Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 4010-4023.doi: 10.3864/j.issn.0578-1752.2020.19.014

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Potential of Fertilizer Reduction and Benefits of Environment and Economic for Cereal Crops Production in Shaanxi Province

ZHANG XinXin1(),SHI Lei2,HE Gang1(),WANG ZhaoHui1()   

  1. 1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi
    2Department of Agriculture and Rural Affairs of Shaanxi Province/Cultivated Land Quality and Agricultural Environmental Protection Station in Shaanxi Province, Xi’an 710003
  • Received:2019-12-04 Accepted:2020-03-03 Online:2020-10-01 Published:2020-10-19
  • Contact: Gang HE,ZhaoHui WANG E-mail:zhangxinxin029@126.com;hegang029@nwafu.edu.cn;w-zhaohui@263.net

Abstract:

【Objective】The management of farmers is the main mode of agricultural production in China, and the unreasonable application of fertilizer resources is the crucial factor in limiting the production of crops. This study was aimed to assess the potential of fertilizer reduction and benefits of environment and economic, which was very important for agricultural sustainable development in the main crop production regions.【Method】In 2018, a questionnaire survey was conducted on the production of major crops in counties (cities and districts) of Shaanxi Province. The three major crops were taken as research objects to evaluate farmers’ fertilization status, fertilizer reduction potential, environmental costs and economic benefits based on yield level.【Result】There were significant differences in farmers’ crop yields. The average yield of wheat was 4 573 kg·hm-2, and the difference between high and low yield was 2 619 kg·hm-2; the average yield of maize was 7 319 kg·hm-2, and the difference between high and low yield was 5 388 kg·hm-2; the average yield of rice was 8 340 kg·hm-2, and the difference between high and low yield was 2 893 kg·hm-2. The nitrogen, phosphorus and potassium rate of wheat was 177 kg N·hm-2, 102 kg P2O5·hm-2 and 37 kg K2O·hm-2, respectively; maize was 247 kg N·hm-2, 103 kg P2O5·hm-2 and 47 kg K2O·hm-2; rice was 186 kg N·hm-2, 88 kg P2O5·hm-2 and 64 kg K2O·hm-2. There is no significant relationship between yield and fertilizer application. The problems of excessive application of nitrogen and phosphate fertilizer, excessive and insufficient potassium fertilizer coexist, and excessive fertilization in low-yield farmers was serious. The reduction potential of nitrogen, phosphorus, potassium in wheat was 41%, 59% and 59%, respectively; maize was 55%, 73% and 66%, respectively; for rice, it was 38%, 64% and 58%, respectively. The forms of fertilizers applied showed that nitrogen was mainly chemical fertilizers and supplemented by compound fertilizers; phosphorus and potassium were mainly compound fertilizers; the organic manure supplied very low nutrient. The application of basal fertilizer usually received more attention, while topdressing was often overlooked on fertilizer structure, nitrogen was mainly based on basal application and supplemented by topdressing; phosphorus and potassium fertilizers were rarely applied topdressing. Losses of reactive nitrogen to produce 1.0 t wheat, maize and rice were 6.9, 3.8 and 3.3 kg N, respectively. Compared with the high-yield group, the reactive nitrogen loss intensity of wheat, maize and rice in the low-yield group increased by 52%, 85% and 74%; the potential of loss reduction ranges of wheat, maize and rice in low-yield group were 16%-33%, 31%-50% and 4%-38%, respectively. The economic benefits of wheat, maize and rice production were 4 468, 9 091 and 20 020 yuan/hm2, respectively. Compared with the low-yield group, the economic benefits of wheat, maize and rice in high-yield group increased 455%, 128% and 52%, respectively. The benefit increases were 4 919, 9 905 and 20 543 yuan/hm2. Compared with the low-yield group, the benefit increases of wheat, maize and rice in high-yield group increased 290%, 106% and 48%, respectively.【Conclusion】The household production behavior was analyzed deeply based on the production level in Shaanxi province. The low and middle yield levels were the focus of fertilizer reduction and benefit improvement. The average reduction potential of nitrogen, phosphorus, and potassium fertilizers for the three crops was 45%, 65% and 61%, respectively, reducing the potential of active nitrogen loss were 26%, 45% and 18%, respectively. The potential to improve environment economic benefits were 10%, 9% and 3%, respectively.

Key words: household behavior, nutrients management, cereal crops, yield, environmental cost, economic benefit, Shaanxi Province

Fig. 1

Distribution of the survey sites"

Table 1

Production and fertilizer application of major cereal crops"

作物
Crop
产量水平
Yield level
等级范围
Yield range
(kg·hm-2)
样本数
Sample amount
产量
Yield
(kg·hm-2)
施氮量
N rate
(kg N·hm-2)
施磷量
P rate
(kg P2O5·hm-2)
施钾量
K rate
(kg K2O·hm-2)
小麦
Wheat
低产 Low <3950 100 3227c 152b 112a 35a
中产 Mid 3950-5200 103 4534b 183a 95a 35a
高产 High >5200 109 5846a 193a 99a 42a
平均 Mean 4573 177 102 37
玉米
Maize
低产 Low <6750 224 5327c 237a 85c 42b
中产 Mid 6750-9000 178 7688b 257a 107b 43b
高产 High >9000 112 10715a 251a 132a 64a
平均 Mean 7319 247 103 47
水稻
Rice
低产 Low <7400 24 6446c 218a 63b 59a
中产 Mid 7400-8800 55 7878b 178b 102a 55a
高产 High >8800 71 9339a 182b 86ab 73a
平均 Mean 8340 186 88 64

Table 2

Fertilizer’s types, application rates and ratio of fertilizer in different periods"

作物
Crop
肥料
种类
Fertilizer type
氮肥 Nitrogen fertilizer 磷肥 Phosphorus fertilizer 钾肥 Potassium fertilizer
基肥
Basal fertilizer
(kg N·hm-2)
追肥
Top-dressing
(kg N·hm-2)
总和All 基肥
Basal
fertilizer
(kg P2O5·hm-2)
追肥Top-dressing
(kg P2O5·hm-2)
总和All 基肥
Basal fertilizer
(kg K2O·hm-2)
追肥Topdressing
(kg K2O·hm-2)
总和All
平均Average 比例Ratio (%) 平均值Average
(kg P2O5·hm-2)
比例Ratio
(%)
平均值Average
(kg K2O·hm-2)
比例Ratio (%)
小麦Wheat 单质肥
ECF
66 20 83a 48 22 0 22b 22 3 0 3c 8
复合肥
CF
76 0.2 75a 44 69 0.3 68a 67 25 0.3 25a 66
有机肥
OM
15 0 14b 8 11 0 11c 11 10 0 10b 26
总和All 157 # 20 & 102 # 0.3 & 37 # 0.3 &
玉米Maize 单质肥
ECF
51 99 151a 61 18 1 19b 18 1 0.2 1c 2
复合肥
CF
68 4 72b 29 62 4 66a 64 23 2 28a 60
有机肥
OM
23 1 24c 10 18 1 18b 18 18 1 18b 38
总和All 142 # 104 & 97 # 6 & 44 # 3 &
水稻Rice 单质肥
ECF
55 50 105a 57 21 0 21b 24 3 0 3c 5
复合肥
CF
54 3 56b 30 48 2 50a 57 43 1 44a 70
有机肥
OM
25 0 25 c 13 17 0 17b 19 16 0 16b 25
总和All 134 # 52 & 86 # 2 & 63 # 1 &

Fig. 2

Relationships between grain yields and N, P and K fertilizers about wheat, maize and rice The horizontal dashed line represents yield mean value of wheat, maize and rice. The vertical dashed line represents N rate, P rate and K rate used by local farmers, respectively"

Fig. 3

Distribution of nutrient inputs in wheat, maize, and rice"

Table 3

The potential of fertilizer reduction and environmental costs of wheat, maize and rice"

作物
Crop
产量水平
Yield level
产量
Yield
(kg·hm-2)
氮肥过量
Excessive N rate (kg N·hm-2)
磷肥过量
Excessive P rate (kg P2O5·hm-2)
钾肥过量
Excessive K rate (kg K2O·hm-2)
活性氮损失强度
Nr losses intensity
FPex Rec % FPex Rec % FPex Rec % 平均值
Mean (kg N·t-1)
%
小麦
Wheat
低产Low 3227 174 90 48 122 34 72 68 23 66 8.5 a 33
适中Mid 4534 212 127 40 113 48 58 88 33 63 6.8 b 24
高产High 5846 255 164 36 112 61 46 104 42 60 5.6 c 16
平均Mean 4573 218 128 41 116 48 59 81 33 59 6.9 26
玉米
Maize
低产Low 5327 248 93 63 106 26 75 81 24 70 4.8 a 50
适中Mid 7688 279 134 52 131 37 72 96 35 64 3.5 b 43
高产High 10715 359 186 48 196 51 74 153 49 68 2.6 c 31
平均Mean 7319 280 127 55 132 35 73 101 34 66 3.8 45
水稻
Rice
低产Low 6446 276 110 60 90 33 63 96 36 63 4.7 a 38
适中Mid 7878 206 135 34 131 40 69 114 43 62 3.3 b 19
高产High 9339 239 160 33 118 48 59 122 52 57 2.7 c 4
平均Mean 8340 229 143 38 119 43 64 110 46 58 3.3 18

Table 4

Economic benefits of wheat, maize and rice"

作物
Crop
产量等级
Yield level
总产出
Output
(yuan/hm2)
投入 Input (yuan/hm2) 肥料占总投入
Fertilizer/
total (%)
经济效益
Benefit
(yuan/hm2)
减肥增效Benefit increase
单质肥
ECF
复合肥
CF
有机肥
OM
总投入
Total
(yuan/hm2) (%)
小麦
Wheat
低产Low 6675c 338 1134 231 5339b 32 1336c 1984c 49
适中Mid 10059b 546 1096 85 5335b 32 4595b 5036b 10
高产High 13126a 434 1543 51 5655a 36 7472a 7737a 4
平均Mean 9953 439 1258 122 5443 33 4468 4919 10
玉米
Maize
低产Low 10065c 664 888 327 4671b 40 5395c 6311c 17
适中Mid 14413b 807 1016 212 4828b 42 9585b 10416b 9
高产High 17834a 426 2107 216 5541a 50 12293c 12989a 6
平均Mean 14104 632 1337 252 5013 44 9091 9905 9
水稻
Rice
低产Low 19908b 616 416 583 4784a 34 15124b 15808b 5
适中Mid 26905a 545 1038 217 4969a 36 21936a 22444a 2
高产High 28028a 446 1281 135 5030a 37 22999a 23378a 2
平均Mean 24947 536 912 312 4928 36 20020 20543 3
[1] LIU J G, DIAMOND J. China’s environment in a globalizing world. Nature, 2005, 435(7046): 1179-1186. DOI: 10.1038/4351179a.
doi: 10.1038/4351179a pmid: 15988514
[2] KHAN M N, MOBIN M, ABBAS Z K, ALAMRI S A. Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene, 2018(5): 225-240. DOI: 10.1016/B978-0-12- 409548-9.09888-2.
[3] GU B J, SUTTON M A, CHANG S X, GE Y, CHANG J. Agricultural ammonia emissions contribute to China’s urban air pollution. Frontiers in Ecology and the Environment, 2014, 12(5): 265-266. DOI: 10.1890/14.WB.000.
doi: 10.1890/14.WB.007
[4] 陕西省统计局. 陕西统计年鉴. 西安: 中国统计出版社, 2010-2018.
Shaanxi Provincial Bureau of Statistics. Shaanxi Statistical Yearbook. Xi’an: China Statistics Press, 2010-2018. (in Chinese)
[5] WANG P P, ZHANG W D, LI M H, HAN Y J. Does fertilizer education program increase the technical efficiency of chemical fertilizer use? Evidence from wheat production in China. Sustainability, 2019, 11(2): 543. DOI: 10.3390/su11020543.
doi: 10.3390/su11020543
[6] 孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异. 经济地理, 2018, 38(10): 201-210, 240.
KONG F B, GUO Q L, PAN D. Evaluation on over fertilization and its spatial-temporal difference about major grain crops in China. Economic Geography, 2018, 38(10): 201-210, 240. (in Chinese)
[7] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018. (in Chinese)
[8] FOWLER D, STEADMAN C E, STEVENSON D, COYLE M, REES R M, SKIBA U M, SUTTON M A, CAPE J N, DORE A J, VIENO M, SIMPSON D, ZAEHLE S, STOCKER B D, RINALDI M, FACCHINI M C, FLECHARD C R, NEMITZ E, TWIGG M, ERISMAN J W, BUTTERBACH-BAHL K, GALLOWAY J N. Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15(24): 13849-13893. DOI: 10.5194/acp-15-13849-2015.
doi: 10.5194/acp-15-13849-2015
[9] CUI Z L, ZHANG H Y, CHEN X P, ZHANG C C, MA W Q, HUANG C D, ZHANG W F, MI G H, MIAO Y X, LI X L, GAO Q, YANG J C, WANG Z H, YE Y L, GUO S W, LU J W, HUANG J L, LV S H, SUN Y X, LIU Y Y, PENG X L, REN J, LI S Q, DENG X P, SHI X J, ZHANG Q, YANG Z P, TANG L, WEI C Z, JIA L L, ZHANG J W, HE M R, TONG Y A, TANG Q Y, ZHONG X H, LIU Z H, CAO N, KOU C L, YING H, YIN Y L, JIAO X Q, ZHANG Q S, FAN M S, JIANG R F, ZHANG F S, DOU Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366. DOI: 10.1038/nature25785.
doi: 10.1038/nature25785 pmid: 29513654
[10] 王小英, 陈占飞, 胡凡, 同延安. 陕西省农田化肥投入过量与不足的研究. 干旱地区农业研究, 2017, 36(6): 159-165. DOI: 10.7606/ j.issn.1000-7601.2017.06.24.
WANG X Y, CHEN Z F, HU F, TONG Y A. Study on the excessive and insufficient of chemical fertilizer inputs on farmland in Shaanxi Provinc. Agricultural Research in the Arid Areas, 2017, 36(6): 159-165. DOI: 10.7606/j.issn.1000-7601.2017.06.24. (in Chinese)
[11] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学, 2016, 49(3): 503-517. DOI: 10.3864/j.issn.0578-1752.2016.03.009.
doi: 10.3864/j.issn.0578-1752.2016.03.009
WANG J G, LIN B, LI B G. Nitrogen cycling and management strategies in Chinese agriculture. Scientia Agricultura Sinica, 2016, 49(3): 503-517. DOI: 10.3864/j.issn.0578-1752.2016.03.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.009
[12] CUI Z L, YUE S C, WANG G L, MENG Q F, WU L, YANG Z P, ZHANG Q, LI S Q, ZHANG F S, CHEN X P. Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China. Global Change Biology, 2013, 19(8): 2467-2477. DOI: info: doi/10.1111/gcb.12213.
doi: 10.1111/gcb.12213 pmid: 23553871
[13] YING H, YE Y L, CUI Z L, CHEN X P. Managing nitrogen for sustainable wheat production. Journal of Cleaner Production, 2017, 162: 1308-1316. DOI: 10.1016/j.jclepro.2017.05.196.
doi: 10.1016/j.jclepro.2017.05.196
[14] 周洲, 石奇. 我国粮食生产收益影响因素实证分析——基于稻谷、小麦和玉米数据的分阶段回归. 山西农业大学学报(社会科学版), 2018, 17(7): 61-70.
ZHOU Z, SHI Q. Empirical analysis on influencing factors of grain production income in China. Journal of Shanxi Agricultural University (Social Science Edition), 2018, 17(7): 61-70. (in Chinese)
[15] 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编. 北京: 中国统计出版社, 2018.
National Development and Reform Commission. Compilation of National Agricultural Products Cost-benefit Data. Beijing: China Statistics Press, 2018. (in Chinese)
[16] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768. DOI: 10.3864/ j.issn.0578-1752.2017.14.012.
doi: 10.3864/j.issn.0578-1752.2017.14.012
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. DOI: 10.3864/j.issn.0578-1752.2017. 14.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.012
[17] 张亦涛, 王洪媛, 雷秋良, 张继宗, 翟丽梅, 任天志, 刘宏斌. 农田合理施氮量的推荐方法. 中国农业科学, 2018, 51(15): 2937-2947. DOI: 10.3864/j.issn.0578-1752.2018.15.009.
doi: 10.3864/j.issn.0578-1752.2018.15.009
ZHANG Y T, WANG H Y, LEI Q L, ZHANG J Z, ZHAI L M, REN T Z, LIU H B. Recommended methods for optimal nitrogen application rate. Scientia Agricultura Sinica, 2018, 51(15): 2937-2947. DOI: 10.3864/j.issn.0578-1752.2018.15.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.15.009
[18] 曹寒冰. 渭北旱地冬小麦监控施肥技术的优化[D]. 杨凌: 西北农林科技大学, 2014.
CAO H B. Optimization of fertilizer recommendation technology based on soil test for winter wheat on Weibei dayland[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[19] HOU P, GAO Q, XIE R Z, LI S K, MENG Q F, KIRKBY E A, ROMHELD V, MULLER T, ZHANG F S, CUI Z L, CHEN X P. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize grown in China. Field Crops Research, 2012, 129: 1-6. DOI: 10.1016/j.fcr.2012.01.006.
doi: 10.1016/j.fcr.2012.01.006
[20] WU L Q, CUI Z L, CHEN X P, YUE S C, SUN Y X, ZHAO R F, DENG Y, ZHANG W, CHEN K R. Change in phosphorus requirement with increasing grain yield for Chinese maize production. Field Crops Research, 2015, 180: 216-220. DOI: 10.1016/j.fcr.2015. 06.001.
doi: 10.1016/j.fcr.2015.06.001
[21] XU X P, HE P, PAMPOLINO M F, CHUAN L M, JOHNSTON A M, QIU S J, ZHAO S C, ZHOU W. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crops Research, 2013, 150(15): 115-125. DOI: 10.1016/j.fcr.2013.06.006.
doi: 10.1016/j.fcr.2013.06.006
[22] XU X P, XIE J G, HOU Y P, HE P, PAMPOLINO M F, ZHAO S C, QIU S J, JOHNSTON A M, ZHOU W. Estimating nutrient uptake requirements for rice in China. Field Crops Research, 2015, 180: 37-45. DOI: 10.1016/j.fcr.2015.05.008.
doi: 10.1016/j.fcr.2015.05.008
[23] 王浩, 董朝阳, 王淑兰, 张玉娇, 师祖姣, 张元红, 王瑞, 李军. 基于春玉米籽粒产量的渭北旱塬区农户施肥现状评价. 植物营养与肥料学报, 2018, 24(3): 590-598.
WANG H, DONG Z Y, WANG S L, ZHANG Y J, SHI Z J, ZHANG Y H, WANG R, LI J. Evaluation on fertilization of farmer practice based on grain yield of spring maize in Weibei dryland. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 590-598. (in Chinese)
[24] 王小英, 刘芬, 同延安, 赵佐平. 陕南秦巴山区水稻施肥现状评价. 应用生态学报, 2013, 24(11): 3106-3112.
pmid: 24564138
WANG X Y, LIU F, TONG Y A, ZHAO Z P. Present situation of rice fertilization in Qin-Ba mountainous area of southern Shaanxi, China. Chinese Journal of Applied Ecology, 2013, 24(11): 3106-3112. (in Chinese)
pmid: 24564138
[25] 赵护兵, 王朝辉, 高亚军, 张卫峰. 西北典型区域旱地冬小麦农户施肥调查分析. 植物营养与肥料学报, 2013, 19(4): 840-848.
doi: 10.11674/zwyf.2013.0409
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and analysis of dryland winter wheat fertilizer application in northwest typical areas. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 840-848. (in Chinese)
doi: 10.11674/zwyf.2013.0409
[26] 张素敏, 蒋云峰, 邓蜀平. 中国尿素市场分析与趋势展望. 中国市场, 2015, 42: 104-106.
ZHANG S M, JIANG Y F, DENG S P. The urea market analysis and tendency forecast in China. China Market, 2015, 42: 104-106. (in Chinese)
[27] NING C C, GAO P D, WANG B Q, LIN W P, JIANG N H, CAI K Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 2017, 16(8): 1819-1831.
doi: 10.1016/S2095-3119(16)61476-4
[28] HUANG Y, TANG Y H. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biology, 2010, 16: 2958-2970. DOI: 10.1111/j.1365-2486.2010.02187.x.
[29] LUN F, LIU J G, CIAIS P, NESME T, CHANG J F, WANG R, GOLL D, SARDANS J, PENUELAS J, OBERSTEINER M. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data, 2018, 10(1): 1-8. DOI: 10.5194/essd-10-1-2018.
doi: 10.5194/essd-10-1-2018
[30] 程琳琳. 中国农田生态系统钾素平衡与钾肥需求[D]. 北京: 中国农业大学, 2007.
CHENG L L. Potassium balance and potassium fertilizer demand in Chinese farmland ecosystem[D]. Beijing: China Agricultural University, 2007. (in Chinese)
[31] 戴健. 旱地冬小麦产量、养分利用及土壤硝态氮对长期施用氮磷肥和降水的响应[D]. 杨凌: 西北农林科技大学, 2016.
DAI J. Responses of winter wheat yield, nutrient utilization and nitrate in soil to long term nitrogen and phosphor us fertilization and precipitation on dryland[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[32] 赵护兵, 王朝辉, 高亚军, 张卫峰. 陕西省农户小麦施肥调研评价. 植物营养与肥料学报, 2016, 22(1): 245-253.
doi: 10.11674/zwyf.14243
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and evaluation of household wheat fertilizer application in Shaanxi Province. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 245-253. (in Chinese)
doi: 10.11674/zwyf.14243
[33] 魏晓军. 玉米氮肥基追比肥效试验. 农业科技与信息, 2018, 12: 38-39.
WEI X J. Test about ratio of basal fertilizer on maize. Agricultural Science-Technology and Information, 2018, 12: 38-39. (in Chinese)
[34] 张福锁, 陈新平, 陈清. 中国主要农作物施肥指南. 北京: 中国农业大学出版社, 2009: 28-33.
ZHANG F S, CHEN X P, CHEN Q. Fertilization Guide on Major Crops of China. Beijing: China Agricultural University Press, 2009: 28-33. (in Chinese)
[35] 王艺颖, 刘春力. 陕西省主要粮食作物生产成本收益研究——以小麦、玉米为例. 中国农业资源与区划, 2016, 37(6): 143-148. DOI: 10.7621/cjarrp.1005-9121.20160623.
WANG Y Y, LIU C L. Research on the cost-benefit of major cereal crops production in Shaanxi province—Taking wheat, Maize as Examples. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(6): 143-148. DOI: 10.7621/cjarrp.1005-9121. 20160623. (in Chinese)
[36] 马臣, 刘艳妮, 梁璐, 翟丙年, 张昊青, 王朝辉. 有机无机肥配施对旱地冬小麦产量和硝态氮残留淋失的影响. 应用生态学报, 2018, 29(4): 1240-1248. DOI: 10.13287/j.1001-9332.201804.023.
doi: 10.13287/j.1001-9332.201804.023 pmid: 29726234
MA C, LIU Y N, LIANG L, ZHAI B N, ZHANG H Q, WANG Z H. Effects of combined application of chemical fertilizer and organic manure on wheat yield and leaching of residual nitrate-N in dryland soil. Chinese Journal of Applied Ecology, 2018, 29(4): 1240-1248. DOI: 10.13287/j.1001-9332.201804.023. (in Chinese)
doi: 10.13287/j.1001-9332.201804.023 pmid: 29726234
[37] GUO J H, LIU X J, ZHANG Y, SHEN JL, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010. DOI: 10.1126/science.1182570.
doi: 10.1126/science.1182570 pmid: 20150447
[38] FEDOROFF N V, BASTTISTI D S, BEACHY R N, COOPER P J M, FISHCHHOFF D A, HODGES C N, KNAUF V C, LOBELL D, MAZUR B J, MOLDEN D, REYNOLDS M P, RONALD P C, ROSEGRANT M W, SANCHEZ P A, VONSHAK A, ZHU J K. Radically rethinking agriculture for the 21st Century. Science, 2010, 327(5967): 833-834. DOI: 10.1126/science.1186834.
doi: 10.1126/science.1186834 pmid: 20150494
[39] WU L, CHEN X P, CUI Z L, WANG G L, ZHANG W F. Improving nitrogen management via a regional management plan for Chinese rice production. Environmental Research Letters, 2015, 10(9): 1-11. DOI: 10.1088/1748-9326/10/9/095011.
[40] 周克清, 杨昭. 化肥施用与涉肥财税优惠政策: 回顾与展望. 税务与经济, 2019, 222(1): 76-81.
ZHOU K Q, YANG Z. Application of fertilizer and preferential fiscal and tax policies related to fertilizer: Review and prospect. Taxation and Economy, 2019, 222(1): 76-81. (in Chinese)
[41] 章孜亮, 刘金山, 王朝辉, 赵护兵, 杨宁, 杨荣, 曹寒冰. 基于土壤氮素平衡的旱地冬小麦监控施氮. 植物营养与肥料学报, 2012, 18(6): 1387-1396.
doi: 10.11674/zwyf.2012.12045
ZHANG Z L, LIU J S, WANG Z H, ZHAO H B, YANG N, YANG R, CAO H B. Nitrogen recommendation for dryland winter wheat by monitoring nitrate in 1 m soil and based on nitrogen balance. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1387-1396. (in Chinese)
doi: 10.11674/zwyf.2012.12045
[42] JU X T, GU B J, WU Y Y, GALLOWAY J N. Reducing China’s fertilizer use by increasing farm size. Global Environmental Change, 2016, 41: 26-32. DOI: 10.1016/j.gloenvcha.2016.08.005.
doi: 10.1016/j.gloenvcha.2016.08.005
[43] WANG Q, LI F R, ZHAO L, ZHANG E H, SHI S L, ZHAO W Z, SONG W X, VANCE M M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant and Soil, 2010, 337: 325-339. DOI: 10.1007/s11104- 010-0530-z.
doi: 10.1007/s11104-010-0530-z
[44] 程国强. 创新农业补贴方式加大政策支持力度. 黑龙江粮食, 2015(3): 5.
CHENG G Q. Innovate agricultural subsidies to increase policy support. Journal of Heilongjiang Grain, 2015(3): 5. (in Chinese)
[45] 王燕青, 李隆玲, 武拉平. 农民种粮是否有利可图?——基于粮食种植成本收益分析. 农业经济与管理, 2016(1): 69-79.
WANG Y Q, LI L L, WU L P. Is it profitable for farmers to grow grain?——Based on the cost-benefit analysis of grain cultivation. Agricultural Economics and Management, 2016(1): 69-79. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!