96 7.94 28.38 0.977** 0.475 0.164
18HD 45.05 23.36 12.28 55.76 34.89 8.04 23.04 0.992 -0.102 -0.087
18TS 45.23 24.38 17.06 51.10 33.87 6.69 19.74 0.99 0.161 -0.297
侧枝长
LBL (cm)
16BD 49.76 61.42 24.56 75.71 49.20 7.56 15.36 0.995 0.144 0.642
16HN 38.81 36.26 23.52 70.33 38.13 6.51 17.08 0.966*** 0.689 2.532
17BD 40.36 46.26 19.43 76.87 42.85 9.30 21.69 0.991 0.534 0.954
17HD 47.68 55.30 23.00 83.00 49.71 8.74 17.59 0.979** 0.409 0.576
18BD 41.00 76.71 14.27 87.81 39.25 10.13 25.80 0.996 0.462 1.660
18HD 49.76 61.38 25.52 79.31 49.52 9.01 18.19 0.988 0.316 0.623
18TS 51.53 61.67 24.05 90.00 44.83 8.29 18.50 0.955*** 0.813 2.377
株型指数
IOPT
16BD 1.02 2.76 0.95 2.75 1.39 0.27 19.67 0.932*** 1.174 1.470
16HN 1.01 2.21 1.05 3.27 1.73 0.38 21.80 0.958*** 0.892 1.533
17BD 1.05 2.23 0.76 2.86 1.37 0.34 24.63 0.93*** 1.197 1.632
17HD 1.03 2.29 1.01 3.02 1.51 0.39 25.96 0.879*** 1.479 2.665
18BD 1.07 3.79 0.68 3.45 1.46 0.40 27.27 0.933*** 1.297 2.645
18HD 1.05 2.76 1.02 3.51 1.48 0.39 26.41 0.829*** 1.961 5.759
18TS 1.15 2.42 1.06 2.57 1.34 0.29 21.41 0.917*** 0.654 3.582
扩展半径
ER (cm)
16BD 8.52 22.35 7.75 27.06 16.50 4.49 27.20 0.974*** 0.411 -0.747
16HN 16.13 31.57 8.05 33.08 18.52 5.80 31.34 0.965*** 0.593 -0.562
17BD 9.37 21.30 5.02 25.06 15.05 3.98 26.46 0.99 0.181 -0.517
17HD 10.29 19.39 6.51 33.05 15.89 5.32 33.47 0.971*** 0.52 -0.451
18BD 9.33 34.71 5.38 36.38 21.00 5.01 23.83 0.996 -0.035 0.345
18HD 8.67 21.17 5.01 30.02 15.11 5.16 34.15 0.978** 0.477 -0.283
18TS 9.50 24.13 5.71 34.05 15.07 5.49 36.44 0.961*** 0.742 0.357

Table 2

Pearson correlation coefficient of plant type related traits in cultivated peanut"

环境Env. 性状Trait 侧枝夹角LBA 主茎高MSH 侧枝长LBL 株型指数IOPT
16BD 主茎高MSH -0.323**
侧枝长LBL 0.323** 0.456**
株型指数IOPT 0.604** -0.631** 0.374**
扩展半径ER 0.820** -0.262** 0.450** 0.646**
16HN 主茎高MSH -0.127*
侧枝长LBL -0.009* 0.584**
株型指数IOPT 0.205** -0.706** 0.061*
扩展半径ER 0.761** 0.086* 0.223** 0.129*
17BD 主茎高MSH -0.278**
侧枝长LBL 0.429** 0.450**
株型指数IOPT 0.683** -0.539** 0.473**
扩展半径ER 0.736** -0.093* 0.589** 0.651**
17HD 主茎高MSH -0.372**
侧枝长LBL 0.333** 0.394**
株型指数IOPT 0.595** -0.687** 0.349**
扩展半径ER 0.820** -0.270** 0.496** 0.638**
18BD 主茎高MSH -0.118*
侧枝长LBL 0.557** 0.547**
株型指数IOPT 0.457** -0.506** 0.408**
扩展半径ER 0.815** 0.303** 0.748** 0.455**
18HD 主茎高MSH -0.184**
侧枝长LBL 0.458** 0.466**
株型指数IOPT 0.537** -0.666** 0.281**
扩展半径ER 0.897** -0.155** 0.546** 0.577**
18TS 主茎高MSH -0.117*
侧枝长LBL 0.380** 0.538**
株型指数IOPT 0.465** -0.532** 0.352**
扩展半径ER 0.878** -0.044 0.512** 0.518**

Table 3

Analysis of variance of each trait and generalized heritability of RIL population"

性状
Trait
变异来源
Variables
自由度
df
均方
MS
F
F-value
P
P-value
广义遗传力
h2B
侧枝夹角
LBA
基因型Genotype 320 616.890 14.658 <0.01 0.86
环境Environment 6 3124.760 74.247 <0.01
基因型×环境G×E 1877 42.086 1.036 >0.05
主茎高
MSH
基因型Genotype 320 240.144 11.943 <0.01 0.92
环境Environment 6 7341.320 365.118 <0.01
基因型×环境G×E 1877 20.107 1.723 <0.01
侧枝长
LBL
基因型Genotype 320 270.164 6.924 <0.01 0.90
环境Environment 6 7396.938 189.580 <0.01
基因型×环境G×E 1779 39.017 1.836 <0.01
株型指数
IOPT
基因型Genotype 320 0.466 7.433 <0.01 0.91
环境Environment 6 4.097 65.320 <0.01
基因型×环境G×E 1779 0.063 1.896 <0.01
扩展半径
ER
基因型Genotype 320 121.227 12.600 <0.01 0.89
环境Environment 6 1599.042 166.201 <0.01
基因型×环境G×E 1881 9.621 2.265 <0.01

Fig. 2

Genetic linkage map of cultivated peanut"

Table 4

QTL Mapping results of plant type related traits"

性状
Trait
QTL 环境
Env.
染色体
Chr.
位置
Position
标记区间
Marker interval
LOD 贡献率
PVE (%)
加性效应
Additive
侧枝夹角
LBA
qLBAA05.1 16BD A05 6.00 me14em5-116—PM418 7.44 11.22 -3.9527
17BD A05 6.00 me14em5-116—PM418 6.99 10.59 -4.2307
18HD A05 6.00 me14em5-116—PM418 6.37 8.17 -3.2618
qLBAA05.2 16HN A05 5.00 me14em5-116—PM418 5.37 8.62 -3.6198
17HD A05 5.00 me14em5-116—PM418 7.22 10.23 -4.8094
qLBAA09.1 18BD A09 20.98 GM66—GM1076 3.13 4.34 -2.0477
qLBAA09.2 16HN A09 24.98 RN27A10—AHTE0122 2.91 3.48 -2.3139
qLBAB09.1 18HD B09 50.00 me5em5-100—me13em8-142 2.89 4.51 2.4198
主茎高
MSH
qMSHA04.1 17BD A04 21.00 GM1867—AHGS1967 4.94 6.23 1.9109
qMSHA04.2 18BD A04 22.00 GM1867—AHGS1967 7.49 10.05 2.7157
qMSHA04.3 18HD A04 23.00 GM1867—AHGS1967 3.55 5.22 1.9577
qMSHA04.4 16BD A04 24.00 GM1867—AHGS1967 3.11 3.58 1.6317
qMSHA04.5 16HN A04 26.00 GM1867—AHGS1967 3.99 5.24 1.4725
qMSHA04.6 17HD A04 28.00 GM1867—AHGS1967 6.54 6.34 2.4193
qMSHA05.1 16BD A05 4.00 me14em5-116 - PM418 4.54 6.43 2.1285
qMSHA05.2 17HD A05 5.00 me14em5-116—PM418 4.73 5.26 2.1268
qMSHA06.1 16HN A06 36.41 TC7C06—AHTE0372 4.54 4.90 1.3824
17BD A06 36.41 TC7C06—AHTE0372 3.46 4.23 1.5366
qMSHA06.2 18BD A06 46.21 TC7C06—AHTE0372 3.21 3.67 1.5995
qMSHA08.1 17BD A08 30.00 Ah4-4—TC9B08 3.58 4.62 -1.6048
qMSHA08.2 18BD A08 35.00 TC9B08—AHGS1947b 3.36 4.47 -1.7650
qMSHB02.1 17HD B02 25.00 AHTE0398—CTW_NEW_38 4.00 4.48 -1.9683
qMSHB02.2 18HD B02 29.00 AHTE0398—CTW_NEW_38 2.96 3.74 -1.6183
qMSHB09.1 16HN B09 22.00 AHGS1576—me11em4-144 7.92 9.44 -1.9154
侧枝长
LBL
qLBLA08.1 18BD A08 8.40 HBAUAh177—AhTE0658 4.86 6.03 -3.2587
qLBLA08.2 17BD A08 9.12 HBAUAh177—AhTE0658 5.27 7.53 -2.5945
18HD A08 9.12 HBAUAh177—AhTE0658 6.13 8.56 -2.6868
株型指数
IOPT
qIOPTA05.1 16BD A05 4.00 me14em5-116—PM418 10.15 15.08 -0.1151
17HD A05 4.00 me14em5-116—PM418 5.18 9.35 -0.1308
qIOPTA05.2 18TS A05 5.00 me14em5-116—PM418 3.84 5.85 -0.0757
qIOPTA05.3 17BD A05 6.00 me14em5-116—PM418 6.25 8.58 -0.1006
18BD A05 6.00 me14em5-116—PM418 3.23 4.68 -0.1121
qIOPTA05.4 18HD A05 7.00 PM418—pPGSSeq11E11 4.48 6.47 -0.1012
扩展半径
ER
qERA05.1 16BD A05 5.00 me14em5-116—PM418 6.63 9.33 -1.5728
16HN A05 5.00 me14em5-116—PM418 5.03 7.41 -1.7923
17BD A05 5.00 me14em5-116—PM418 3.16 3.86 -0.9281
17HD A05 5.00 me14em5-116—PM418 6.15 8.55 -1.8270
18HD A05 5.00 me14em5-116—PM418 5.14 7.38 -1.5946
qERA05.2 18TS A05 6.00 me14em5-116—PM418 3.96 5.92 -1.3923
qERA08.1 17BD A08 7.69 HBAUAh177—AhTE0658 3.01 3.30 -0.8612
qERA08.2 18BD A08 8.40 HBAUAh177—AhTE0658 5.18 5.53 -1.3478

Table 5

QTL analysis results of different characters in the same marker interval"

染色体
Chr.
标记区间
Marker interval
QTL LOD 贡献率
PVE (%)
A04 GM1867-A04—AHGS1967-A04 qMSHA04.1 qMSHA04.2 qMSHA04.3 qMSHA04.4 3.11—7.49 3.25—10.05
qMSHA04.5 qMSHA04.6
A05 me14em5-116—PM418-A05 qLBAA05.1 qLBAA05.2 qMSHA05.1 qMSHA05.2 3.16—10.15 3.86—15.08
qIOPTA05.1 qIOPTA05.2 qIOPTA05.3 qERA05.1
qERA05.2
A08 HBAUAh177—AhTE0658-A08 qLBLA08.1 qLBLA08.2 qERA08.1 qERA08.2 3.01—6.13 3.30—8.56

Table 6

Epistatic QTL mapping for plant type related traits"

性状
Trait
上位性QTL
Epi-QTL
环境
Env.
染色体
Chr.
位置
Position
标记区间
Marker interval
染色体
Chr.
位置
Position
标记区间
Marker interval
LOD
贡献率
PVE (%)
侧枝长
LBL
Epi-qLBLA04.1 18BD A04 15.000 ARS772—GM1867 A04 20.000 GM1867—AHGS1967 13.760 2.420
Epi-qLBLA02.1 18BD A02 35.000 AHGS1163—AHGS1886 A02 40.000 AHGS1886—AHGS1159 9.620 2.230
Epi-qLBLA05.1 18BD A05 35.000 AhTE0588—T5me8-66 A05 40.000 T5me8-66—T2me4-75 10.420 2.250
Epi-qLBLA03.1 18BD A03 25.000 GM1883—AhTE0570 A03 30.000 AhTE0570—TC4G02 11.900 2.280
Epi-qLBLB03.1 18BD B03 7.165 AHBGSC1003E10—GM1996 B03 8.609 AHBGSC1003E10—GM1996 9.750 2.230
Epi-qLBLA08.1 18BD A08 6.255 HBAUAh177—AhTE0658 A08 10.000 AhTE0658—TC6H03 7.810 2.780
株型
指数
IOPT
Epi-qIOPTB04.1 16BD B04 64.814 me2em16-141—me9em4-125 B04 69.814 me2em16-141—me9em4-125 8.920 1.360
Epi-qIOPTB07.1 16BD B07 5.000 TC1A08—TC9H09 B07 10.000 TC1A08—TC9H09 7.280 1.200
Epi-qIOPTA02.4 16BD A02 45.000 AHGS1886—AHGS1159 A02 50.000 AHGS1886—AHGS1159 8.510 1.420
Epi-qIOPTA03.4 16BD A03 40.000 AhTE0570—TC4G02 A03 45.000 AhTE0570—TC4G02 8.530 1.160
Epi-qIOPTB03.1 16BD B03 7.165 AHBGSC1003E10—GM1996 B03 17.351 GM1996—seq2H08 8.760 1.440
Epi-qIOPTA10.2 16BD A10 20.000 AhTE0586—AHGS1192 A10 25.000 AHGS1192—seq3e10 5.500 0.850
Epi-qIOPTA04.5 17BD A04 50.000 GM1135—pPGSseq15C12a A04 55.000 GM1135—pPGSseq15C12a 8.300 0.800
Epi-qIOPTB07.3 17BD B07 10.000 TC1A08—TC9H09 B07 15.000 TC1A08—TC9H09 9.440 0.860
Epi-qIOPTA02.3 17BD A02 40.000 AHGS1886—AHGS1159 A02 45.000 AHGS1886—AHGS1159 8.670 0.850
Epi-qIOPTA08.1 17BD A08 10.827 me3em14-196—Ah4-4 A08 15.544 me3em14-196—Ah4-4 8.720 0.920
Epi-qIOPTA05.1 17BD A05 5.000 me7em9-96—me13em5-112 A05 10.000 me7em9-96—me13em5-112 6.020 0.810
Epi-qIOPTA03.1 17BD A03 25.000 GM1883—AhTE0570 A03 35.000 AhTE0570—TC4G02 7.840 0.720
Epi-qIOPTA06.1 17BD A06 10.164 me4em15-95—me7em1-83 A06 15.078 me4em15-95—me7em1-83 7.270 0.830
Epi-qIOPTB03.2 17BD B03 7.165 AHBGSC1003E10—GM1996 B03 17.351 GM1996—seq2H08 8.660 0.820
Epi-qIOPTA10.3 17BD A10 20.000 AhTE0586—AHGS1192 A10 25.000 AHGS1192—seq3e10 7.930 0.780
性状
Trait
上位性QTL
Epi-QTL
环境
Env.
染色体
Chr.
位置
Position
标记区间
Marker interval
染色体
Chr.
位置
Position
标记区间
Marker interval
LOD
贡献率
PVE (%)
Epi-qIOPTB07.6 17HD B09 10.000 T3me2-388—AHGS1576 B09 15.000 T3me2-388—AHGS1576 10.480 1.360
Epi-qIOPTA04.4 17HD A04 40.000 AHGS1967—GM1135 A04 50.000 GM1135—pPGSseq15C12a 11.580 1.280
Epi-qIOPTB07.4 17HD B07 10.000 TC1A08—TC9H09 B07 15.000 TC1A08—TC9H09 10.810 1.330
Epi-qIOPTA02.5 17HD A02 50.000 AHGS1886—AHGS1159 A02 55.000 AHGS1886—AHGS1159 10.100 1.410
Epi-qIOPTA05.2 17HD A05 5.000 me14em5-116—PM418 A05 10.000 PM418—seq11E11 9.100 1.380
Epi-qIOPTA08.4 17HD A08 15.543 me3em14-196—Ah4-4 A08 20.260 me3em14-196—Ah4-4 11.350 1.360
Epi-qIOPTA05.3 17HD A05 5.000 me7em9-96—me13em5-112 A05 10.000 me7em9-96—me13em5-112 11.390 1.300
Epi-qIOPTB07.5 17HD B08 20.000 me4em5-88—AI119H15 B08 25.000 me4em5-88—AI119H15 8.550 1.230
Epi-qIOPTA03.2 17HD A03 30.000 AhTE0570—TC4G02 A03 35.000 AhTE0570—TC4G02 11.840 1.280
Epi-qIOPTB03.3 17HD B03 7.165 AHBGSC1003E10—GM1996 B03 8.609 AHBGSC1003E10—GM1996 14.290 1.430
Epi-qIOPTA08.2 17HD A08 15.000 AhTE0658—TC6H03 A08 20.000 TC6H03—AhTE0477 5.460 1.000
Epi-qIOPTA04.2 17HD A04 25.000 GM1867—AHGS1967 A08 25.000 TC6H03—AhTE0477 5.640 0.480
Epi-qIOPTA10.4 17HD A10 20.000 AhTE0586—AHGS1192 A10 25.000 AHGS1192—seq3e10 11.310 1.200
Epi-qIOPTA04.3 18BD A04 25.000 GM1867—AHGS1967 A04 30.000 GM1867—AHGS1967 27.990 0.900
Epi-qIOPTA02.1 18BD A02 20.000 Ah3TC13E05—AHGS1463 A02 25.000 AHGS1463—AHGS1163 25.850 0.760
Epi-qIOPTA05.5 18BD A05 25.000 seq11E11—AhTE0588 A05 30.000 AhTE0588—T5me8-66 25.060 0.770
Epi-qIOPTA03.5 18BD A03 40.000 AhTE0570—TC4G02 A03 45.000 AhTE0570—TC4G02 25.170 1.230
Epi-qIOPTA06.2 18BD A06 15.078 me4em15-95—me7em1-83 A06 20.000 me7em1-83—me8em16-92 25.390 0.780
Epi-qIOPTB03.5 18BD B03 31.542 seq2H08—GM1954 B03 31.236 GM1954—IPAHM103 24.970 0.770
Epi-qIOPTA10.1 18BD A10 15.000 AhTE0586—AHGS1192 A10 20.000 AhTE0586—AHGS1192 21.990 0.770
Epi-qIOPTB07.7 18HD B09 15.000 T3me2-388—AHGS1576 B09 20.000 T3me2-388—AHGS1576 13.540 0.870
Epi-qIOPTA04.6 18HD A04 70.000 pPGSseq15C12a—me7em17-133 A04 75.000 pPGSseq15C12a—me7em17-133 18.600 0.850
Epi-qIOPTB07.2 18HD B07 5.000 TC1A08—TC9H09 B07 10.000 TC1A08—TC9H09 13.000 0.890
Epi-qIOPTA02.2 18HD A02 35.000 AHGS1163—AHGS1886 A02 45.000 AHGS1886—AHGS1159 14.530 0.850
Epi-qIOPTA05.6 18HD A05 50.000 T2me4-75—seq18C2 A05 55.000 T2me4-75—seq18C2 16.160 0.950
Epi-qIOPTA08.5 18HD A08 20.260 me3em14-196—Ah4-4 A08 30.000 Ah4-4—TC9B08 12.330 0.830
Epi-qIOPTA05.4 18HD A05 15.000 me7em9-96—me13em5-112 A05 20.000 me7em9-96—me13em5-112 15.600 1.120
Epi-qIOPTA03.6 18HD A03 45.000 AhTE0570—TC4G02 A03 50.000 TC4G02—IPAHM93 15.850 0.840
Epi-qIOPTA06.3 18HD A06 35.000 me7em1-83—me8em16-92 A06 40.000 me8em16-92—AHGS1337 15.200 0.840
Epi-qIOPTB03.4 18HD B03 31.236 GM1954—IPAHM103 B03 45.139 GM1954—IPAHM103 19.630 0.840
Epi-qIOPTA08.3 18HD A08 15.000 AhTE0658—TC6H03 A08 20.000 TC6H03—AhTE0477 17.200 0.830
Epi-qIOPTA10.5 18HD A10 20.000 AhTE0586—AHGS1192 A10 25.000 AHGS1192—seq3e10 19.290 0.830
Epi-qIOPTA04.1 18TS A04 5.000 ARS772—GM1867 A04 10.000 ARS772—GM1867 5.060 0.260
Epi-qIOPTA08.6 18TS A08 20.260 me3em14-196—Ah4-4 A08 25.000 Ah4-4—TC9B08 5.410 0.260
Epi-qIOPTA03.3 18TS A03 30.000 AhTE0570—TC4G02 A03 35.000 AhTE0570—TC4G02 6.150 0.250
扩展
半径
ER
Epi-qERA09.1 17BD A09 25.976 AHTE0122—HBAUAh098 A08 10.827 me3em14-196—Ah4-4 5.830 12.110
Epi-qERB04.2 18HD B04 64.814 me2em16-141—me9em4-125 B08 5.000 AHGS1286—TC20B05 5.880 12.250
Epi-qERB04.1 18TS B04 24.814 AHTE0445—PM36 B04 29.814 PM36—PMc348 6.590 7.280
[1] 张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究[D]. 杭州: 浙江大学, 2011.
ZHANG X Y. Inheritance of main traits related to yield, quality and disease resistance and their QTLs mapping in peanut (Arachis hypogaea L.)[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[2] HAKE A A, KENTA S, ARATI Y, SUKRUTH M, MALAGOUDA P, NAYAK S N, LINGARAJU S, PATIL P V, NADAF H L, GOWDA M V C, BHAT R S. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE, 2017,12(10):e0186113.
doi: 10.1371/journal.pone.0186113 pmid: 29040293
[3] LI Y J, LI L Z, ZHANG X R, ZHANG K, MA D C, LIU J Q, WANG X J, LIU F Z. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017,213(2):57.
doi: 10.1007/s10681-017-1847-y
[4] LÜ J W, LIU N, GUO J B, XU Z J, LI X P, LI Z D, LUO H Y, REN X P, HUANG L, ZHOU X J, CHEN Y N, CHEN W G, LEI Y, TU J X, JIANG H F, LIAO B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Frontiers in Plant Science, 2018,9:684.
doi: 10.3389/fpls.2018.00684 pmid: 29887872
[5] Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing, and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Frontiers in Plant Science, 2018,9:827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635
[6] 姜慧芳. 花生种质资源描述规范和数据标准3-9. 北京: 中国农业出版社, 2006.
JIANG H F. Specification for Description and Data of Peanut Germplasm Resources 3-9. Beijing: China Agriculture Press, 2006. (in Chinese)
[7] KAYAM G, BRAND Y, FAIGENBOIM D A, PATIL A, HEDVAT I, HOVAV R. Fine-mapping the branching habit trait in cultivated peanut by combining bulked segregant analysis and high-throughput sequencing. Frontiers in Plant Science, 2017,8(467):1-11.
[8] 曹敏建, 王晓光, 于海秋. 花生:历史·栽培·育种·加工. 沈阳: 辽宁科学技术出版社, 2013.
CAO M J, WANG X G, YU H Q. Peanut: History・Growth・Breeding・Process. Shenyang: Liaoning Science and Techinology Publishing House, 2013. (in Chinese)
[9] 蓝新隆, 唐兆秀, 徐日荣. 福建花生产量与主要农艺性状之间的灰色关联度分析. 江西农业学报, 2011,23(8):61-63.
LAN X L, TANG Z X, XU R R. Analysis of gray correlation between yield and major agronomic traits of peanut in Fujian province. Acta Agriculturae Jiangxi, 2011,23(8):61-63. (in Chinese)
[10] FONCEKA D, TOSSIM H A, RIVALLAN R, VIGNES H, LACUT E, BELLIS F, FAYE I, NDOYE O, SORAYA C M L B, JOSE ́F M V, DAVID J B, GLASZMANN J C, COURTOIS B, RAMI J F. Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS ONE, 2012,7(11):e48642.
doi: 10.1371/journal.pone.0051130 pmid: 23226478
[11] SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C, NAITO Y, KUBOYAMA T, NAKAYA A, SASAMOTO S, WATANABE A, KATO M, KAWASHIMA K, KISHIDA Y, KOHARA M, KURABAYASHI A, CHIKA T, TSURUOKA H, WADA T, ISOBE S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012,12:80.
doi: 10.1186/1471-2229-12-80 pmid: 22672714
[12] HUANG L, HE H, CHEN W G, REN X P, CHEN Y N, ZHOU X J, XIA Y L, WANG X L, JIANG X J, LIAO B S, JIANG H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2015,128(6):1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315
[13] LI L, YANG X L, CUI S L, MENG X H, MU G J, HOU M Y, HE M J, ZHANG H, LIU L F, CHEN C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Frontiers in Plant Science, 2019,10:745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472
[14] 王亮, 杨鑫雷, GETAHUN Addisu, 崔顺立, 穆国俊, 刘立峰, 李自超. 栽培种花生AFLP标记体系的优化及多态性引物筛选. 核农学报, 2017,31(11):2087-2095.
WANG L, YANG X L, GETAHUN A, CUI S L, MU G J, LIU L F, LI Z C. Screening for polymorphic primer pairs and optimization of AFLP marker system in peanut. Journal of Nuclear Agricultural Sciences, 2017,31(11):2087-2095. (in Chinese)
[15] LIN Z X, HE D H, ZHANG X L, NIE Y C, GUO X P, FENG C D, STEWART J M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding, 2008,124(2):180-187.
doi: 10.1111/pbr.2005.124.issue-2
[16] YU J W, YU S X, LU C R, WANG W, FAN S L, SONG M Z, LIN Z X, ZHANG X L, ZHANG J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. Journal of Integrative Plant Biology, 2007,49(5):716-724.
doi: 10.1111/j.1744-7909.2007.00459.x
[17] 崔顺立, 刘立峰, 陈焕英, 耿立格, 孟成生, 杨余. 河北省花生地方品种基于SSR标记的遗传多样性. 中国农业科学, 2009,42(9):3346-3353.
CUI S L, LIU L F, CHEN H Y, GENG L G, MENG C S, YANG Y. Genetic diversity of peanut landraces in Hebei province revealed by SSR markers. Scientia Agricultura Sinica, 2009,42(9):3346-3353. (in Chinese)
[18] JoinMap 4.0 Software for the calculation of genetic linkage maps in experimental populations. Wageningen: Kyazma B. V; 2006.
[19] KOSAMBI D D. The estimation of map distances from recombination values. Annals of Human Genetics, 2011; 1:172-175.
[20] VOORRIPS R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002; 1:77-78.
[21] MENG L, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015,3(3):269-283.
doi: 10.1016/j.cj.2015.01.001
[22] 吕维娜. 花生栽培种SSR遗传连锁图谱构建及重要产量性状QTL定位分析[D]. 郑州: 郑州大学, 2014.
LÜ W N. Contruction of genetic linkage map based on SSR markers and QTLs identification for major yield traits in the cultivated peanut (Arachis hypogaea L.)[D]. Zhengzhou: Zhengzhou University, 2014. (in Chinese)
[23] HAKE A A, SHIRASAWA K, YADAWAD A, SUKRUTH M, PATIL M, NAYAK S N. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE, 2017,12:e0186113.
doi: 10.1371/journal.pone.0186113 pmid: 29040293
[24] LI Y, LI L, ZHANG X, ZHANG K, MA D, LIU J. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017,213:57.
doi: 10.1007/s10681-017-1847-y
[25] DONALD C M. The breeding of crop ideotypes. Euphytica, 1968,17:385-403.
doi: 10.1007/BF00056241
[26] 成良强, 唐梅, 任小平, 黄莉, 陈伟刚, 李振动, 周小静, 陈玉宁, 廖伯寿, 姜慧芳. 栽培种花生遗传图谱的构建及主茎高和总分枝数QTL分析. 作物学报, 2015,41(6):979-987.
doi: 10.3724/SP.J.1006.2015.00979
CHENG L Q, TANG M, REN X P, HUANG L, CHEN W G, LI Z D, ZHOU X J, CHEN Y N, LIAO B S, JIANG H F. Construction of genetic map and QTL analysis for mainstem height and total branch number in peanut (Arachis hypogaea L.). Acta Agronomica Sinica, 2015,41(6):979-987. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00979
[27] HUANG L, REN X P, WU B, LI X P, CHEN W G, ZHOU X J, CHEN Y N, PANDEY M K, JIAO Y Q, LUO H Y, LEI Y, VARSHNEY R K, GUO B Z, JIANG H F. Development and deployment of a high- density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Scientific Reports, 2016,6:39478.
doi: 10.1038/srep39478 pmid: 27995991
[28] ZHOU X J, XIA Y L, LIAO J H, LIU K D, LI Q, DONG Y, REN X P, CHEN Y N, HUANG L, LIAO B S, LEI Y, YAN L Y, JIANG H F. Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments. PLoS ONE, 2016,11(11):e0166873.
doi: 10.1371/journal.pone.0166873 pmid: 27870916
[29] UPADHYAYA H D, NIGAM S N. Detection of epistasis for protein and oil contents and oil quality parameters in peanut. Crop Science, 1999,39(1):115-118.
doi: 10.2135/cropsci1999.0011183X003900010018x
[30] UPADHYAYA H D, NIGAM S N. Epistasis for vegetative and reproductive traits in peanut. Crop Science, 1998,38(1):44-49.
doi: 10.2135/cropsci1998.0011183X003800010008x
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[7] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[8] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[14] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[15] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!