Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3712-3725.doi: 10.3864/j.issn.0578-1752.2021.17.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation

XUE HuaLong1(),LOU MengYu1,LI Xue1,WANG Fei1,GUO BinBin1,GUO DaYong1,LI HaiGang2,JIAO NianYuan1()   

  1. 1College of Agriculture, Henan University of Science and Technology/Henan Dry Land Agricultural Engineering Technology Research Center, Luoyang 471023, Henan
    2College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhhot 845350
  • Received:2020-07-06 Accepted:2021-03-03 Online:2021-09-01 Published:2021-09-09
  • Contact: NianYuan JIAO E-mail:m17772158221@163.com;jiaony1@163.com

Abstract:

【Objective】 In order to explore the reasonable system of crops for rotation with wheat and its phosphorus (P) fertilizer management technology, the effects of P application levels on growth and yield of wheat under different crops for rotation were studied. 【Method】 From 2018 to 2019 and 2019 to 2020, the winter wheat was planted under different crops for rotation of peanut (PCR), maize (MCR) and peanut intercropping maize (ICR), with different P application levels, including P0 (0 kg P2O5·hm-2), P90 (90 kg P2O5·hm-2), P180 (180 kg P2O5·hm-2) and P270 (270 kg P2O5·hm-2). Effects of P levels on tiller and effective spike rate, grain filling rate, dry matter accumulation and distribution ratio, and yield components of winter wheat were investigated. 【Result】 (1) Under the same crops for rotation, the maximum number of tillers per unit area, the number of effective tillers, dry matter accumulation and dry weight per spike of winter wheat were P270>P180>P90>P0 treatment with the increase of P application rate. But the grain number per spike, the distribution rate of dry matter to grain and yield of winter wheat increased at first and then decreased, and reached the maximum under P level of P180. (2) Under different crops for rotation, the maximum number of tillers and effective tillers per unit area of winter wheat were PCR>ICR>MCR under different P levels. The dry matter weight and yield of winter wheat under PCR were higher than those under ICR and MCR with P0 and P90 levels, but ICR under P180 and P270 levels, the dry matter quality and yield of winter wheat were higher than those under PCR and MCR. (3) According to the fitting curve of P application and yield, the highest yield of winter wheat was 10 493.6 kg·hm-2, and the optimal economic yield of P level was 177.0 kg·hm-2 under PCR. The highest yield of winter wheat was 10 749.8 kg·hm-2, while the optimal economic yield of P level was 178.9 kg·hm-2under ICR. The highest yield of winter wheat was 9 936.2 kg·hm-2, and the optimal economic yield of P level was 189.3 kg·hm-2under MCR. 【Conclusion】 The number of effective tillers, dry matter accumulation and transferring, grain filling and yield formation of winter wheat under crops for rotation of peanut or crops for rotation of maize intercropping peanut were better than those of under crops for rotation of maize. Compared with crops for rotation of maize, the yield potential of winter wheat in crops for rotation of peanut or maize intercropping peanut was higher, and the application amount of phosphorus in the optimal economic yield was lower, which was 177.0-178.9 kg·hm-2.

Key words: crops for rotation, P levels, rate of effective tillers, grouting, dry matter accumulation, yield, wheat, peanut, maize

Table 1

Effects of P levels on tillering and percentage of available tiller in winter wheat under different crops for rotation"

年份
Year
磷水平
P level
最大分蘖数
Maximum tiller (×104·hm-2)
有效分蘖数
Available tiller (×104·hm-2)
分蘖成穗率
Percentage of available tillers (%)
PCR MCR ICR PCR MCR ICR PCR MCR ICR
2018-2019 P0 511.11h 422.22 494.44h 305.56f 261.1f 288.89f 59.14a 61.08a 59.82a
P90 1533.33e 1383.33g 1466.67f 522.22e 494.44e 511.11e 34.05c 35.74c 34.84c
P180 1861.11b 1666.67d 1800.01bc 738.89bc 666.67d 722.22c 39.73b 40.03b 40.12b
P270 1988.89a 1797.78c 1927.78a 788.89a 716.67c 772.22ab 39.66b 39.84b 40.06b
2019-2020 P0 478.33g 390.00h 441.67g 333.33f 273.33g 313.33f 69.68a 70.08a 70.94a
P90 1688.33d 1475.00f 1570.00e 640.67d 533.33e 600.00d 37.93c 36.16c 38.22c
P180 1856.67bc 1684.17d 1796.67c 793.33b 720.00c 780.00b 42.73b 42.75b 43.41b
P270 2031.67a 1898.33b 2023.33a 858.33a 793.33b 856.67a 42.24b 41.79b 42.32b

Fig. 1

Effects of P levels on dry matter accumulation of winter wheat under different crops for rotation TS: Tillering stage; JS: Jionting stage; AS: Anthesis stage; FS: Filling stage; MS: Maturity stage. The same as below"

Table 2

Effects of P level on dry matter distribution of winter wheat under different crops for rotation"

年份
Year
磷水平
P level
茬口
Crops for rotation
分配量Allocation (g·m-2) 分配比率Distribution rate (%)

Stem

Leaf
颖壳及穗轴
Glume and rachis
籽粒
Grain

Stem

Leaf
颖壳及穗轴
Glume and rachis
籽粒
Grain
2018-2019 P0 PCR 253.9g 79.8e 130.7e 301.6f 33.1d 10.4h 17.1a 39.4g
MCR 199.8h 66.7e 86.1f 256.4g 32.8e 11.0g 14.1c 42.1d
ICR 229.4gh 76.1e 119.1ef 305.1f 31.4h 10.4h 16.3b 41.8d
P90 PCR 714.57f 260.4d 252.8c 965.6d 32.6e 11.9cd 11.5f 44.0b
MCR 686.8f 240.1d 245.1c 880.9e 33.5c 11.7ef 11.9e 42.9c
ICR 728.5f 260.4d 263.8c 935.8d 33.4c 11.6f 12.1e 42.9c
P180 PCR 903.1d 333.7c 331.7ab 1238.6b 32.2f 11.9cd 11.8ef 44.1b
MCR 842.6e 322.0c 313.7b 1164.5c 31.9g 12.2b 11.9e 44.1b
ICR 952.8c 356.6b 360.2a 1341.8a 31.6h 11.8de 12.0e 44.6a
P270 PCR 1006.1b 362.1b 354.4ab 1229.2b 33.3cd 12.0c 14.0c 40.7e
MCR 985.8bc 357.6b 370.2a 1124.8c 34.3a 12.4a 14.2c 39.1g
ICR 1060.9a 387.2a 363.9a 1260.9b 33.9b 12.4a 13.6d 40.2f
2019-2020 P0 PCR 350.3g 93.7h 188.6d 367.2g 35.1a 9.4g 18.9a 36.7h
MCR 173.0h 56.0h 87.1f 192.7h 34.0bc 11.0f 17.1b 37.9g
ICR 326.0g 100.7h 143.8e 363.6g 34.9ab 10.8f 15.4c 38.9ef
P90 PCR 878.0de 399.0ef 326.1b 1097.9d 32.2de 14.6cd 12.2g 41.0c
MCR 782.3f 288.0g 277.3c 958.3f 33.9c 12.5e 12.0g 41.6b
ICR 810.7ef 374.7f 338.9b 1016.8e 31.9de 14.7bc 13.3ef 40.0d
P180 PCR 902.3d 431.3cd 388.9a 1274.4b 30.1g 14.4cd 13.0f 42.5a
MCR 877.0de 412.0de 339.8b 1164.7c 31.4ef 14.7bc 12.2g 41.7b
ICR 970.7ab 444.0c 390.2a 1356.1a 30.7fg 14.0d 12.3g 42.9a
P270 PCR 1011.0ab 473.3ab 428.9a 1196.6c 32.5d 15.2b 13.8de 38.5f
MCR 941.0cd 458.0bc 404.7a 1085.6d 32.6d 15.9a 14.0d 37.6g
ICR 1040.3a 488.7a 430.9a 1271.2b 32.2de 15.1b 13.3ef 39.3e

Table 3

Effects of P levels on the transfer of dry matter before winter wheat flower under different crops for rotation"

年份
Year
磷水平
P level
茬口
Crops for rotation
干物质转移量
Dry matter transfer (g·m-2)
干物质转移率
Dry matter transfer ratio (%)
对籽粒贡献率
Contribution rate to grain (%)
茎 Stem 叶 Leaf 茎 Stem 叶 Leaf 茎 Stem 叶 Leaf
2018-2019 P0 PCR 101.2h 72.1g 28.9b 47.8a 33.6b 23.9b
MCR 89.5 64.1g 30.9a 49.0a 34.9a 25.0a
ICR 97.7 71.6g 28.8b 48.4a 32.0c 23.5b
P90 PCR 268.9a 133.4a 27.2cd 34.8b 29.4d 14.5c
MCR 263.4b 127.6b 27.7c 35.6b 29.9d 14.4c
ICR 259.2c 135.6a 26.2d 33.7c 28.6e 14.9c
P180 PCR 216.0e 115.2d 19.3e 25.6d 19.4f 10.3d
MCR 199.2f 100.2f 19.1e 22.7e 19.8f 9.9d
ICR 226.3d 119.0c 19.8e 26.3d 19.2f 10.1d
P270 PCR 130.2g 108.1e 11.4f 22.9f 12.5g 10.4d
MCR 102.3h 98.4f 9.4g 21.5f 10.3h 9.9d
ICR 132.5g 106.5e 11.1f 21.5f 12.4g 10.0d
2019-2020 P0 PCR 121.4e 96.8h 26.8b 48.8a 33.0b 26.4b
MCR 75.6f 58.6 30.4a 44.8b 35.6a 27.6a
ICR 120.9e 92.1 27.1b 44.7b 33.2b 25.3c
P90 PCR 261.4a 145.a 24.5c 30.0c 25.6d 14.2e
MCR 245.7a 134.1c 24.6c 30.9c 27.9c 15.2d
ICR 247.2a 139.3b 23.8c 28.2d 24.8d 13.9e
P180 PCR 222.6b 125.6e 19.8de 25.7e 19.2f 10.9fg
MCR 199.9c 117.5f 18.0e 23.7fg 18.4f 10.8fg
ICR 245.4a 131.1d 20.9d 24.4f 20.8e 11.2f
P270 PCR 174.9d 113.2g 14.5f 23.0g 15.9g 10.2g
MCR 168.5d 119.3f 15.1f 23.3g 15.5g 10.9fg
ICR 174.1d 114.1g 14.3f 20.0h 15.5g 10.2g

Table 4

Effects of P levels on yield and the components of winter wheat under different crops for rotation"

年份
Year
施磷水平
P level
茬口
Crops for rotation
穗数
Spikes (×104·hm-2)
穗粒数
Grains per spike
千粒重
The 1000-grain weight (g)
产量
Yield (kg·hm-2)
2018-2019 P0 PCR 252.5d 35.3c 47.7d 2912.2f
MCR 209.2e 27.2e 46.2e 2318.9g
ICR 236.7de 30.6d 47.5d 2628.0fg
P90 PCR 587.7c 38.7b 52.1a 8962.6d
MCR 576.7c 36.1c 52.1a 8330.8e
ICR 577.5c 38.7b 51.9a 8856.9d
P180 PCR 692.5a 42.5a 50.6b 10257.5b
MCR 641.7b 39.2b 50.4b 9663.3c
ICR 676.7a 42.4a 52.4a 10755.3a
P270 PCR 708.3a 38.9b 49.3c 9058.0d
MCR 689.2a 36.3bc 49.0c 8854.5d
ICR 697.5a 39.1b 49.1c 9243.1d
2019-2020 P0 PCR 340.2h 31.9f 44.3d 3449.5h
MCR 280.3h 26.9g 39.8f 2670.9i
ICR 320.3h 31.5f 43.0e 3392.2h
P90 PCR 706.7ef 34.0d 49.7a 8927.9e
MCR 553.3g 33.1e 49.7a 7947.2g
ICR 653.3f 33.8d 50.1a 8718.8f
P180 PCR 833.3bc 36.5b 48.8b 10104.5b
MCR 753.3de 35.3c 48.7b 9429.8c
ICR 880.0ab 37.2a 49.8a 10615.0a
P270 PCR 893.3ab 34.2d 47.2c 9549.9c
MCR 806.7cd 33.7d 46.8c 9155.2d
ICR 906.7a 34.9c 47.3c 10184.9b
磷水平 P levels 516.9** 56.0** 185.9** 2348.4**
茬口Crops for rotation 15.0** 11.3** 10.7** 46.0**
磷水平×茬口 P levels × Crops for rotation 0.5 2.0 5.3** 3.0*

Fig. 2

Effects of P levels on seed grouting after winter wheat flowering under different crops for rotation"

Table 5

Relationship between winter wheat yield and P levels at different crops for rotation"

茬口
Crops for rotation
产量与施磷量曲线方程
Equation of yield and phosphorus curve
最高产量
Maximum yield
(kg·hm-2)
最佳经济产量
Optimum economic yield
(kg·hm-2)
最高产量施磷量
Maximum yield phosphorus application (kg·hm-2)
最佳经济产量施磷量
Optimum economic yield of phosphorus application (kg·hm-2)
决定系数
Decision coefficient
PCR y=-0.2156x2+78.862x+3282.1 10493.6 10487.7 182.9 177.0 R²=0.9867
MCR y=-0.191x2+74.834x+2606.2 9936.2 9927.8 195.9 189.3 R²=0.9859
ICR y=-0.2269x2+83.709x+3029.2 10749.8 10742.7 184.5 178.9 R²=0.9902
[1] 张向前. 不同氮水平下玉米间作大豆和花生的效应研究[D]. 南京: 南京农业大学, 2013.
ZHANG X Q. A study on the effect of maize intercropped with soybean and peanut under different nitrogen fertilization levels[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[2] 赵思腾, 师尚礼, 李小龙, 李文, 张晓燕. 基于熵权-TOPSIS模型筛选陇中旱作区适宜玉米轮作的土壤可持续系统. 草地学报, 2019, 27(4): 997-1005.
ZHAO S T, SHI S L, LI X L, LI W, ZHANG X Y. Application of TOPSIS based on entropy weight to screen soil sustainable systems suitable for corn rotation in the arid region of central Gansu. Acta Agrestia Sinica, 2019, 27(4): 997-1005. (in Chinese)
[3] 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010, 43(6): 1136-1146.
WANG C T, LI S K. Assessment of limiting factors and techniques prioritization for maize production in China. Scientia Agricultura Sinica, 2010, 43(6): 1136-1146. (in Chinese)
[4] 邵云, 李昊烊, 翁正鹏, 王璐, 李斯斯, 刘晴. 不同茬口对小麦养分利用和产量的影响. 麦类作物学报, 2019, 39(3): 356-363.
SHAO Y, LI H Y, WENG Z P, WANG L, LI S S, LIU Q. Effects of different previous crops on nutrient utilization and yield of wheat. Journal of Triticeae Crops, 2019, 39(3): 356-363. (in Chinese)
[5] 章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20(7): 1597-1602.
ZHANG J E, GAO A X, XU H Q, LUO M Z. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. Chinese Journal of Applied Ecology, 2009, 20(7): 1597-1602. (in Chinese)
[6] 姜玉超. 玉米花生间作对土壤肥力特性的影响[D]. 洛阳: 河南科技大学, 2015.
JIANG Y C. Effects of maize-peanut intercropping on soil fertility characteristics[D]. Luoyang: Henan University of Science and Technology, 2015. (in Chinese)
[7] 王飞, 胡莎莎, 焦念元, 马超, 尹飞, 刘领. 玉米、花生及其间作茬口与施磷对冬小麦光合特性及产量的影响机制. 西北植物学报, 2019, 39(4): 702-711.
WANG F, HU S S, JIAO N Y, MA C, YIN F, LIU L. Effect of sole maize, sole peanut, and maize-peanut intercropping crops for rotation and phosphate fertilizer on the photosynthetic characteristics and yield of winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(4): 702-711. (in Chinese)
[8] 王飞, 尹飞, 龙浩强, 李雪, 武岩岩, 焦念元, 马超, 付国占. 玉米‖花生茬口对冬小麦旗叶光化学活性的影响. 草业学报, 2019, 28(7): 123-131.
WANG F, YIN F, LONG H Q, LI X E, WU Y Y, JIAO N Y, MA C, FU G Z. Photochemical activity in flag leaves of winter wheat when following maize, peanut, or a maize-peanut intercrop in a crop rotation. Acta Prataculturae Sinica, 2019, 28(7): 123-131. (in Chinese)
[9] 徐飞, 宋玉立, 周益林, 张昊, 王俊美, 李亚红, 韩自行. 2013—2016年河南省小麦茎基腐病的发生危害情况及特点. 植物保护, 2016, 42(6): 126-132.
XU F, SONG Y L, ZHOU Y L, ZHANG H, WANG J M, LI Y H, HAN Z H. Occurrence dynamics and characteristics of Fusariumroot and crown rot of wheat in Henan Province during 2013-2016. Plant Protection, 2016, 42(6): 126-132. (in Chinese)
[10] 杨文钰. 农学概论. 2版. 北京: 中国农业出版社, 2008.
YANG W Y. Overview of Agronomy. 2nd ed. Beijing: Chinese Agriculture Press, 2008. (in Chinese)
[11] 陈彦春, 卜婷, 赵遂生, 杨军杰, 董昆乐, 王惠. 作物茬口对土壤酶活性及烟叶化学成分的影响. 湖北农业科学, 2018, 57(4): 47-50.
CHEN Y C, BU T, ZHAO S S, YANG J J, DONG K L, WANG H. Effects of crop stubble on soil enzyme activity and chemical composition of tobacco leaf. Hubei Agricultural Sciences, 2018, 57(4): 47-50. (in Chinese)
[12] 董云, 张立峰, 刘玉华, 姚兆磊. 冀西北半干旱区作物与茬口的土壤水分效应. 河北农业大学学报, 2018, 41(2): 28-35.
DONG Y, ZHANG L F, LIU Y H, YAO Z L. Effect of different crops and their fields on soil moisture in semiarid area of Northwest Hebei. Journal of Hebei Agricultural University, 2018, 41(2): 28-35. (in Chinese)
[13] 崔欢虎, 王娟玲, 马步州, 王裕智, 靖华, 逯腊虎. 晋南土壤质地、耕作方式及茬口对小麦播前土壤贮水量的影响. 水土保持学报, 2007, 21(1): 116-118, 139.
CUI H H, WANG J L, MA B Z, WANG Y Z, JING H, LU L H. Influence of soil texture, tillage practices and stubble on water storage content before wheat sowing in south of Shanxi Province. Journal of Soil and Water Conservation, 2007, 21(1): 116-118, 139. (in Chinese)
[14] 车荣晓, 邓永翠, 吴伊波, 张静, 王芳, 唐立, 李林峰, 马双, 刘瀚科, 赵星, 王艳芬, 郝彦宾, 崔骁勇. 生物固氮与有效氮的关系: 从分子到群落. 生态学杂志, 2017, 36(1): 224-232.
CHE R X, DENG Y C, WU Y B, ZHANG J, WANG F, TANG L, LI L F, MA S, LIU H K, ZHAO X, WANG Y F, HAO Y B, CUI X Y. Relationships between biological nitrogen fixation and available nitrogen at scales from molecular to community level. Chinese Journal of Ecology, 2017, 36(1): 224-232. (in Chinese)
[15] 许建晶, 罗珠珠, 陈英. 坡耕地土壤微生物功能多样性对间作体系的响应. 草业科学, 2019, 36(2): 314-323.
XU J J, LUO Z Z, CHEN Y. Response of soil microbial functional diversity to an intercropping system on slope land in the Loess Plateau. Pratacultural Science, 2019, 36(2): 314-323. (in Chinese)
[16] 梁伟, 郭凤霞, 陈垣, 白刚, 袁洪超, 金彦博. 高寒区农茬口对当归田杂草群落特征的影响. 草业学报, 2017, 26(11): 35-46.
LIANG W, GUO F X, CHEN Y, BAI G, YUAN H C, JIN Y B. Effects of crop stubble on weed community characteristics in Angelica sinensis fields in an alpine cold region. Acta Prataculturae Sinica, 2017, 26(11): 35-46. (in Chinese)
[17] 高长岭. 种植面积和产量均居全国第一•我省花生香飘全国. 河南日报, 2015-9-17(4).
GAO C L. Planting area and output of peanut in Henan province are the first in our country, fragrance floating. Henan Daily, 2015-9-17(4). (in Chinese)
[18] 刘均霞, 陆引罡, 远红伟, 崔保伟. 小麦—绿肥间作对资源的高效利用. 安徽农业科学, 2007, 35(10): 2884-2885.
LIU J X, LU Y G, YUAN H W, CUI B W. High-efficient utilization of resources in wheat/green manure intercropping. Journal of Anhui Agricultural Sciences, 2007, 35(10): 2884-2885. (in Chinese)
[19] RAMAEKERS L, REMANS R, RAO I M, BLAIR M W, VANDERLEYDEN J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 2010, 117(2/3): 169-176.
doi: 10.1016/j.fcr.2010.03.001
[20] 王旭东, 于振文. 施磷对小麦产量和品质的影响. 山东农业科学, 2003, 35(6): 35-36.
WANG X D, YU Z W. Effect of applying phosphorus on yield and quality of wheat. Shandong Agricultural Sciences, 2003, 35(6): 35-36. (in Chinese)
[21] PORTER M A, PAULSEN G M. Grain protein response to phosphorus nutrition of wheat. Agronomy Journal, 1983, 75(2): 303-305.
doi: 10.2134/agronj1983.00021962007500020032x
[22] HUANG W, WANG Y S, GUO Y P, DU J H, PENG Y Y, CHEN X M, YAN G Y. Effects of phosphate treatment on growth dynamics of wheat in wheat/corn intercropping system in southwest hilly area. Agricultural Science & Technology, 2014, 15(8): 1345-1347.
[23] 黄明, 吴金芝, 李友军, 陈明灿, 付国占, 王贺正. 施磷量对低磷灌区冬小麦产量、经济效益和农学效率的影响. 麦类作物学报, 2018, 38(2): 183-190.
HUANG M, WU J Z, LI Y J, CHEN M C, FU G Z, WANG H Z. Effect of phosphorus application rate on grain yield, economic profit and agronomy efficiency in winter wheat under irrigated land with low phosphorus. Journal of Triticeae Crops, 2018, 38(2): 183-190. (in Chinese)
[24] 叶优良, 王玲敏, 黄玉芳, 马迎辉, 李欢欢, 朱云集. 施氮对小麦干物质累积和转运的影响. 麦类作物学报, 2012, 32(3): 488-493.
YE Y L, WANG L M, HUANG Y F, MA Y H, LI H H, ZHU Y J. Effect of nitrogen application on dry matter accumulation and translocation in wheat. Journal of Triticeae Crops, 2012, 32(3): 488-493. (in Chinese)
[25] 景鹏成, 王树林, 陈乙实, 鲁为华, 马春晖. 不同剂量连作障碍调控肥对土壤物理性质和制种玉米经济效益的影响. 新疆农业科学, 2017, 54(2): 234-242.
JING P C, WANG S L, CHEN Y S, LU W H, MA C H. Effects of different doses of control fertilizer for continuous cropping obstacle on soil physical properties and economic benefits of corn seed. Xinjiang Agricultural Sciences, 2017, 54(2): 234-242. (in Chinese)
[26] 李娜娜, 田奇卓, 裴艳婷, 谢连杰, 刘国伟, 王树亮. 播种方式对两类小麦品种分蘖成穗及其产量构成的影响. 麦类作物学报, 2007, 27(3): 508-513.
LI N N, TIAN Q Z, PEI Y T, XIE L J, LIU G W, WANG S L. Effects of planting pattern on formation of spike and yield component of two types of wheat. Journal of Triticeae Crops, 2007, 27(3): 508-513. (in Chinese)
[27] SWEENEY D W, GRANADE G V, EVERSMEYER M G, WHITNEY D A. Phosphorus, potassium, chloride, and fungicide effects on wheat yield and leaf rust severity. Journal of Plant Nutrition, 2000, 23(9): 1267-1281.
doi: 10.1080/01904160009382099
[28] RODRÍGUEZ D, ANDRADE F H, GOUDRIAAN J. Effects of phosphorus nutrition on tiller emergence in wheat. Plant and Soil, 1999, 209(2): 283-295.
doi: 10.1023/A:1004690404870
[29] 封超年, 朱新开, 王龙俊, 杨力, 王甫同, 何建华. 小麦茎蘖成穗率与产量关系及其调控. 江苏农业研究, 1999, 20(3): 1-7.
FENG C N, ZHU X K, WANG L J, YANG L, WANG F T, HE J H. Relationship of earing percentage of main stems and tillers to grain yield and its regulation in wheat. Jiangsu Agricutural Research, 1999, 20(3): 1-7. (in Chinese)
封超年, 朱新开, 王龙俊, 杨力, 王甫同, 何建华. 小麦茎蘖成穗率与产量关系及其调控. 江苏农业研究, 1999(3): 1-7.
FENG C N, ZHU X K, WANG L J, YANG L, WANG F T, HE J H. Relationship of earing percentage of main stems and tillers to grain yield and its regulation in wheat. Jiangsu Agricutural Research, 1999(3): 1-7. (in Chinese)
[30] 张孟妮, 毛平平, 王丽, 宜丽宏, 党建友, 吴会军, 李银坤, 裴雪霞, 张晶, 张永清, 武雪萍. 微喷水肥一体化提高冬小麦产量与品质. 中国土壤与肥料, 2017(4): 86-92.
ZHANG M N, MAO P P, WANG L, YI L H, DANG J Y, WU H J, LI Y K, PEI X X, ZHANG J, ZHANG Y Q, WU X P. Effect of integral control of Miro-sprinkling and fertilization on the population dynamics, yield and quality of winter wheat. Soil and Fertilizer Sciences in China, 2017(4): 86-92. (in Chinese)
[31] 阳显斌, 张锡洲, 李廷轩, 吴德勇. 施磷量对不同磷效率小麦氮、磷、钾积累与分配的影响. 核农学报, 2012, 26(1): 141-149.
YANG X B, ZHANG X Z, LI T X, WU D Y. Effects of applied P amount on nitrogen, phosphorus and potassium accumulation and distribution in wheats of different phosphorus use efficiency. Journal of Nuclear Agricultural Sciences, 2012, 26(1): 141-149. (in Chinese)
[32] 张晶, 党建友, 张定一, 王姣爱, 裴雪霞, 姬虎太, 闫翠萍, 程麦凤. 微喷灌水肥一体化小麦磷钾肥减施稳产提质研究. 中国土壤与肥料, 2018(5): 115-121.
ZHANG J, DANG J Y, ZHANG D Y, WANG J A, PEI X X, JI H T, YAN C P, CHENG M F. Study on effect of micro-sprinkler irrigation combined with reduced phosphorus, potassium fertilizer on yield and quality of wheat. Soil and Fertilizer Sciences in China, 2018(5): 115-121. (in Chinese)
[33] 焦念元, 宁堂原, 赵春, 侯连涛, 李增嘉, 李友军, 付国占, 韩宾. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响. 作物学报, 2008, 34(4): 706-712.
doi: 10.3724/SP.J.1006.2008.00706
JIAO N Y, NING T Y, ZHAO C, HOU L T, LI Z J, LI Y J, FU G Z, HAN B. Effect of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system. Acta Agronomica Sinica, 2008, 34(4): 706-712. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00706
[34] 唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230.
TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)
[35] 孙花, 柴守玺, 刘小娥, 常磊. 不同熟期小麦籽粒灌浆特性的研究. 甘肃农业大学学报, 2009, 44(6): 12-18.
SUN H, CHAI S X, LIU X E, CHANG L. Studies on grain filling characteristics in different maturity type wheat. Journal of Gansu Agricultural University, 2009, 44(6): 12-18. (in Chinese)
[36] 原亚琦, 孙敏, 林文, 曹碧芸, 田欣, 高志强, 李廷亮. 底墒和磷肥对旱地小麦籽粒灌浆特性及产量的影响. 中国生态农业学报(中英文), 2020, 28(1): 57-67.
YUAN Y Q, SUN M, LIN W, CAO B Y, TIAN X, GAO Z Q, LI T L. Effects of soil moisture before sowing and phosphate fertilizers on grain filling characteristics and yield of dryland wheat. Chinese Journal of Eco-Agriculture, 2020, 28(1): 57-67. (in Chinese)
[37] ERKUL A, NAY A, KONAK C. Inheritance of yield and yield components in a bread wheat (Triticum aestivum L.) cross. Turkish Journal of Field Crops, 2010, 15(2): 137-140.
[38] BNEJDI F, GAZZAH M E. Epistasis and genotype-by-environment interaction of grain protein content in durum wheat. Genetics and Molecular Biology, 2010, 33(1): 125-130.
doi: 10.1590/S1415-47572010000100021
[39] 胡雨彤, 郝明德, 付威, 赵晶, 王哲. 不同降水年型和施磷水平对小麦产量的效应. 中国农业科学, 2017, 50(2): 299-309.
HU Y T, HAO M D, FU W, ZHAO J, WANG Z. Effect of precipitation patterns and different phosphorus nutrition levels on winter wheat yield. Scientia Agricultura Sinica, 2017, 50(2): 299-309. (in Chinese)
[40] 史校艳, 王志强, 谷庆昊, 常明娟, 胡俊杰, 任永哲, 辛泽毓, 林同保. 施氮量对不同茬口冬小麦产量及氮肥利用率的影响. 生态学杂志, 2019, 38(7): 2041-2048.
SHI X Y, WANG Z Q, GU Q H, CHANG M J, HU J J, REN Y Z, XIN Z Y, LIN T B. Effects of nitrogen application on yield and nitrogen use efficiency of winter wheat with different former crops. Chinese Journal of Ecology, 2019, 38(7): 2041-2048. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[6] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[7] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[10] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[11] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[12] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[13] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[14] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[15] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!