Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3996-4009.doi: 10.3864/j.issn.0578-1752.2020.19.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Evaluation of Nitrogen Supply Capacity of Paddy and Wheat Rotation Soil in Hanzhong Basin by Different Determination Methods

ZHANG FangFang1,2(),MA NingBo1,3,YUE ShanChao1,2,LI ShiQing1,2()   

  1. 1College of Resources and Environment, Northwest A&F University, Yangling 712100, Shannxi
    2State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
    3People's Government of Hantai District in Hanzhong, Hanzhong 723000, Shaanxi
  • Received:2020-01-07 Accepted:2020-04-13 Online:2020-10-01 Published:2020-10-19
  • Contact: ShiQing LI E-mail:setzhang@126.com;sqli@ms.iswc.ac.cn

Abstract:

【Objective】 The different indexes were compared to evaluate the reliability of nitrogen (N) supply capacity of soil in Hanzhong basin, so as to provide references for local soil N management.【Method】Soil samples were collected from 12 farmlands in Hanzhong basin and the surrounding hilly areas. The cumulative N uptake of potted ryegrass was used as a reference. Soil physical and chemical properties parameters were used as the indexes of soil N supply capacity, which included soil N mineralization amount based on three chemical methods (mineral N method, KCl condensation and reflux acid potassium permanganate method) and two biological methods (aerobic incubation and waterlogged incubation). 【Result】Soil type was an important factor that affected the N supply capacity of soil. Total N or organic matter could reflect the potential N supply capacity. However, soil texture, pH, available phosphorus (Ava.P), cation exchange capacity (CEC), calcium carbonate and particle composition (sand, silt and clay) could not reflect the N supply capacity. The correlation coefficient between aboveground N uptake of ryegrass and N value by mineral N method was 0.963 (P<0.01). However, since the initial mineral N could not reflect the amount of organic N mineralization, the mineral N method could only reflect the current N supply capacity, so it was not suitable as an evaluation index of soil N supply capacity. The correlation coefficient between aboveground N uptake of ryegrass and total mineral N measured by KCl reflux condensation method was 0.912 (P<0.01), while the correlation coefficient between aboveground N uptake of ryegrass and the amount of mineralizable N measured by KCl condensate reflux method was -0.766 (P<0.01). Because the leaching process of soil mineralizable N by KCl refluxing method led to the volatilization of ammonium N, which might result in the inconsistency in reflecting the potential N supply capacity and the total N supply capacity, so KCl refluxing method was not an ideal indicator to reflect the soil N supply capacity of Hanzhong basin. The correlation coefficients of total mineral N and mineralizable N with aboveground N uptake of ryegrass were 0.847 and 0.833 (P<0.01), respectively, which could reflect both the potential N supply capacity and the total N supply capacity, and it was the best chemical method. Under the condition of aerobic incubation, total mineral N and mineralizable N were not correlated with aboveground N uptake of ryegrass. While under the condition of waterlogged incubation, the correlation coefficients of total mineral N and mineralizable N with aboveground N uptake of ryegrass were 0.921 and 0.890 (P<0.01), respectively, indicating that the waterlogged incubation method could reflect the potential N supply capacity and total N supply capacity of paddy and wheat rotation soil in Hanzhong basin, and it was a good biological incubation method. The correlation coefficients of N0 and initial mineral N + N0 with aboveground N uptake of ryegrass in the first four stages were 0.834 and 0.845(P<0.01), respectively. The correlation coefficients with N uptake of the whole ryegrasses were 0.840 and 0.851(P<0.01), respectively. Both N0 and initial mineral N + N0 could reflect the potential N supply capacity. But N0 could only reflect the potential N supply capacity, while initial mineral N + N0 could reflect the potential N supply capacity and total N supply capacity. Therefore, initial mineral N + N0 was an ideal index.【Conclusion】For the evaluation of N supply capacity of rice-wheat rotation soil in Hanzhong basin, the acid potassium permanganate method was the best chemical method, and the waterlogged incubation method was a good biological incubation method. The initial mineral N + N0 was an ideal indicator to reflect the N supply capacity of soil in Hanzhong basin.

Key words: rice and wheat rotation, potential N supply capacity, total N supply capacity, aboveground N uptake of ryegrass, Chemical determination methods, Biological culture methods, Hanzhong Basin

Fig. 1

Distribution of sampling sites in Hanzhong Basin"

Table 1

Location, field type, soil texture, and soil type of test soil"

土样编号
Soil No.
采样地点
Location
田地类型
Field type
土壤质地
Soil texture
土壤类型
Soil type
1 汉台区Hantai District 平坝田Flat field 壤土Loam 黄棕壤Yellow brown soil (YBS)
2 勉县Mian County 平坝田Flat field 壤土Loam 黄棕壤Yellow brown soil (YBS)
3 勉县Mian County 平坝田Flat field 黏土Clay 黄褐土Yellow cinnamon soil (YCS)
4 南郑区Nanzheng District 平坝田Flat field 壤土Loam 黄棕壤Yellow brown soil (YBS)
5 南郑区Nanzheng District 平坝田Flat field 壤土Loam 棕壤Brown soil (BS)
6 城固县Chenggu County 平坝田Flat field 黏土Clay 黄棕壤Yellow brown soil (YBS)
7 洋县Yang County 冲积田Alluvial field 壤土Loam 黄棕壤Yellow brown soil (YBS)
8 洋县Yang County 平坝田Flat field 壤土Loam 黄棕壤Yellow brown soil (YBS)
9 洋县Yang County 平坝田Flat field 壤土Loam 黄棕壤Yellow brown soil (YBS)
10 城固县Chenggu County 梯田Terraces 壤土Loam 黄棕壤Yellow brown soil (YBS)
11 汉台区Hantai District 平坝田Flat field 壤土Loam 黄棕壤Yellow brown soil (YBS)
12 汉台区Hantai District 平坝田Flat field 黏土Clay 黄褐土Yellow cinnamon soil (YCS)

Table 2

Basic properties of soil used"

土样编号
Soil No.
pH
(5﹕1)
有机质
OM
(g·kg-1)
全氮
TN
(g·kg-1)
有效磷
Ava.P
(mg·kg-1)
阳离子交换量
CEC
(cmol·kg-1)
碳酸钙
CaCO3
(g·kg-1
颗粒组成Soil particle (%)
砂粒
Sand
粉粒
Silt
黏粒
Clay
1 6.1 28.9±0.64 1.76±0.13 21.8±0.36 17.8±4.9 8.46±3.38 8.96±5.34 64.5±3.07 26.6±2.28
2 5.8 24.8±0.43 1.47±0.08 11.6±0.26 20.0±0.85 25.1±2.51 5.95±0.03 65.3±0.02 28.8±0.05
3 5.6 21.8±1.71 1.56±0.11 26.9±1.02 20.9±1.05 16.7±1.67 2.66±0.04 64.6±0.03 32.7±0.01
4 5.7 20.5±1.28 1.53±0.07 36.5±2.14 19.2±0.5 8.46±0.85 7.93±0.14 62.9±0.12 29.1±0.02
5 5.6 22.8±0.96 1.31±0.09 18.2±0.51 13.1±1.35 16.7±0.84 20.6±0.01 62.6±0.02 16.9±0.03
6 6.4 34.4±0.96 2.02±0.08 23.8±8.52 17.2±1.83 25.1±3.35 7.63±0.19 61.2±0.07 31.2±0.12
7 6.1 28.7±0.43 1.68±0.09 20.1±2.96 10.8±0.6 16.8±0 19.0±0.21 56.0±0.2 25.0±0.01
8 6.0 32.5±0 2.14±0.27 98.0±2.55 18.6±0.45 25.1±4.18 19.5±0.58 55.5±0.4 25.0±0.17
9 6.2 30.6±0.64 1.74±0.22 26.0±1.33 24.1±3.94 25.1±2.51 13.7±0.34 56.4±0.23 29.9±0.11
10 7.8 24.6±1.07 1.67±0.15 17.1±0.82 22.8±3.28 16.8±0.84 15.8±1.61 54.8±1 29.3±0.61
11 7.0 27.6±3.21 1.85±0.11 9.59±0.41 15.8±1.14 25.2±1.68 11.7±0.33 63.1±0.21 25.3±0.12
12 6.2 44.7±1.5 2.53±0.16 20.9±0 21.3±1.5 25.2±2.52 14.5±0.23 53.9±0.2 31.5±0.03
Ave. 6.21±0.58 28.49±6.38 1.77±0.32 27.55±22.29 18.45±3.7 19.56±6.22 12.3±5.56 60.1±4.17 27.6±4.09

Fig. 2

The aboveground N uptake and root N uptake by ryegrass at different sampling sites There are significant differences at P<0.05 between different letters. The same as below"

Fig. 3

Effects of the soil texture and soil type on aboveground N uptake of ryegrass"

Fig. 4

Correlations between soil physical and chemical property parameters and aboveground N uptake of ryegrass"

Table 3

Nitrogen values obtained by chemical methods"

土样编号
Soil No.
化学方法Chemical methods (mg·kg-1)
方法(1)Method (1) 方法(2) Method (2) 方法(3) Method (3)
NO3--N NH4+-N NO3--N NH4+-N NH4+-N
1 15.87±1.48 0.14±0.26 16.01±1.74 6.44±0.74 11.9±0.81 18.34±1.55 255.49±6.74
2 12.6±1.47 1.25±0.15 13.85±1.61 5.47±0.75 10.44±1.24 15.91±1.88 156.24±9.43
3 12.77±0.25 2.32±0.08 15.09±0.32 7.82±0.86 10.09±0.51 17.91±1.27 190.47±36.49
4 11.01±0.78 3.18±1.48 14.2±2.26 6.17±1.58 10.97±0.98 17.14±2.53 169.33±6.3
5 5.63±0.79 2.12±0.58 7.75±1.37 4.8±0.89 9.55±0.39 14.35±0.73 154.23±5.32
6 17.58±0.73 2.91±0.41 20.49±1.14 13.22±2.66 12.18±1.4 25.4±3.84 273.13±9.41
7 14.46±1.01 1.08±0.11 15.54±1.12 5.02±0.92 13.01±1.68 18.03±2.4 238.99±36.7
8 23.18±1.55 2.37±0.73 25.55±2.28 9.51±1.67 16.42±2.28 25.93±3.8 356±27.27
9 14.78±3.07 1.1±0.59 15.88±3.66 4.04±0.33 14.08±1.5 18.12±1.7 243.77±41.79
10 6.61±0.98 0.04±0.14 6.64±1.12 3.73±0.67 10.09±0.93 13.82±1.59 148.69±5.49
11 18.81±6.46 0.44±0.46 19.25±6.92 8.05±1.39 12.59±1.41 20.64±2.49 255.99±38
12 26.05±2.16 0.75±0.04 26.81±2.19 10.28±1.92 17.54±1.5 27.82±3.38 504.32±30.74
Avi. 14.95±5.75 1.47±1.03 16.42±5.78 7.05±2.72 12.4±2.43 19.45±4.39 245.55±97.78

Fig. 5

Correlations between aboveground N uptake of ryegrass and N value determined by chemical methods a: The measured N values include initial mineral N; b: The measured N values don’t include initial mineral N. The same as below"

Fig. 6

Correlations between aboveground N uptake of ryegrass and the results of biological methods a*: The measured N values include initial ammonium N; b*: The measured N values don’t include initial ammonium N"

Table 4

Correlation coefficient between potentially mineralizable N and N uptake of raygrass in various harvest periods under waterlogged incubation"

黑麦草吸氮量 Raygrass uptake N 4次整株累积
The four cubulation in the whole plant
第1次
The first
前2次
The former two
前3次
The former three
前4次
The former four
氮素矿化势N mineralization potential (N0) 0.39 0.855** 0.845** 0.834** 0.840**
起始矿质氮+氮素矿化势Initial mineral N + N0 0.39 0.866** 0.855** 0.845** 0.851**
[1] 王薇, 郝兴顺, 张春辉, 吴玉红, 陈浩, 秦宇航. 汉中市肥料资源利用现状的调查. 浙江农业科学, 2018, 59(8): 1454-1456.
WANG W, HAO X S, ZHANG C H, WU Y H, CHEN H, QIN Y H. Investigation on the utilization status of fertilizer resources in Hanzhong City. Zhejiang Agricultural Sciences, 2018, 59(8): 1454-1456. (in Chinese)
[2] 金发会. 黄土高原土壤供氮能力测定方法的比较研究[D]. 杨凌: 西北农林科技大学, 2007.
JIN F H. Comparison of the methods of assessing soil N-supplying capacity on Loess Plateau[D]. Yangling: Northwest A & F University, 2007. (in Chinese)
[3] STANFORD G, SMITH S L. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 1972, 36(3): 465-472.
[4] 李生秀, 付会芳, 肖俊璋, 袁虎林. 几种测氮方法在反映旱地土壤供氮能力方面的效果. 干旱地区农业研究, 1992, 10(2): 72-81.
LI S X, FU H F, XIAO J Z, YUAN H L. The effectiveness of several methods determing soil available or potentially available N in reflecting dryland soil N supply-capacities. Agricultural Research in the Arid Areas, 1992, 10(2): 72-81. (in Chinese)
[5] 田茂洁. 土壤氮素矿化影响因子研究进展. 西华师范大学学报(自然科学版), 2004, 25(3): 298-303.
TIAN M J. Review on the contributing factors to mineralization of soil nitrogen. Journal of China West Normal University (Natural Science Edition), 2004, 25(3): 298-303. (in Chinese)
[6] 肖巧琳, 罗建新. 土壤有机质及其矿化影响因子研究进展. 湖南农业科学, 2009(2): 74-77.
XIAO Q L, LUO J X. Review on the contributing factors to mineralization of soil organic matter. Hunan Agricultural Sciences, 2009(2): 74-77. (in Chinese)
[7] 朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科学技术出版社, 1992: 37-56.
ZHU Z L, WEN Q X. Chinese Soil Nitrogen. Nanjing: Jiangsu Science and Technology Press, 1992: 37-56. (in Chinese)
[8] DRIDI I. Field and laboratory study of nitrogen mineralization dynamics in four tunisian soils. Journal of African Earth Sciences, 2019, 154: 101-110.
[9] JIA J, BAI J H, GAO H F, WANG W, YIN S, WANG D W, HAN L. Effects of salinity and moisture on sediment net nitrogen mineralization in salt marshes of a Chinese estuary. Chemosphere, 2019, 228: 174-182.
doi: 10.1016/j.chemosphere.2019.04.006 pmid: 31029963
[10] 王慧, 刘金山, 惠晓丽, 戴健, 王朝辉. 旱地土壤有机碳氮和供氮能力对长期不同氮肥用量的响应. 中国农业科学, 2016. 49(15): 2988-2998.
WANG H, LIU J S, HUI X L, DAI J, WANG Z H. Responses of soil organic carbon, organic nitrogen and nitrogen supply capacity to long-term nitrogen fertilization practices in dryland soil. Scientia Agricultura Sinica, 2016, 49(15): 2988-2998. (in Chinese)
[11] 张敬昇, 李冰, 王昌全, 向毫, 周杨洪, 尹斌, 梁靖越, 付月君. 控释氮肥与尿素掺混比例对作物中后期土壤供氮能力和稻麦产量的影响. 植物营养与肥料学报, 2017, 23(1): 110-118.
ZHANG J S, LI B, WANG C Q, XIANG H, ZHOU Y H, YIN B, LIANG J Y, FU Y J. Effects of the blending ratio of controlled release nitrogen fertilizer and urea on soil nitrogen supply in the mid-late growing stage and yield of wheat and rice. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 110-118. (in Chinese)
[12] 鲁彩艳, 牛明芬, 陈欣, 史亦, 石险峰. 不同施肥制度培育土壤氮矿化势与供氮潜力. 辽宁工程技术大学学报, 2007, 26(5): 773-775.
LU C Y, NIU M F, CHEN X, SHI Y, SHI X F. Nitrogen mineralization potentials of meadow brown soil in different fertilization practice. Journal of Liaoning Technical University, 2007, 26(5): 773-775. (in Chinese)
[13] 金发会, 李世清, 卢红玲, 李生秀. 石灰性土壤供氮能力几种化学测定方法的评价研究. 植物营养与肥料学报, 2007(6): 1040-1048.
JIN F H, LI S Q, LU H L, LI S X. Comparison of the chemical methods for assessing soil N-supplying capacity in calcareous soil. Journal of Plant Nutrition and Fertilizer, 2007(6): 1040-1048. (in Chinese)
[14] 金发会, 李世清, 卢红玲, 李生秀. 石灰性土壤供氮能力几种生物测定方法的评价研究. 中国农业科学, 2007, 40(7): 1422-1431.
JIN F H, LI S Q, LU H L, LI S X. Estimation of the biological methods on assessing soil nitrogen-supplying capacity in calcareous soil. Scientia Agricultura Sinica, 2007, 40(7): 1422-1431. (in Chinese)
[15] 赵坤, 李世清, 李生秀. 原状土通气培养法测定黄土高原土壤供氮能力的研究. 中国农业科学, 2009, 42(7): 2397-2406.
ZHAO K, LI S Q, LI S X. Study on undisturbed soil sample incubation for estimating soil nitrogen supplying capacity in Loess Plateau. Scientia Agricultura Sinica, 2009, 42(7): 2397-2406. (in Chinese)
[16] 马艳芹, 杨文亭, 黄国勤. 不同施氮水平对紫云英腐解与土壤供氮特性的影响. 南方农业学报, 2018, 49(9): 1745-1752.
MA Y Q, YANG W T, HUANG G Q. Effects of nitrogen levels on decomposition of Chinese milk vetch and soil nitrogen supply characters. Journal of Southern Agriculture, 2018, 49(9): 1745-1752. (in Chinese)
[17] 闫德智, 王德建. 稻麦轮作条件下施用氮肥对土壤供氮能力的影响. 土壤通报, 2005, 36(2): 190-193.
YAN D Z, WANG D J. Effects of applications of N fertilizer on soil nitrogen supplying capacities under the conditions of rice and wheat rotation. Chinese Journal of Soil Science, 2005, 36(2): 190-193. (in Chinese)
[18] 袁新民, 同延安, 杨学云, 李晓林, 张福锁. 施用磷肥对土壤NO3--N 累积的影响. 植物营养与肥料学报, 2000, 6(4): 397-403.
doi: 10.11674/zwyf.2000.0406
YUAN X M, TONG Y A, YANG X Y, LI X L, ZHANG F S. Effect of phosphate on soil nitrate accumulation. Plant Nutrition Fertilizer Science, 2000, 6(4): 397-403. (in Chinese)
doi: 10.11674/zwyf.2000.0406
[19] 张宏, 周建斌, 王春阳, 董放, 李凤娟. 不同栽培模式及施氮对玉米-小麦轮作体系土壤肥力及硝态氮累积的影响. 中国生态农业学报, 2010, 18(4): 693-697.
ZHANG H, ZHOU J B, WANG C Y, DONG F, LI F J. Effect of cultivation pattern and nitrogen application rate on soil fertility and nitrate accumulation under maize-wheat rotation system. Chinese Journal of Eco-Agriculture, 2010, 18(4): 693-697. (in Chinese)
[20] 邵兴芳, 徐明岗, 张文菊, 黄敏, 周显, 朱平, 高洪军. 长期有机培肥模式下黑土碳与氮变化及氮素矿化特征. 植物营养与肥料学报, 2014, 20(2): 326-335.
SHAO X F, XU M G, ZHANG W J, HUANG M, ZHOU X, ZHU P, GAO H J. Changes of soil carbon and nitrogen and characteristics of nitrogen mineralization under long-term manure fertilization practices in black soil. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 326-335. (in Chinese)
[21] 马凯, 徐玉霞, 何文鑫, 马佳俊, 马楠. 气候变化对汉中市主要粮食作物产量的影响. 江西农业学报, 2019(7): 98-103.
MA K, XU Y X, HE W X, MA J J, MA N. Effects of climate change on yield of major grain crops in Hanzhong City. Acta Agriculturae Jiangxi, 2019(7): 98-103. (in Chinese)
[22] 沈其荣, 谭金芳, 钱晓晴. 土壤肥料学通论. 北京: 高等教育出版社, 2001: 25.
SHEN Q R, TAN J F, QIAN X Q. General Theory of Soil Fertilize. Beijing: Higher Education Press, 2001: 25. (in Chinese)
[23] STANFORD G, SMITH S L. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 1972, 36(3): 465-472.
doi: 10.2136/sssaj1972.03615995003600030029x
[24] 党廷辉. 有机质、全氮、土壤质地与土壤供氮能力的关系. 陕西农业科学, 1990(1): 27-28, 43.
DANG T H. Relationship between soil texture and soil nitrogen supply capacity. Shanxi Agricultural Sciences, 1990(1): 27-28, 43. (in Chinese)
[25] 叶优良, 张福锁, 李生秀. 土壤供氮能力指标研究. 土壤通报, 2001, 32(6): 273-277.
YE Y L, ZHANG F S, LI S X. Study on soil nitrogen supplying indexes. Chinese Journal of Soil Science, 2001, 32(6): 273-277. (in Chinese)
[26] 李生秀, 晋艳, 高小妮. KCl 煮沸法浸取石灰性土壤可矿化氮存在问题及改进. 西北农林科技大学学报(自然科学版), 1992, 20(1): 11-16.
LI S X, JIN Y, GAO X N. General theory of soil fertilize. Journal of Northwest A & F University (Nature Science Edition), 1992, 20(1): 11-16. (in Chinese)
[27] STANFORD G. Effect of partial removal of soil organic nitrogen with sodium pyrophosphate or sulfuric acid solution on subsequent mineralization of nitrogen. Soil Science Society of America Journal, 1968, 32: 679-682.
doi: 10.2136/sssaj1968.03615995003200050029x
[28] 沈其荣, 史瑞和. 好气培养研究土壤氮素释放规律方法的改进. 南京农业大学学报, 1990, 2: 82-85.
SHEN Q R, SHI R H. An improvement in method of studying soil nitrogen mineralization. Journal of Nanjing Agricultural University, 1990, 2: 82-85. (in Chinese)
[29] SMITH S J, YONG L B, MILLER G E. Evaluation of soil nitrogen mineralization potential under modified field conditions. Soil Science Society of America Journal, 1977, 4: 350-358.
[30] 宇万太, 姜子绍, 周桦, 马强. 几种酸性土壤供氮力测定方法的综合评价. 中国土壤与肥料, 2009(2): 17-22.
YU W T, JIANG Z S, ZHOU H, MA Q. Integrated evaluation on indexes of nitrogen supplying capacity in acid soils. Soil and Fertilizer Sciences in China, 2009(2): 17-22. (in Chinese)
[31] 李平, 郭魏, 韩洋, 刘铎, 杜臻杰, 张彦, 齐学斌. 外源施氮对再生水灌溉设施土壤氮素矿化特征的影响. 灌溉排水学报, 2019, 38(10): 40-46.
LI P, GUO W, HAN Y, LIU D, DU Z J, ZHANG Y, QI X B. Effects of nitrogen rates on nitrogen mineralization of greenhouse soil with reclaimed water irrigation. Journal of Irrigation and Drainage, 2019, 38(10): 40-46. (in Chinese)
[32] 顾春朝, 傅民杰. 不同施肥类型对淹水稻田土壤氮素矿化的影响. 湖北农业科学, 2016, 55(13): 3322-3326.
GU C Z, FU M J. Effects of different fertilizer types on soil nitrogen mineralization in paddy under water-logging condition. Hubei Agricultural Sciences, 2016, 55(13): 3322-3326. (in Chinese)
[33] 付会芳, 李生秀. 土壤氮素矿化与土壤供氮能力Ⅱ. 矿化氮量与作物吸氮量的关系. 西北农业大学学报, 1992, 20(增刊): 53-58.
FU H F, LI S X. Soil nitrogen mineralization and soil N-supplying capacities.Ⅱ. The relationship between mineralized N and plant uptake N. Acta Universitatis Agriculturalis Boreali-Occidentails, 1992, 20(Suppl.): 53-58. (in Chinese)
[34] 孙凯, 胡丽燕, 张伟, 孟美瑶, 戴传超. 水稻根系泌氧对土壤微生物区系及氮素矿化影响的研究进展. 生态学杂志, 2016, 35(12) : 3413-3420.
SUN K, HU L Y, ZHANG W, MENG M Y, DAI C C. Effect of rice root radial oxygen loss on soil microflora and organic nitrogen mineralization: A review. Chinese Journal of Ecology, 2016, 35(12) : 3413-3420. (in Chinese)
[35] 曹竞雄, 韦梦, 陈孟次, 包秀玲, 裘琼芬. 温度对厌氧条件下不同pH水稻土氮素矿化的影响. 中国生态农业学报, 2014, 22(10): 1182-1189.
CAO J X, WEI M, CHEN M C, BAO X L, QIU Q F. Effects of temperature on soil nitrogen m ineralization in different pH paddy soils under anaerobic condition. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1182-1189. (in Chinese)
[36] 彭显龙, 刘洋, 于彩莲, 王迪. 寒地稻田土壤氮素矿化特征的研究. 中国农业科学, 2014, 47(4): 702-709.
doi: 10.3864/j.issn.0578-1752.2014.04.010
PENG X L, LIU Y, YU C L, WANG D. Study on the nitrogen mineralization characters of paddy soil in cold area. Scientia Agricultura Sinica, 2014, 47(4): 702-709. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.04.010
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!