Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 4024-4034.doi: 10.3864/j.issn.0578-1752.2020.19.015

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission

DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai   

  1. College of Agronomy, Henan Agricultural University/National Engineering Research Center for Wheat, Zhengzhou 450002
  • Received:2019-12-17 Accepted:2020-02-16 Online:2020-10-01 Published:2020-10-19
  • Contact: YingXin XIE

Abstract:

【Objective】In recent years, the biochar has been widely concerned due to its some positive roles in soil improvement, agricultural production, and carbon sequestration and emission reduction. The purpose of this experiment was to reveal the microbiological mechanism of biochar on crop yield and nitrous oxide (N2O) emission and to provide a theoretical basis for extending application of biochar in agriculture.【Method】A fixed field experiment with successive straw-based biochar amended at 0 (BC0, CK), 2.25 (BCL, low rate), 6.75 (BCM, medium rate), and 11.25 t·hm-2(BCH, high rate) was carried out in the typical farmland with fluvo-aquic soil in Huanghuai area of China. Effect of successive biochar addition after six year on nitrous oxide (N2O) emission, nitrogen (N) functional genes and grain yield of summer maize were studied by field observation, chemical analysis and real-time quantitative polymerase chain reaction (qPCR) in laboratory.【Result】Compared to BC0, biochar application significantly increased grain yield of summer maize with the maximum value (10 811 kg·hm-2) under BCM treatment, and also significantly reduced N2O emissions with the better performance for BCM during summer maize season. Compared with BC0, biochar application could significantly improve inorganic nitrogen storage and moisture content in topsoil. In addition, following biochar application rate, the soil AOA gene abundance increased first and then decreased with the highest gene copy number in BCM treatment at the bellmouth stage and maturity stage of summer maize, while the higher AOB gene abundance under BCH and BCM treatment presented respectively at the bellmouth stage and maturity stage of summer maize. Similar to nitrification function related genes (AOA and AOB), compared with BC0, the medium and high-rate biochar application (BCM, BCH) also significantly increased the copy number of denitrification function related genes (nirK, nirS, nosZ) at the bellmouth stage and maturity stage of summer maize. Correlation analysis indicated that the significantly negative correlation was found between N2O emissions, NO3-, moisture content (MO) and the expression of the AOA, AOB, nirK, nirS, and nosZ genes in topsoil at maturity of summer maize.【Conclusion】Successive biochar addition could reduce N2O emission by increasing the gene abundance of soil N transformation, and increase crop yield by improving inorganic nitrogen storage and moisture content in topsoil. Overall, the treatment with 6.75 t·hm-2 biochar led to the best comprehensive performance in the study region.

Key words: biochar, farmland, soil microbial, N functional genes, N2O emission, summer maize

Fig. 1

The N2O sampling device in farmland"

Table 1

Primers and thermal profiles used in this study"

扩增基因
Target
引物
Primer
序列 (5′— 3′)
Sequence (5′- 3′)
荧光定量PCR程序
Real-time PCR profiles
参考文献
References
AOA Arch-amoA F STAATGGTCTGGCTTAGACG 95℃ 5 min;95℃ 30 s,58℃ [31]
Arch-amoA R GCGGCCATCCATCTGTATGT 30 s,72℃ 1 min,35 cycles
AOB amoA-1F GGGGTTTCTACTGGTGGT 95℃ 5 min;95℃ 30 s,58℃ [32]
amoA-2R CCCCTCKGSAAAGCCTTCTTC 30 s,72℃ 1 min,35 cycles
nirK nirK1F GGMATGGTKCCSTGGCA 95℃ 5 min;95℃ 30 s,58℃ [33]
nirK5R GCCTCGATCAGRTTRTGG 30 s,72℃ 1 min,35 cycles
nirS Cd3aF GTSAACGTSAAGGARACSGG 95℃ 5 min;95℃ 30 s,58℃ [34]
R3cdR GASTTCGGRTGSGTCTTGA 30 s,72℃ 1 min,35 cycles
nosZ nosZ-F AGAACGACCAGCTGATCGACA 95℃ 5 min;95℃ 30 s,60℃ [35]
nosZ-R TCCATGGTGACGCCGTGGTTG 30 s,72℃ 1 min,35 cycles

Fig. 2

Effects of biochar addition on grain yield of summer maize BC0, BCL, BCM and BCH represent control, low, medium and high rate of biochar treatments, respectively. Different letters in the same annual indicate significant differences between treatments (P<0.05). Error bars in column top indicate standard errors (n=3). The same as below"

Fig. 3

Dynamic changes of Nmin content of topsoil (0-20 cm) in different biochar treatments The arrow of solid line represents fertilization, and the arrow of dotted line represents irrigation or rainfall. Different lowercase letters within a column in the same sampling date indicate significantly differences at P<0.05 among different treatments. The same as below"

Fig. 4

Dynamic changes of N2O emission and moisture of topsoil (0-20 cm) in different biochar treatments"

Fig. 5

N2O accumulation emission of different biochar treatments in maize season"

Fig. 6

Effects of biochar amendment on the abundances of AOA and AOB in topsoil BS: Bellmouth stage; MS: Maturity stage. The same as below"

Fig. 7

Effects of biochar amendment on the abundances of nirK, nirS and nosZ in topsoil"

Table 2

Correlations between soil properties as well as cumulative N2O emissions and function genes abundances"

N2O NH4+ NO3- WFPS AOA AOB nirK nirS nosZ
N2O 1 -0.098 -0.611* -0.645* -0.598* -0.866** -0.863** -0.915** -0.886**
NH4+ 1 0.231 -0.289 0.168 0.248 0.167 0.231 -0.18
NO3- 1 0.121 0.764** 0.731** 0.651* 0.564 0.512
WFPS 1 0.007 0.383 0.349 0.610* 0.645*
AOA 1 0.846** 0.796** 0.535 0.568
AOB 1 0.960** 0.821** 0.720**
nirK 1 0.810** 0.706*
nirS 1 0.664*
nosZ . 1
[1] LEHMANN J, GAUNT J, RONDON M. Biochar sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[2] 谢祖彬, 刘琦, 许燕萍, 朱春悟. 生物炭研究进展及其研究方向. 土壤, 2011, 43(6): 857-861.
XIE Z B, LIU Q, XU Y P, ZHU C W. Advances and perspective of biochar research. Soils, 2011, 43(6): 857-861. (in Chinese)
[3] 叶英新. 生物质炭施用两年后黄淮海平原黄潮土土壤性质、作物产量及温室气体排放的变化[D]. 南京: 南京农业大学, 2014.
YE Y X. Changes in soil properties, crop yield and greenhouse gas emission two years after biochar amendment in a calcareous entisol from north China[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
[4] 王艳阳, 魏永霞, 孙继鹏, 张雨凤. 不同生物炭施用量的土壤水分入渗及其分布特性. 农业工程学报, 2016, 32(8): 113-119.
WANG Y Y, WEI Y X, SUN J P, ZHANG Y F. Soil water infiltration and distribution characteristics under different biochar addition amount. Transaction of the Chinese Society of Agricultural Engineering, 2016, 32(8): 113-119. (in Chinese)
[5] 刘园, KHAN M J, 靳海洋, 白雪莹, 谢迎新, 赵旭, 王慎强, 王晨阳. 秸秆生物炭对潮土作物产量和土壤性状的影响. 土壤学报, 2015, 52(4): 849-858.
LIU Y, KHAN M J, JIN H Y, BAI X Y, XIE Y X, ZHAO X, WANG S Q, WANG C Y. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols. Acta Pedologica Sinicna, 2015, 52(4): 849-858. (in Chinese)
[6] HARTER J, GUZMANBUSTAMANTE I, KUEHFUSS S, RUSER R, WELL R, SPOTT O, KAPPLER A, BEHRENS S. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 2016, 6(1): 39574.
[7] 陈温福, 张伟明, 孟军. 生物炭应用技术研究. 中国工程科学, 2011, 13(2): 83-89.
CHEN W H, ZHANG W M, MENG J. Researches on biochar application technology. Chinese Journal of Engineering Science, 2011, 13(2): 83-89. (in Chinese)
[8] VERHOEVEN E, SIX J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agriculture, Ecosystems & Environment, 2014, 191(15): 27-38.
[9] CLOUGH T J, BERTRAM J E, RAY J L, CONDRON L M, O'CALLAGHAN M, SHERLOCK R R, WELLS N S. Unweathered wood biochar impact on nitrous oxide emissions from a bovine- urineamended pasture soil. Soil Science Society of America Journal, 2010, 74(3): 852-860.
[10] 胡俊鹏, 潘凤娥, 王小淇, 季雅岚, 赵伶, 方雅各, 杨霖, 王师笈, 孟磊. 秸秆及生物炭添加对燥红壤N2O排放的影响. 热带作物学报, 2016, 37(4): 784-789.
HU J P, PAN F E, WANG X Q, JI Y L, ZHAO L, FANG Y G, YANG L, WANG S J, MENG L. Effects of addition of both stalk and biochar on N2O emission from torrid red soil. Chinese Journal of Tropical Crops, 2016, 37(4): 784-789. (in Chinese)
[11] BRAKER G, CONRAD R. Diversity, structure, and size of N2O-producing microbial communities in soilsâ-what matters for their functioning? Advances in Applied Microbiology, 2011, 75: 33-70.
pmid: 21807245
[12] CANFIELD D E, GLAZERA N, FALKOWSKI P G. The evolution and future of earth's nitrogen cycle. Science, 2010, 330(6001): 192-196.
doi: 10.1126/science.1186120 pmid: 20929768
[13] THOMSON A J, GIANNOPOULOS G, PRETTY J, BAGGS E M, RICHARDSON D J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society of London, 2012, 367(1593): 1157-1168.
doi: 10.1098/rstb.2011.0415 pmid: 22451101
[14] 王晓辉. 生物炭对设施栽培土壤硝化和反硝化微生物群落的影响研究[D]. 北京: 中国科学院研究生院, 2013.
WANG X H. Effect of biochar on nitrifying and denitrifying communities in greenhouse soils[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
[15] WARNOCK D D, LEHMANN J, KUYPER T W, RILLIG M C. Mycorrhizal responses to biochar in soil - Concepts and mechanisms. Plant and Soil, 2007, 300(1/2): 9-20.
doi: 10.1007/s11104-007-9391-5
[16] DUAN P P, ZHANG X, ZHANG Q Q, WU Z, XIONG Z Q. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Science of the Total Environment, 2018, 642(2018): 1303-1310.
[17] 张梦阳, 夏浩, 吕波, 丛铭, 宋文群, 姜存仓. 短期生物炭添加对不同类型土壤细菌和氨氧化微生物的影响. 中国农业科学, 2019, 52(7): 1260-1271.
doi: 10.3864/j.issn.0578-1752.2019.07.013
ZHANG M Y, XIA H, LÜ B, CONG M, SONG W Q, JIANG C C. Short-term effect of biochar amendments on total bacteria and ammonia oxidizers communities in different type soils. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.07.013
[18] 陈心想, 耿增超, 王森, 赵宏飞. 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报, 2014, 33(4): 751-758.
CHEN X X, GENG Z C, WANG S, ZHAO H F. Effects of biochar amendment on microbial biomass and enzyme activities in Loess Soil. Journal of Agro-Environment Science, 2014, 33(4): 751-758. (in Chinese)
[19] OLESZCZUK P, JOSKO I, FUTA B, PASIECZNA-PATKOWSKA S, PALYS E, KRASKA P. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 2014, 214/215: 10-18.
doi: 10.1016/j.geoderma.2013.10.010
[20] WU F P, JIA Z K, WANG S G, SCOTT X, CHANG S X, STARTSEV A. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils, 2013, 49(5): 555-565.
doi: 10.1007/s00374-012-0745-7
[21] 李明, 李忠佩, 刘明, 江春玉, 吴萌. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学, 2015, 48(7): 1361-1369.
doi: 10.3864/j.issn.0578-1752.2015.07.11
LI M, LI Z P, LIU M, JIANG C Y, WU M. Effects of different straw biochar on nutrient and microbial community structure of a Red Paddy Soil. Scientia Agricultura Sinica, 2015, 48(7): 1361-1369. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.07.11
[22] ZHAO X, WANG J W, WANG S Q, XING G X. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant and Soil, 2014, 378(1/2): 279-294.
[23] HE L, LIU Y, ZHAO J, BI Y C, ZHAO, X, WANG S Q, XING G X. Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biology and Fertility of Soils, 2016, 52(2): 137-149.
[24] LI X, HU C, DELGADO J A, ZHANG Y, OUYANG Z. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north China plain. Agricultural Water Management, 2007, 89(1/2): 137-147.
doi: 10.1016/j.agwat.2006.12.012
[25] WANG S Q, ZHAO X, XING G X, YANG L. Large-scale biochar production from crop residue: A new idea and the biogas-energy pyrolysis system. BioResources, 2012, 8(1): 8-11.
[26] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Methods in Soil and Agrochemical Analysis. Beijing: China Agricultural Technique Press, 1999. (in Chinese)
[27] CHEN X, ZHOU J, WANG X, BLACKMER A M, ZHANG F. Optimal rates of nitrogen fertilization for a winter wheat-corn cropping system in Northern China. Communications in Soil Science and Plant Analysis, 2004, 35(3): 583-597.
[28] 耿增超, 戴伟. 土壤学. 北京: 科学出版社, 2011.
GENG Z C, DAI W. Pedology. Beijing: Science Press, 2011. (in Chinese)
[29] NIU Y, CHEN Z, MÜLLER C, ZAMAN M M, KIM D, YU H, D W. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize-wheat rotation in the North China Plain. Atmospheric Environment, 2017, 170: 58-70.
[30] 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和氮肥施用及品种对稻田N2O排放的影响. 应用生态学报, 1999, 10(2): 186-188.
XU H, XING G X, CAI Z C, HE T Z X. Effect of soil water regime and chemical N fertilizers application on N2O emission from paddy field. Chinese Journal of Applied Ecology, 1999, 10(2): 186-188. (in Chinese)
[31] FRANCIS C A, ROBERTS K J, BEMAN J M, SANTORO A E, OAKLEY B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the USA, 2005, 102(41): 14683-14688.
doi: 10.1073/pnas.0506625102 pmid: 16186488
[32] ROTTHAUWE J H. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704-4715.
doi: 10.1128/AEM.63.12.4704-4712.1997 pmid: 9406389
[33] HALLIN S, LINDGREN P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied and Environmental Microbiology, 1999, 65(4): 1652-1657.
doi: 10.1128/AEM.65.4.1652-1657.1999 pmid: 10103263
[34] THROBACK I N, ENWALL K, JARVIS A, HALLIN S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004, 49(3): 401-417.
doi: 10.1016/j.femsec.2004.04.011 pmid: 19712290
[35] KLOOS K, MERGEL A, CHRISTOPHER R, BOTHE H. Denitrification within the genus azospirillum and other associative bacteria. Functional Plant Biology, 2001, 28(9): 991-998.
doi: 10.1071/PP01071
[36] UZOMA K C, INOUE M, ANDRY H, FUJIMAKI H, ZAHOOR A, NISHIHARA E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 2011, 27(2): 205-212.
doi: 10.1111/j.1475-2743.2011.00340.x
[37] 王江伟, 周春菊, 赵旭, 徐浩江, 王慎强, 邢光熹. 秸秆源黑炭还田对水稻土生产力和固碳的影响. 环境科学研究, 2013, 26(12): 1325-1332.
WANG J W, ZHOU C J, ZHAO X, XU H J, WANG S Q, XING G X. Effects of crop-straw biochar on paddy soil productivity and carbon sequestration. Research of Environmental Sciences, 2013, 26(12): 1325-1332. (in Chinese)
[38] OGUNTUNDE P G, ABIODUN B J, AJAYI A E. Effects of charcoal production on soil physical properties in Ghana. Joumal of Plant Nutrient and soil Science, 2008, 171: 591-596.
[39] KOOL D M, DOLFING J, WRAGE N, GROENIGEN J W V. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology & Biochemistry, 2011, 43(1): 174-178.
doi: 10.1016/j.soilbio.2010.09.030
[40] JU X T, LU X, GAO Z L, CHEN X P, SU F, KOGGE M, RÖMHELD V, CHRISTIE P, ZHANG F. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution, 2011, 159(4): 1007-1016.
doi: 10.1016/j.envpol.2010.10.040 pmid: 21251741
[41] 陈晨, 许欣, 毕智超, 熊正琴. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响. 环境科学学报, 2017, 37(5): 1912-1920.
CHEN C, XU X, BI Z C, XIONG Z Q. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production. Acta Scientiae Circumstantiae, 2017, 37(5): 1912-1920. (in Chinese)
[42] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108.
HE J Z, ZHANG L M. Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 2013, 40(1): 98-108. (in Chinese)
[43] ZHANG X, DUAN P P, WU Z, XIONG Z Q. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil. Science of the Total Environment, 2019, 687(2019): 433-440.
[44] WU Z, ZHANG X, DONG Y B, XU X, XIONG Z Q. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. Environmental Science and Pollution Research, 2018, 25(31): 31307-31317.
doi: 10.1007/s11356-018-3112-x pmid: 30194577
[45] SHEN J P, ZHANG L M, ZHU Y G, ZHANG J B, HE J Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia- oxidizing archaea communities of an alkaline sandy loam. Environmental microbiology, 2008, 10(6): 1601-1611.
doi: 10.1111/j.1462-2920.2008.01578.x pmid: 18336563
[46] 贺超卉, 董文旭, 胡春胜, 李佳珍. 生物质炭对土壤N2O消耗的影响及其微生物影响机理. 中国生态农业学报, 2019, 27(9): 1301-1308.
HE C H, DONG W X, HU C S, LI J Z. Biochar’s effect on soil N2O consumption and the microbial mechanism. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1301-1308. (in Chinese)
[47] WANG C, LU H H, DONG D, DENG H, STRONG P J, WANG H L, WU W X. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community. Environmental Science & Technology, 2013, 47(13): 7341-7349.
doi: 10.1021/es305293h pmid: 23745957
[48] HARTER J, WEIGOLD P, EL-HADIDI M, HUSON D H, KAPPLER A, BEHRENS S. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562: 379-390.
doi: 10.1016/j.scitotenv.2016.03.220 pmid: 27100017
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[3] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[4] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[5] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[6] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[7] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[8] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[9] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[10] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[11] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[12] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[13] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[14] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[15] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!