Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1546-1556.doi: 10.3864/j.issn.0578-1752.2022.08.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis

LIAO Ping1(),MENG Yi1,WENG WenAn1,HUANG Shan2(),ZENG YongJun2,ZHANG HongCheng1   

  1. 1Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Industrial Engineering Research Center of High Quality Japonica Rice/Yangzhou University, Yangzhou 225009, Jiangsu
    2Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Agricultural University, Nanchang 330045
  • Received:2021-06-28 Accepted:2021-10-08 Online:2022-04-16 Published:2022-05-11
  • Contact: Shan HUANG E-mail:p.liao@yzu.edu.cn;ecohs@126.com

Abstract:

【Objective】Hybrid rice has a higher yield potential than inbred rice, but the difference in nitrogen (N) use efficiency between hybrid rice and inbred rice remains unclear. The objective of this study was to examine the effects of hybrid rice on yield and N use efficiency through meta-analysis techniques. 【Method】The peer-reviewed articles were collected, which included inbred rice as the control in comparison with a hybrid rice treatment. In total, the dataset included 56 studies involving 367 paired observations. Then, the meta-analysis was conducted to identify the response of grain yield and N use efficiency to hybrid rice as affected by hybrid type, N rate, the number of N application, soil total N content, the ratio of soil organic carbon to N, and soil texture. 【Result】Overall, the hybrid rice significantly increased rice yield (+11%) and biomass (+14%), but did not affect harvest index compared with inbred rice. Hybrid rice could improve rice yield relative to inbred rice under various N rates. However, the increase in rice yield under hybrid rice reduced with increasing N application rates. Moreover, the hybrid rice significantly increased N uptake, N physiological efficiency, and N recovery efficiency by 8.1%, 2.9%, and 3.6 units, respectively. 【Conclusion】Hybrid rice could improve yield and N use efficiency relative to inbred rice, which provided an insight to evaluate the effect of hybrid rice on grain yield and N use efficiency in China.

Key words: hybrid rice, inbred rice, yield, N use efficiency, meta-analysis

Table 1

Overview of the hybrid rice experiments included in the meta-analysis"

参考文献1
Reference
杂交稻
类型2
Hybrid
type
氮肥施用量
N rate
(kg·hm-2)
土壤全氮
Soil total
N (g·kg-1)
土壤碳氮比
Soil C﹕N
土壤质地3
Soil texture
产量
Yield
生物量
Biomass
收获指数
Harvest index
氮素吸收
N uptake
氮素生理
利用率
N physiological efficiency
氮素回收率
N recovery efficiency
1 I 0/100/125 NA NA NA NA NA NA NA NA
2 I 196 NA NA NA NA NA NA NA NA
3 I 0/150/225 NA NA H NA NA NA
4 IJ 0/200/300/400 2.09 6.9 L NA NA NA
5 I/J 143 2.00/2.50 9.8/9.0 H NA NA NA NA NA
6 I 0/200 2.18 11.3 H NA
7 IJ 200 2.02 11.1 H NA NA NA NA
8 I 0/90/180/270/ 360 1.52 5.5 L NA NA
9 IJ 0/270/300/360 1.35 10.0 L NA NA
10 I 150 2.70 9.9 NA NA NA
11 IJ 300 1.70 8.8 H NA NA
12 I 0/120/150 2.37 9.5 H
13 I 90/180 1.80 13.2 H NA
14 I 0/90 1.90/2.10 6.8/7.6 H NA
15 I/IJ 100 1.19 13.0 H NA
16 J 270 1.85 8.8 H NA
17 I 0/113/161/176/225 1.58/1.59/1.68 10.1/10.6/11.7 NA
18 J/IJ 0/60/120/180 1.26 9.6 H NA NA NA NA NA
19 I 0/120/165/210 2.40 9.0 H NA NA NA NA NA
20 I 0/150/180/225 2.40 9.0 H NA
21 I 0/135/150/225 2.40/3.30 7.5/9.0 H NA NA NA
22 J 0/150/300/450 NA NA NA NA NA NA NA NA
23 J 0/225 2.70 3.6 L NA NA NA NA NA
24 I 0/150 1.25 10.9 L NA
25 I/IJ 300 1.60 13.9 NA NA NA NA
26 I 150/300 1.12 10.9 L NA NA NA NA
27 I 0/40/80/120/ 160/200/240 2.54 10.7 L NA NA NA NA
28 I/IJ 263 1.30 10.7 L NA NA NA
29 I 0/120 1.14 19.9 L NA
30 I 0/90/180/270/ 360 1.97 5.9 NA NA NA NA
31 I 150 NA NA H NA NA
32 I 0/120/165/210 2.40 9.0 H NA NA NA
33 I 120/150 1.76 NA NA NA NA
34 I 150 1.59 9.4 L NA NA NA NA NA
参考文献1
Reference
杂交稻
类型2
Hybrid
type
氮肥施用量
N rate
(kg·hm-2)
土壤全氮
Soil total
N (g·kg-1)
土壤碳氮比
Soil C﹕N
土壤质地3
Soil texture
产量
Yield
生物量
Biomass
收获指数
Harvest index
氮素吸收
N uptake
氮素生理
利用率
N physiological efficiency
氮素回收率
N recovery efficiency
35 I 180 1.70 13.7 NA NA NA NA NA
36 IJ 0/150/225/300/375 1.77 14.0 NA NA NA NA
37 I 0/135/180/225 NA NA NA NA NA NA NA
38 I 200 1.59 9.4 L NA NA NA NA NA
39 I 0/90/130/170/ 210/250 2.34/2.62 7.3/8.0 L NA NA
40 I/IJ 270 1.60 13.9 L NA NA NA
41 I 0/50/100/150/ 200/250 1.49 10.0 H NA NA NA
42 I/IJ 263 1.70 9.1 H NA NA
43 I/IJ 263 1.40/1.70 9.1/10.5 L/H NA NA NA NA NA
44 I/IJ 263 1.60 10.6 NA NA NA NA NA
45 I 375 NA NA NA NA NA NA
46 I 0/150 NA NA NA NA NA NA NA NA
47 I 150/300 1.35 10.3 L NA NA NA
48 IJ 0/210 2.70/2.90 6.7/7.2 H NA NA NA NA
49 I 90/180 1.79/1.83 6.3/7.5 H NA
50 I 150/250 NA NA L/H NA NA NA NA NA
51 I 200 1.22 10.1 L NA NA NA NA
52 IJ 0/270/300 1.35 10.2 L NA NA NA
53 J/IJ 0/270/300 1.35 10.0 L NA NA NA
54 I/J 180 1.58 16.7 NA NA NA NA
55 J 0/140/180/220 1.28 14.1 L NA NA NA
56 I 150 2.20 7.7 H NA NA

Fig. 1

Effects of hybrid rice on grain yield (a), biomass (b), and harvest index (c) Numbers in the bracket indicated the number of observations/studies within each category. Error bars indicated 95% confidence intervals. The same as below"

Table 2

Effects of hybrid rice on yield, biomass, harvest index, N uptake, N physiological efficiency, and N recovery efficiency (P-values)"

分类变量
Categorical variable
产量
Rice yield
生物量
Biomass
收获指数
Harvest index
氮素吸收
N uptake
氮素生理利用率
N physiological efficiency
氮素回收率
N recovery efficiency
杂交稻类型 Hybrid type <0.001 <0.001 0.474 <0.001 0.896 0.387
氮肥施用量 N rate <0.001 0.681 0.676 0.328 0.727 <0.001
氮肥施用次数 N application number 0.198 0.914 0.124 0.740 0.079 0.570
土壤全氮 Soil total N 0.296 0.760 0.700 0.982 <0.05 0.198
土壤碳氮比 Soil C﹕N <0.05 0.253 0.404 0.557 0.157 <0.001
土壤质地 Soil texture 0.873 0.288 0.137 <0.05 0.131 0.236

Fig. 2

Effects of hybrid rice on N uptake (a), N physiological efficiency (b), and N recovery efficiency (c)"

[1] ALEXANDRATOS N, BRUINSMA J. World Agriculture Towards 2030/2050: The 2012 Revision. Food and Agriculture Organization of the United Nations, Rome, 2012. https://www.fao.org/3/ap106e/ap106e.pdf.
[2] YUAN L P. Increasing yield potential in rice by exploitation of heterosis//Virmani S S. Hybrid Rice Technology: New Development and Future Prospects. International Rice Research Institute, Los Baños, Philippines,1-6.
[3] JIANG P, XIE X B, HUANG M, ZHOU X F, ZHANG R C, CHEN J N, WU D D, XIA B, XIONG H, XU F X, ZOU Y B. Potential yield increase of hybrid rice at five locations in southern China. Rice, 2016, 9(1): 1-14.
doi: 10.1186/s12284-015-0073-2
[4] YUAN L P. Development of hybrid rice to ensure food security. Rice Science, 2014, 21(1): 1-2.
doi: 10.1016/S1672-6308(13)60167-5
[5] MA G H, YUAN L P. Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture, 2015, 14(2): 197-205.
doi: 10.1016/S2095-3119(14)60922-9
[6] 彭少兵. 转型时期杂交水稻的困境与出路. 作物学报, 2016, 42(3): 313-319.
doi: 10.3724/SP.J.1006.2016.00313
PENG S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agronomica Sinica, 2016, 42(3): 313-319.
doi: 10.3724/SP.J.1006.2016.00313
[7] YUAN S, NIE L X, WANG F, HUANG J L, PENG S B. Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Research, 2017, 210: 129-135.
doi: 10.1016/j.fcr.2017.05.024
[8] XIA L L, LI X B, MA Q Q, LAM S K, WOLF B, KIESE R, BUTTERBACH-BAHL K, CHEN D L, LI Z A, YAN X Y. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes. Global Change Biology, 2020, 26(4): 2292-2303.
doi: 10.1111/gcb.14958
[9] MA R Y, ZOU J W, HAN Z Q, YU K, WU S, LI Z F, LIU S W, NIU S L, HORWATH W R, ZHU-BARKER X. Global soil‐derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop‐specific emission factors. Global Change Biology, 2021, 27(4): 855-867.
doi: 10.1111/gcb.15437
[10] PENG S B, KHUSH G S, VIRK P, TANG Q Y, ZOU Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108(1): 32-38.
doi: 10.1016/j.fcr.2008.04.001
[11] LIAO P, SUN Y N, JIANG Y, ZENG Y J, WU Z M, HUANG S. Hybrid rice produces a higher yield and emits less methane. Plant, Soil and Environment, 2019, 65(11): 549-555.
doi: 10.17221/330/2019-PSE
[12] HUANG L Y, YANG D S, LI X X, PENG S B, WANG F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 2019, 233: 49-58.
doi: 10.1016/j.fcr.2019.01.005
[13] 高帅, 潘勇辉, 孙玉明, 郭俊杰, 王成孜, 凌宁, 张燕, 郭世伟. 不同供氮水平对常规稻与杂交稻产量及氮素利用效率的影响. 南京农业大学学报, 2018, 41(6): 1061-1069.
GAO S, PAN Y H, SUN Y M, GUO J J, WANG C Z, LING N, ZHANG Y, GUO S W. Effects of different nitrogen supply on yield and nitrogen utilization of conventional rice and hybrid rice. Journal of Nanjing Agricultural University, 2018, 41(6): 1061-1069. (in Chinese)
[14] 吕茹洁, 商庆银, 陈乐, 曾勇军, 胡水秀, 杨秀霞. 基于临界氮浓度的水稻氮素营养诊断研究. 植物营养与肥料学报, 2018, 24(5): 1396-1405.
LÜ R J, SHANG Q Y, CHEN L, ZENG Y J, HU S X, YANG X X. Study on diagnosis of nitrogen nutrition in rice based on critical nitrogen concentration. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1396-1405. (in Chinese)
[15] ZHANG H, HOU D P, PENG X L, MA B J, SHAO S M, JING W J, GU J F, LIU L J, WANG Z Q, LIU Y Y, YANG J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. Journal of Integrative Agriculture, 2019, 18(12): 2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[16] 马立晓, 李婧, 邹智超, 蔡岸冬, 张爱平, 李贵春, 杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析. 中国农业科学, 2021, 54(9): 1913-1925.
MA L X, LI J, ZOU Z C, CAI A D, ZHANG A P, LI G C, DU Z L. Effect of no-tillage and straw returning on soil C-cycling enzyme activities in China: Meta-analysis. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925. (in Chinese)
[17] 苑俊丽, 梁新强, 李亮, 叶玉适, 傅朝栋, 宋清川. 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析. 中国农业科学, 2014, 47(17): 3414-3423.
YUAN J L, LIANG X Q, LI L, YE Y S, FU C D, SONG Q C. Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China: A meta-analysis. Scientia Agricultura Sinica, 2014, 47(17): 3414-3423. (in Chinese)
[18] LIAO P, HUANG S, ZENG Y J, SHAO H, ZHANG J, VAN GROENIGEN K J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta-analysis. Plant and Soil, 2021, 465: 157-169.
doi: 10.1007/s11104-021-05004-w
[19] 魏颖娟, 夏冰, 赵杨, 邹应斌. 15N示踪不同施氮量对超级稻产量形成及氮素吸收的影响. 核农学报, 2016, 30(4): 783-791.
WEI Y J, XIA B, ZHAO Y, ZOU Y B. Effects of nitrogen application on yield formation and the nitrogen absorption and utilization of super rice based on 15N-tracing. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 783-791. (in Chinese)
[20] XU L, YUAN S, WANG X Y, YU X, PENG S B. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food and Energy Security, 2021, 10(2): 341-350.
doi: 10.1002/fes3.276
[21] LIU X, MAO P N, LI L H, MA J. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis. Science of the Total Environment, 2019, 656: 969-976.
doi: 10.1016/j.scitotenv.2018.11.396
[22] JIANG Y, CARRIJO D, HUANG S, CHEN J, BALAINE N, ZHANG W J. VAN GROENIGEN K J, LINQUIST B A. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 2019, 234: 47-54.
doi: 10.1016/j.fcr.2019.02.010
[23] DE GRAAFF M A, VAN GROENIGEN K J, SIX J, HUNGATE B, VAN KESSEL C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 2006, 12(11): 2077-2091.
doi: 10.1111/j.1365-2486.2006.01240.x
[24] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[25] VAN GROENIGEN K J, OSENBERG C W, TERRER C, CARRILLO Y, DIJKSTRA F A, HEATH J, NIE M, PENDALL E, PHILLIPS R P, HUNGATE B A. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Global Change Biology, 2017, 23(10): 4420-4429.
doi: 10.1111/gcb.13752
[26] BUENO C S, LAFARGE T. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 1. Hybrids accumulate more biomass during each phonological phase. Field Crops Research, 2009, 112: 229-237.
doi: 10.1016/j.fcr.2009.03.006
[27] LIAO P, HUANG S, VAN GESTEL N C, ZENG Y J, VAN GROENIGEN K J. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 2018, 216: 217-224.
doi: 10.1016/j.fcr.2017.11.026
[28] WEI H H, LI C, XING Z P, WANG W T, DAI Q G, ZHOU G S, WANG L, XU K, HUO Z Y, GUO B W, WEI H Y, ZHANG H C. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China. Journal of Integrative Agriculture, 2016, 15(1): 50-62.
doi: 10.1016/S2095-3119(15)61082-6
[29] WEI H H, HU L, ZHU Y, XU D, ZHENG L M, CHEN Z F, HU Y J, CUI P Y, GUO B W, DAI Q G, ZHANG H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[30] KAMIJI Y, YOSHIDA H, PALTA J A, SAKURATANI T, SHIRAIWA T. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 2011, 122(3): 242-247.
doi: 10.1016/j.fcr.2011.03.016
[31] HUANG L Y, SUN F, YUAN S, PENG S B, WANG F. Responses of candidate green super rice and super hybrid rice varieties to simplified and reduced input practice. Field Crops Research, 2018, 218: 78-87.
doi: 10.1016/j.fcr.2018.01.006
[32] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7): 1397-1409.
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze river. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409. (in Chinese)
[33] TANG J C, SUN Z G, CHEN Q H, DAMARIS R N, LU B L, HU Z R. Nitrogen fertilizer induced alterations in the root proteome of two rice cultivars. International Journal of Molecular Sciences, 2019, 20(15): 3674.
doi: 10.3390/ijms20153674
[34] 易艳红, 王文霞, 曾勇军, 谭雪明, 吴自明, 陈雄飞, 潘晓华, 石庆华, 曾研华. 人工模拟机械开沟穴直播提高早籼稻茎秆抗倒伏能力及产量. 中国农业科学, 2019, 52(15): 2729-2742.
YI Y H, WANG W X, ZENG Y J, TAN X M, WU Z M, CHEN X F, PAN X H, SHI Q H, ZENG Y H. Artificial simulation of hill-drop drilling mechanical technology to improve yield and lodging resistance of early season indica rice. Scientia Agricultura Sinica, 2019, 52(15): 2729-2742. (in Chinese)
[35] 王少博, 曹亚倩, 冯倩倩, 郭亮亮, 梁海, 王雪洁, 韩惠芳, 宁堂原. 保护性耕作对棕壤粒径分形特征及碳氮比分布的影响. 植物营养与肥料学报, 2019, 25(5): 792-804.
WANG S B, CAO Y Q, FENG Q Q, GUO L L, LIANG H, WANG X J, HAN H F, NING T Y. Impacts of conservation tillage on soil particulate composition and distribution of soil carbon and nitrogen in brown soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 792-804. (in Chinese)
[36] 袁隆平. 中国超级杂交稻育种技术的未来展望. 中国乡村发现, 2015, 30(1): 18-21.
YUAN L P. The prospect of Chinese super hybrid rice breeding techniques. Chinese Rural Discovery, 2015, 30(1): 18-21. (in Chinese)
[37] 夏冰, 刘清波, 邓念丹. 不同基因型水稻氮素的吸收和利用效率研究综述. 作物研究, 2008, 22(4): 288-292.
XIA B, LIU Q B, DENG N D. Review on genotype differences in nitrogen uptake and utilization efficiency in rice. Crop Research, 2008, 22(4): 288-292. (in Chinese)
[38] WALKER T W, BOND J A, OTTIS B V, GERARD P D, HARRELL D L. Hybrid rice response to nitrogen fertilization for midsouthern United States rice production. Agronomy Journal, 2008, 100(2): 381-386.
doi: 10.2134/agronj2007.0047
[39] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, BURESH R, WITT C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9): 1095-1103.
PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, BURESH R, WITT C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002, 35(9): 1095-1103. (in Chinese)
[40] 彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华. 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响. 中国农业科学, 2018, 51(18): 3614-3624.
PENG W F, LÜ W S, HUANG S, ZENG Y J, PAN X H, SHI Q H. Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624. (in Chinese)
[41] QUAN Z, ZHANG X, FANG Y T, DAVIDSON E A. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nature Food, 2021, 2(4): 241-245.
doi: 10.1038/s43016-021-00263-3
[42] 霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2012, 38(10): 1908-1919.
doi: 10.3724/SP.J.1006.2012.01908
HUO Z Y, LI J, ZHANG H C, DAI Q G, XU K, WEI H Y, GONG J L. Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agronomica Sinica, 2012, 38(10): 1908-1919. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01908
[43] 李玥, 李应洪, 赵建红, 孙永健, 徐徽, 严奉君, 谢华英, 马均. 缓控释氮肥对机插稻氮素利用特征及产量的影响. 浙江大学学报, 2015, 41(6): 673-684.
LI Y, LI Y H, ZHAO J H, SUN Y J, XU H, YAN F J, XIE H Y, MA J. Effects of slow- and controlled-release nitrogen fertilizer on nitrogen utilization characteristics and yield of machine-transplanted rice. Journal of Zhejiang University, 2015, 41(6): 673-684. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[9] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[10] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[13] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[14] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!