Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1800-1810.doi: 10.3864/j.issn.0578-1752.2022.09.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat

WANG HaoLin1(),MA Yue1,LI YongHua1,LI Chao1,ZHAO MingQin1,YUAN AiJing1,QIU WeiHong1,HE Gang1,SHI Mei1,*(),WANG ZhaoHui1,2,*()   

  1. 1College of Natural Resources and Environment, Northwest A & F University/Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2021-03-05 Revised:2021-05-06 Online:2022-05-01 Published:2022-05-19
  • Contact: Mei SHI,ZhaoHui WANG E-mail:haolinw1@163.com;meishi@nwafu.edu.cn;w-zhaohui@263.net

Abstract:

【Objective】To keep the manganese (Mn) nutritional balance of wheat grains and ensure the safety, yield and quality in wheat production region of eight provinces in Northern China, the changes of concentration and accumulation of Mn in wheat grains and grains yield at different levels of soil available phosphorus (P) and different treatments of P fertilization were investigated. 【Method】During 2018-2019, 34-site field experiments were conducted with three P treatments, including farmers’ fertilizer application (FF), recommended fertilizer application based on soil nitrate and P test (RF), and recommended fertilizer application without P (RF-P). The wheat yield, the concentration of Mn in wheat grain were tested, and the effects of P fertilization on wheat yield and the Mn concentration of grain at different levels of soil available P were studied. 【Result】In wheat production region of eight provinces in Northern China, the average wheat yield was 6 066 kg·hm-2, and the average concentration of Mn in grains was 42 mg·kg-1. Those test sites with concentration of Mn in grains less than 32 mg·kg-1 or higher than 44 mg·kg-1, accounted for 8.8% and 36.8%, respectively, which suggested that the problem of high concentration of Mn in grains should be paid attention to. With the increase of soil available P, both wheat yield and concentration of Mn in grains increased significantly. The wheat yield reached to the highest when the available P was in the range of 20-30 mg·kg-1, while the concentration of Mn in grains reached to the highest when the available P>40 mg·kg-1. P fertilizer was reduced with an average of 45.4% under the RF treatment. However, the wheat yields of RF and FF were 6 358 and 6 222 kg·hm-2, respectively, and the concentration of Mn in grains were 42.8 and 43.6 mg·kg-1, respectively, which showed no significant difference. At different levels of soil available P, RF could maintain a high wheat yield. When soil available P<10 mg·kg-1, RF-P reduced not only the concentration of Mn in grains, but also reduced the wheat yield, while RF only reduced the concentration of Mn in grains. RF did not reduce the concentration of Mn in grains under other levels of soil available P. In addition, the concentration of diethylene triamine pentaacetic acid-manganese (DTPA-Mn) in soil increased following the increasing of soil available P. Furthermore, the concentration of Mn in grains were positively correlated with the concentration of soil DTPA-Mn. 【Conclusion】In wheat production region of eight provinces in Northern China, the soil available P should be maintained in the range of 20-30 mg·kg-1 to achieve high wheat yield and suitable concentration of Mn in grains. The use of RF technology would not reduce the wheat yield. RF-P reduced the concentration of Mn in grains when the soil available P<10 mg·kg-1, but there was a risk of reducing the wheat yield.

Key words: wheat, available phosphorus concentration, grain yield, phosphorus fertilizer, grain manganese concentration

Table S1

Basic physical and chemical properties of the top 0-20 cm soil layer, annual precipitation, average temperature and fertilizer rates at each experimental site in northern wheat production region of China"

Fig. 1

Frequency distribution of yield (a) and grain Mn concentration (b) of wheat in northern eight provinces wheat production region of China"

Fig. 2

The response of grain yield (a), aboveground biomass and harvest index (b) of wheat to different available P levels in 0-20 cm soils and monitor P fertilizer Error bars are standard deviations of the means. Different lowercase and capital letters represent significant differences among three treatments and different ranges of soil available P concentration at P<0.05 level, respectively. The same as below. The histogram in Figure b is the aboveground biomass, and the broken line is the trend of harvest index"

Table 1

Yield components of wheat at different available P levels in 0-20 cm soil layer"

土壤有效磷含量
Soil available P concentration (mg·kg-1)
穗数Spike number (×104 ·hm-2) 穗粒数Grain per spike 千粒重1000 grain weight (g)
农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average 农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average 农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average
<10 447a 435a 401b 428C 30a 28b 25c 28C 44.3a 44.1a 43.9a 44.1B
10—20 442a 428a 398b 424C 33a 35a 35a 34AB 47.6ab 45.8b 48.5a 47.2A
20—30 484a 487a 495a 488B 35a 36a 36a 36A 47.1a 46.1a 47.2a 46.8A
30—40 563a 568a 523a 551B 31a 32a 31a 31BC 41.7a 43.7a 42.4a 42.6B
>40 742ab 775a 725b 747A 29a 31a 29a 30C 34.2b 39.6a 38.7a 37.5C
平均Average 502a 500a 480b 32a 33a 32a 44.7a 44.6a 45.2a

Fig. 3

The response of grain Mn concentration to different available P levels in 0-20 cm soils and monitor P fertilizer"

Table 2

Grain Mn uptake, shoot Mn uptake, and Mn harvest index of wheat at different available P levels in 0-20 cm soil layer"

土壤有效磷含量
Soil available P concentration (mg·kg-1)
籽粒锰吸收量
Grain Mn uptake (g·hm-2)
地上部锰吸收量
Mn uptake in above ground part (g·hm-2)
锰收获指数
Mn harvest index (%)
农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average 农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average 农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average
<10 252a 242a 215b 236B 542a 514ab 492b 516B 47.6a 45.7a 44.2a 45.9B
10—20 277a 267a 264a 269AB 548a 527a 516a 530B 52.0a 51.9a 51.6a 51.8A
20—30 319a 326a 310b 319A 711ab 724a 648b 694A 44.2a 45.2a 48.0a 45.6B
30—40 258a 269a 260a 262B 570a 554a 602a 575AB 45.3a 50.5a 45.2a 47.0AB
>40 221ab 245a 212b 226B 523b 615a 437c 525B 40.1a 43.9a 47.8a 44.3B
平均Average 273a 273a 255b 583a 582a 534b 47.7a 48.2a 48.0a

Table 3

P application rates and DTPA-Mn concentration in 0-20 cm soil layer"

土壤有效磷含量
Soil available P concentration ( mg·kg-1)
施磷量P rate (kg·hm-2) 土壤有效锰Soil DTPA-Mn concentration (mg·kg-1)
农户施肥FF 监控施肥RF 农户施肥FF 监控施肥RF 监控无磷RF-P 平均Average
<10 110a 61b 8.5a 7.9a 7.6a 8.0B
10—20 134a 80b 6.5a 6.6a 6.8a 6.6B
20—30 146a 70b 7.9a 7.4a 7.5a 7.6B
30—40 149a 68b 9.3a 10.0a 10.4a 9.9B
>40 114a 68b 39.0a 35.5a 38.1a 37.5A
平均Average 130a 71b 11.3a 10.7a 12.1a
与小麦籽粒锰含量的相关系数
Correlation coefficient with wheat grain Mn concentration
0.940* 0.918* 0.817
[1] BROOKS A, WOO K C, WONG S C. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Research, 1988, 15(2): 133-141. doi: 10.1007/BF00035257.
doi: 10.1007/BF00035257
[2] KHAN A, LU G Y, AYAZ M, ZHANG H T, WANG R J, LV F L, YANG X Y, SUN B H, ZHANG S L. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture, Ecosystems & Environment, 2018, 256: 1-11. doi: 10.1016/j.agee.2018.01.006.
doi: 10.1016/j.agee.2018.01.006
[3] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768. doi: 10.3864/j.issn.0578-1752.2017.14.012.
doi: 10.3864/j.issn.0578-1752.2017.14.012
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. doi: 10.3864/j.issn.0578-1752.2017.14.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.012
[4] 张伟. 供磷水平对小麦玉米锌吸收、累积的影响及其作用机制[D]. 北京: 中国农业大学, 2017.
ZHANG W. The mechanisms of zinc uptake and accumulation in wheat and maize as affected by phosphorus levels[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[5] ULLAH A, FAROOQ M, REHMAN A, ARSHAD M S, SHOUKAT H, NADEEM A, NAWAZ A, WAKEEL A, NADEEM F. Manganese nutrition improves the productivity and grain biofortification of bread wheat in alkaline calcareous soil. Experimental Agriculture, 2018, 54(5): 744-754. doi: 10.1017/s0014479717000369.
doi: 10.1017/s0014479717000369
[6] DISMUKES G C. The metal centers of the photosynthetic oxygen- evolving complex. Photochemistry and Photobiology, 1986, 43(1): 99-115. doi: 10.1111/j.1751-1097.1986.tb05598.x.
doi: 10.1111/j.1751-1097.1986.tb05598.x.
[7] ROBSON A D. Manganese in Soils and Plants. Glen Osmond: Kluwer Academic Publishers, 1988: 329-333.
[8] PUBLICATIONS W. Book review: Trace elements in human nutrition and health. Nutrition and Health, 1996, 11: 133-134. doi: 10.1177/026010609601100206.
doi: 10.1177/026010609601100206
[9] KHAN K, WASSERMAN G A, LIU X H, AHMED E, PARVEZ F, SLAVKOVICH V, LEVY D, MEY J, VAN GEEN A, GRAZIANO J H, FACTOR-LITVAK P. Manganese exposure from drinking water and children's academic achievement. Neuro Toxicology, 2012, 33(1): 91-97. doi: 10.1016/j.neuro.2011.12.002.
doi: 10.1016/j.neuro.2011.12.002
[10] BOUCHARD M F, SAUVÉ S, BARBEAU B, LEGRAND M, BRODEUR M È, BOUFFARD T, LIMOGES E, BELLINGER D C, MERGLER D. Intellectual impairment in school-age children exposed to manganese from drinking water. Environmental Health Perspectives, 2011, 119(1): 138-143. doi: 10.1289/ehp.1002321.
doi: 10.1289/ehp.1002321
[11] BOUCHARD M, LAFOREST F, VANDELAC L, BELLINGER D, MERGLER D. Hair manganese and hyperactive behaviors: Pilot study of school-age children exposed through tap water. Environmental Health Perspectives, 2007, 115(1): 122-127. doi: 10.1289/ehp.9504.
doi: 10.1289/ehp.9504
[12] YE Q, PARK J E, GUGNANI K, BETHARIA S, PINO-FIGUEROA A, KIM J. Influence of iron metabolism on manganese transport and toxicity. Metallomics, 2017, 9(8): 1028-1046. doi: 10.1039/c7mt00079k.
doi: 10.1039/c7mt00079k
[13] 中国营养学会. 中国居民膳食营养素参考摄入量. 2013版. 北京: 科学出版社, 2014.
Chinese Nutrition Society. Chinese Dietary Reference Intakes. 2013 ed. Beijing: Science Press, 2014. (in Chinese)
[14] 国家卫生计生委. 中国居民营养与慢性病状况报告-2015年 北京: 人民卫生出版社, 2015.
National Health and Family Planning Commission Disease Prevention and Control Bureau. Report on the Status of Nutrition and Chronic Diseases of Chinese Residents (2015). Beijing: People's Medical Publishing House, 2015. (in Chinese)
[15] SHI M, HOU S B, SUN Y Y, DANG H Y, SONG Q Y, JIANG L G, CAO W, WANG H L, HE X H, WANG Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. Journal of Cleaner Production, 2020, 264: 121677. doi: 10.1016/j.jclepro.2020.121677.
doi: 10.1016/j.jclepro.2020.121677
[16] 冯媛媛, 申艳, 徐明岗, 田应兵, 任凤铃, 段英华. 施磷量与小麦产量的关系及其对土壤、气候因素的响应. 植物营养与肥料学报, 2019, 25(4): 683-691. doi: 10.11674/zwyf.18171.
doi: 10.11674/zwyf.18171
FENG Y Y, SHEN Y, XU M G, TIAN Y B, REN F L, DUAN Y H. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683-691. doi: 10.11674/zwyf. 18171. (in Chinese)
doi: 10.11674/zwyf.18171
[17] 曲浩彬. 施磷量对不同穗型小麦分蘗发生及产量的影响[D]. 泰安: 山东农业大学, 2020.
QU H B. Effects of phosphorus application on tillering occurrence and yield of wheat with different panicle types[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[18] 李茹, 单燕, 李水利, 林文, 刘芬, 同延安. 陕西麦田土壤肥力与施肥现状评估. 麦类作物学报, 2015, 35(1): 105-110. doi: 10.7606/j.issn.1009-1041.2015.01.16.
doi: 10.7606/j.issn.1009-1041.2015.01.16
LI R, SHAN Y, LI S L, LIN W, LIU F, TONG Y N. Analysis of soil fertility and fertilization of wheat field in Shaanxi. Journal of Triticeae Crops, 2015, 35(1): 105-110. doi: 10.7606/j.issn.1009-1041.2015.01.16. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2015.01.16
[19] RAHIM A, RANJHA A M, MOMIN R, WARAICH E. Effect of phosphorus application and irrigation scheduling on wheat yield and phosphorus use efficiency. Soil and Environment, 2010, 29(1): 15-22.
[20] 赵荣芳, 邹春琴, 张福锁. 长期施用磷肥对冬小麦根际磷、锌有效性及其作物磷锌营养的影响. 植物营养与肥料学报, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003.
doi: 10.3321/j.issn:1008-505X.2007.03.003
ZHAO R F, ZOU C Q, ZHANG F S. Effects of long-term P fertilization on P and Zn availability in winter wheat rhizoshpere and their nutrition. Plant Nutrition and Fertilizer Science, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.03.003
[21] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1/2): 27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y
[22] 惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012.
doi: 10.3864/j.issn.0578-1752.2017.16.012
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.012
[23] 黄德明, 徐秋明, 李亚星, 姚志东. 土壤氮、磷营养过剩对微量元素锌、锰、铁、铜有效性及植株中含量的影响. 植物营养与肥料学报, 2007, 13(5): 966-970. doi: 10.3321/j.issn:1008-505x. 2007.05.032.
doi: 10.3321/j.issn:1008-505x. 2007.05.032
HUANG D M, XU Q M, LI Y X, YAO Z D. Influence of soil N and P excess on the availability of Zn, Mn, Fe, Cu and there content in plant. Plant Nutrition and Fertilizer Science, 2007, 13(5): 966-970. doi: 10.3321/j.issn:1008-505x.2007.05.032. (in Chinese)
doi: 10.3321/j.issn:1008-505x. 2007.05.032
[24] ZHU Y G, SMITH F A, SMITH S E. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research, 2002, 53(2): 211. doi: 10.1071/ar01085.
doi: 10.1071/ar01085
[25] MARSH K B, PETERSON L A, MCCOWN B H. A microculture method for assessing nutrient uptake II. The effect of temperature on manganese uptake and toxicity in potato shoots. Journal of Plant Nutrition, 1989, 12(2): 219-232. doi: 10.1080/01904168909363947.
doi: 10.1080/01904168909363947
[26] 吴照辉, 贺立源, 严昶, 门玉英. 低磷胁迫对水稻铁、锰吸收和积累的影响. 应用与环境生物学报, 2010, 16(2):185-191.
WU Z H, HE L Y, YAN C, MEN Y Y. Effect of low phosphorus stress on Fe and Mn absorption and accumulation by rice shoots. Chinese Journal of Applied & Environmental Biology, 2010, 16(2):185-191. (in Chinese)
[27] NEILSEN D, NEILSEN G H, SINCLAIR A H, LINEHAN D J. Soil phosphorus status, pH and the manganese nutrition of wheat. Plant and Soil, 1992, 145(1): 45-50. doi: 10.1007/BF00009540.
doi: 10.1007/BF00009540
[28] SARKAR D, PANDEY S K, SUD K C, CHANEMOUGASOUNDHARAM A. In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.). Plant Science, 2004, 167(5): 977-986. doi: 10.1016/j.plantsci.2004.05.022.
doi: 10.1016/j.plantsci.2004.05.022
[29] NOGUEIRA M A, NEHLS U, HAMPP R, PORALLA K, CARDOSO E J B N. Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil, 2007, 298(1/2): 273-284. doi: 10.1007/s11104-007-9379-1.
doi: 10.1007/s11104-007-9379-1
[30] 曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011.
doi: 10.3864/j.issn.0578-1752.2014.19.011
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.19.011
[31] 戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965. doi: 10.11766/trxb201212100507.
doi: 10.11766/trxb201212100507
DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. doi: 10.11766/trxb201212100507. (in Chinese)
doi: 10.11766/trxb201212100507
[32] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2722-2734. doi: 10.3864/j.issn.0578-1752.2018.14.010.
doi: 10.3864/j.issn.0578-1752.2018.14.010
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14): 2722-2734. doi: 10.3864/j.issn.0578-1752.2018.14.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.010
[33] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93. doi: 10.3864/j.issn.0578-1752.2020.01.008.
doi: 10.3864/j.issn.0578-1752.2020.01.008
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1): 81-93. doi: 10.3864/j.issn.0578-1752.2020.01.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.01.008
[34] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[35] 何刚, 王朝辉, 李富翠, 戴健, 李强, 薛澄, 曹寒冰, 王森, 刘慧, 罗来超, 黄明. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响. 中国农业科学, 2016, 49(9):1657-1671.
HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, LIU H, LUO L C, HUANG M. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland. Scientia Agricultura Sinica, 2016, 49(9):1657-1671. (in Chinese)
[36] XI B, ZHAI L M, LIU J, LIU S, WANG H Y, LUO C Y, REN T Z, LIU H B. Long-term phosphorus accumulation and agronomic and enviromental critical phosphorus levels in Haplic Luvisol soil. Northern China. Journal of Integrative Agriculture, 2016, 15(1): 200-208. doi: 10.1016/S2095-3119(14)60947-3.
doi: 10.1016/S2095-3119(14)60947-3
[37] 郭斗斗, 黄绍敏, 张水清, 张珂珂, 宋晓. 潮土小麦和玉米Olsen-P农学阈值及其差异分析. 植物营养与肥料学报, 2017, 23(5): 1184-1190. doi: 10.11674/zwyf.17043.
doi: 10.11674/zwyf.17043
GUO D D, HUANG S M, ZHANG S Q, ZHANG K K, SONG X. Threshold values of soil Olsen-P for maize and wheat in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1184-1190. doi: 10.11674/zwyf.17043. (in Chinese)
doi: 10.11674/zwyf.17043
[38] SHI L L, SHEN M X, LU C Y, WANG H H, ZHOU X W, JIN M J, WU T D. Soil phosphorus dynamic, balance and critical P values in long-term fertilization experiment in Taihu Lake region, China. Journal of Integrative Agriculture, 2015, 14(12): 2446-2455. doi: 10.1016/S2095-3119(15)61183-2.
doi: 10.1016/S2095-3119(15)61183-2
[39] ADAMS F. The Role of Phosphorus in Agriculture. Amsterdam: Elsevier, 1980: 655-680.
[40] 张淑香, 王小彬, 金柯, 李秀英, 周勇, 姚宇卿. 干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响. 植物营养与肥料学报, 2001, 7(4): 391-396. doi: 10.3321/j.issn:1008-505X.2001.04.006.
doi: 10.3321/j.issn:1008-505X.2001.04.006
ZHANG S X, WANG X B, JIN K, LI X Y, ZHOU Y, YAO Y Q. Effect of different N and P levels on availability of zinc, copper, manganese and iron under arid conditions. Plant Nutrition and Fertilizer Science, 2001, 7(4): 391-396. doi: 10.3321/j.issn: 1008-505X.2001.04.006. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2001.04.006
[41] CHASSOT A, RICHNER W. Root characteristics and phosphorus uptake of maize seedlings in a bilayered soil. Agronomy Journal, 2002, 94(1): 118. doi: 10.2134/agronj2002.0118.
doi: 10.2134/agronj2002.0118
[42] 廖红, 严小龙. 菜豆根构型对低磷胁迫的适应性变化及基因型差异. 植物学报, 2000, 42(2): 158-163.
LIAO H, YAN X L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica, 2000, 42(2): 158-163. (in Chinese)
[43] 金剑, 王光华, 刘晓冰, 陈雪丽, 李兴国. 不同施磷量对大豆苗期根系形态性状的影响. 大豆科学, 2006, 25(4): 360-364. doi: 10.3969/j.issn.1000-9841.2006.04.005.
doi: 10.3969/j.issn.1000-9841.2006.04.005
JIN J, WANG G H, LIU X B, CHEN X L, LI X G. Effect of different phosphorus regimes on root morphological characteristics of soybean seedling. Soybean Science, 2006, 25(4): 360-364. doi: 10.3969/j.issn.1000-9841.2006.04.005. (in Chinese)
doi: 10.3969/j.issn.1000-9841.2006.04.005
[44] TANG X, MA Y B, HAO X Y, LI X Y, LI J M, HUANG S M, YANG X Y. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 2009, 323(1/2): 143-151. doi: 10.1007/s11104-009-9919-y.
doi: 10.1007/s11104-009-9919-y
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!