Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 1986-1996.doi: 10.3864/j.issn.0578-1752.2020.10.006

• PLANT PROTECTION • Previous Articles     Next Articles

Noncontact Inhibitory of Volatile Organic Compounds from Rice Root Bacteria on Rhizopus microsporus

WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-09-27 Accepted:2019-11-07 Online:2020-05-16 Published:2020-05-22
  • Contact: ALin SONG E-mail:songalin@caas.cn

Abstract:

【Objective】The objective of this study is to identify new bacterial volatile organic compounds (VOCs) with potential antimicriobial function by analyzing the composition of VOCs of rice root bacteria and their inhibitory effects on Rhizopus microsporus.【Method】The inhibition rate of different bacteria to R. microsporus was determined by a double Petri dish assay. The VOCs of bacteria were collected by headspace-solid phase microextraction and detected by gas chromatography-mass spectrometry (GC-MS). The detected VOCs were compared and identified in the NIST/EPA/NIH database. According to the inhibitory effect and the peak area of each substance in mass spectrum, the correlation analysis was conducted. The VOCs which have a significant correlation with inhibition rate were purchased and the inhibitory effect of these pure substances on R. microsporum was detected in vitro.【Result】All strains could release VOCs and had different inhibitory effects through non-contact of VOCs. These strains produced a total of 90 VOCs of 14 types, which were esters, olefins, alkanes, ketones, acids, thiophenes, aldehydes, naphthalenes, sulfides, phenols, alcohols, pyrazines, pyrroles and benzenes. All strains could release alcohols. Through correlation analysis, 6 VOCs (2-heptanone, 5-methyl-2-hexanone, 2-nonanone, 5-methyl-3-hexanone, 3-methyl-butanoic acid and methyl isobutyl ketone) were found to have potential antimicriobial activity, there was a significant positive correlation between the release amount and inhibition rate. Among them, 3 of these VOCs (2-heptanone, 2-nonanone and methyl isobutyl ketone) had been reported to have antimicriobial activity in previous studies. The other 3 VOCs (5-methyl-2-hexanone, 5-methyl-3-hexanone and 3-methyl-butanoic acid) had not been reported. In vitro fumigation test was conducted by purchasing two of them (3-methyl-butanoic acid and 5-methyl-2-hexanone). It was found that 3-methyl-butanoic acid seriously inhibited the growth of R. microspores, and 5-methyl-2-hexanone was lethal to the R. microspores. Among them, 5-methyl-2-hexanone was mainly released by the strains of Paenisporosarcina macmurdoensis, Brevibacillus brevis and Bacillus aryabhattai. 5-methyl-3-hexanone was mainly produced by the strains of Pseudomonas, B. aryabhattai and P. macmurdoensis. 3-methyl-butanoic acid was mainly released by strains of Enterobacter kobei, Pseudomonas and B. aryabhattai. 【Conclusion】Rice root bacteria can release a variety of VOCs, some of which have a significant inhibitory effect on rice pathogen R. microsporum. Through correlation analysis and in vitro validation, two new antimicriobial VOCs (5-methyl-2-hexanone and 3-methyl-butanoic acid) and one possible antimicriobial VOC (5-methyl-3-hexanone) were identified. All these strains and VOCs have the potential as biological resources for new drugs and antifungal metabolites.

Key words: rice root, volatile organic compounds (VOCs), inhibitory effect, bacteria, Rhizopus microsporus, headspace-solid phase microextraction-mass combination

Fig. 1

Inhibition rate of different bacteria against R. microsporus"

Table 1

Composition of mVOCs"

挥发性有机物名称VOCs name 2-60 34 35 62 146 2-18 26 50 3
(E)-1-甲基-2-(丙-1-烯-1-基)二硫
(E)-1-Methyl-2-(prop-1-en-1-yl) disulfane
- - - - - - + - -
β-苯基乙基丁酸酯beta-Phenylethyl butyrate - - - - - - + - -
11-十二烯-2-酮11-Dodecen-2-one - - - - - + - - -
2-甲基-1-丁醇2-Methyl-1-butanol - + - - - - - - -
3-甲基-1-丁醇3-Methyl-1-butanol + + + + + - + - -
1-丁醇,3-甲基-乙酸1-Butanol, 3-methyl-acetate - + + - - - - - -
2-乙基-1-己醇2-Ethyl-1-hexanol + - + + + + - - +
1-十八碳烯1-Octadecene + - - - - - - - -
1-辛醇1-Octanol + - - - - - - - -
7-甲基-1-辛烯7-Methyl-1-octene + - - - - - - - -
1-十五碳烯1-Pentadecene - - - - - - + - -
2-氯丙酸,十六烷基酯2- Chloropropionic acid, hexadecyl ester - - - - - - + - -
5-庚基二氢-2(3H)-呋喃酮5-Heptyldihydro-2(3H)-furanone - - + - + - - - -
2,4,6-环庚三烯-1-酮2,4,6-Cycloheptatrien-1-one + - - - - - - - -
2,4-二硫戊烷2,4-Dithiapentane - - - - - - - - +
6-甲基-2,4-庚二酮6-Methyl-2,4-heptanedione - - - - - + - - -
3,7,11-三甲基-2,6,10-十二碳三烯-1-醇
3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol
- - - - - - - - +
2-癸酮2-Decanone + + + + - + + - -
2-十二烷酮2-Dodecanone - - + - - + - - -
2-乙基-1-己醇2-Ethyl-1-hexanol - - - - - - - + -
2-庚酮2-Heptanone + + + + - + + - -
3-甲基-2-庚酮3-Methyl-2-heptanone - - - + - - - - -
5-甲基-2-庚酮5-Methyl-2-heptanone + - - + - + - - -
6-甲基-2-庚酮6-Methyl-2-heptanone + - + + - + - - -
2-十六烷酮2-Hexadecanone - - - - - + - - -
2-己酮2-Hexanone + - + + - - - - -
3,4-二甲基-2-己酮3,4-Dimethyl-2-hexanone + - - - - - - - -
5-甲基-2-己酮5-Methyl-2-hexanone + - - + - + - - -
2-壬基酮2-Nonanone - + + + - + + - -
2-辛酮2-Octanone - - + + - - - - -
2-十五烷酮2-Pentadecanone - + - - - - - - -
2-戊酮2-Pentanone - + + - - - - - -
3-甲基-2-戊酮3-Methyl-2-pentanone - - - - - + - - -
2-十四烷酮2-Tetradecanone - - + + - + - - -
2-十三烷酮2-Tridecanone - - - + - - - - -
2-十一烷酮2-Undecanone - + + - - + + - -
3-十二烷酮3-Dodecanone - - - + - - - - -
7-苯基-3-庚烯7-Phenyl-3-heptene - + - - - - - - -
5-甲基-3-己酮5-Methyl-3-hexanone + - + + - - - - -
3-十五烷酮3-Pentadecanone - - - + - - - - -
3-戊酮3-Pentanone - - - + - - - - -
3-十三烷酮3-Tridecanone + - - - - + - - -
5-甲基-4-己烯-3-酮5-Methyl-4-hexen-3-one + - - - - - - - -
6,10,14-三甲基-5,9,13-戊三烯-2-酮6,10,14-Trimethyl-5,9,13-pentadecatrien-2-one - - - - - - - + -
6-甲基-5-庚烯-2-酮6-Methyl-5-hepten-2-one + - - - - - - + -
6-叔丁基-2,4-二甲基苯酚6-Tert-butyl-2,4-dimethylphenol - + + - - - - - -
7-甲基辛烷-2,4-二酮,烯醇式7-Methyloctane-2,4-dione, enol form - - - - - + - - -
乙酸,2-苯乙基酯Acetic acid, 2-phenylethyl ester - + - - - - - - -
乙酸,氯-十六烷基酯Acetic acid, chloro-hexadecyl ester - + - - - - - - -
顺式乙酸,非3-烯基酯cis-Acetic acid, non-3-enyl ester - - + - - - - - -
(2-甲氧基乙基)-苯 (2-Methoxyethyl)-benzene - - - - - - + - -
(甲氧基甲基)-苯 (Methoxymethyl)-benzene - - - - - - + - -
苯乙酸,乙酯Benzeneacetic acid, ethyl ester + - - - - - - - -
苯甲酸,乙酯Benzoic acid, ethyl ester - - - - - - - + -
苯甲醇Benzyl alcohol - - - + + - - - -
苄基甲基酮Benzyl methyl ketone + - - + + + + - -
1-甲氧基-3-甲基丁烷1-Methoxy-3-methyl-butane - - - - - - + - -
2-甲基-2-(甲硫基)-丁烷2-Methyl-2-(methylthio)-butane - - - - - - - + -
丁烷磺酸,硫-甲酯Butanethioic acid, S-methyl ester + - - - - - - - -
丁酸,1-乙烯基己酯Butanoic acid, 1-ethenylhexyl ester - - + - - - - - -
3-甲基丁酸3-Methyl-butanoic acid - + + + - - - - -
丁酸,3-甲基-乙酯Butanoic acid, 3-methyl-ethyl ester + - - + - - - - -
顺式双环[3.3.0]辛-2-烯cis-Bicyclo[3.3.0]oct-2-ene + - - - - - - - -
环庚烯Cycloheptene - - - - - - + - -
1-甲基环己烯1-Methyl-cyclohexene - - - + - - - - -
3-乙烯基-环戊烯3-Ethenyl-cyclopentene + - - - - - - - -
双环戊二烯Dicyclopentadiene + + + + - + - + -
三硫化二甲基Dimethyl trisulfide + + + + + - - + +
二硫化二甲基Dimethyl disulfide + + + + + - + + +
十二酸,乙酯Dodecanoic acid, ethyl ester + - - - - - - - -
1-(2-氨基苯基)-乙酮1-(2-Aminophenyl)-ethanone - + - - - - + - -
13-甲基十四烷酸乙酯Ethyl 13-methyl-tetradecanoate + - - - - - - - -
3-(甲硫基)-(E)-2-丙酸乙酯Ethyl 3-(methylthio)-(E)-2-propenoate - - - - - - - + -
3-(甲硫基)-(Z)-2-丙酸乙酯Ethyl 3-(methylthio)-(Z)-2-propenoate - - - - - - - + -
十三烷酸乙酯Ethyl tridecanoate + - - - - - - - -
甲基异丁基酮Methyl isobutyl ketone + - + + - - - - -
异戊酸甲酯Methyl isovalerate - - + - - - - - -
硫羟乙酸甲酯Methyl thiolacetate - - - - - - - - +
十氢萘Decahydro-naphthalene - + + - - - - - -
十八烷Octadecanal - - + - - - - - -
苯乙醇Phenylethyl alcohol - + + + - - + - -
丙酸,2-苯乙基酯Propanoic acid, 2-phenylethyl ester - + - - - - - - -
2-乙基-5-甲基吡嗪2-Ethyl-5-methyl-pyrazine - - + - - - - - -
三甲基吡嗪Trimethyl-pyrazine - - + - - - - - -
吡咯Pyrrole - - - + - - - - -
3-甲基丁硫醇甲酯S-Methyl 3-methylbutanethioate + - + + + - - - +
丙酮三氧化物TATP - - - - + - - - -
十四烷酸,乙酯Tetradecanoic acid, ethyl ester + - - - - - - - -
2-甲氧基-5-甲基-噻吩2-Methoxy-5-methyl-thiophene - - - - + - - - -
十一酸,乙酯Undecanoic acid, ethyl ester + - - - - - - - -

Fig. 2

The composition of VOCs emitted from different bacteria"

Fig. 3

The Venn diagram showing the amount of different and same VOCs released by different strains The left side shows the total amount of VOCs released by each strain, and the above shows the amount of VOCs unique to each strain or shared with other strains"

Table 2

Correlation coefficient between the peak area of each substance in mass spectrum and the inhibition rate of corresponding strain"

挥发性有机物名称
VOCs name
相关性系数
Correlation coefficient
挥发性有机物名称
VOCs name
相关性系数
Correlation coefficient
3-甲基-1-丁醇3-Methyl-1-butanol (+) 0.093 2-十一烷酮2-Undecanone (+) 0.485
2-乙基-1-己醇2-Ethyl-1-hexanol -0.396 5-甲基-3-己酮5-Methyl-3-hexanone (++) 0.863**
2-癸酮2-Decanone 0.074 苄基甲基酮Benzyl methyl ketone -0.169
2-庚酮2-Heptanone (+) 0.544** 3-甲基丁酸3-Methyl-butanoic acid (++) 0.691*
5-甲基-2-庚酮5-Methyl-2-heptanone -0.705* 双环戊二烯Dicyclopentadiene 0.025
6-甲基-2-庚酮6-Methyl-2-heptanone 0.146 三硫化二甲基Dimethyl trisulfide (+) -0.494*
2-己酮2-Hexanone -0.251 二硫化二甲基Dimethyl disulfide (+) -0.074
5-甲基-2-己酮5-Methyl-2-hexanone (++) 0.710** 甲基异丁基酮Methyl isobutyl ketone (+) 0.781**
2-壬酮2-Nonanone (+) 0.514* 苯乙醇Phenylethyl alcohol -0.576*
2-十四烷酮2-Tetradecanone -0.882** 3-甲基丁硫醇甲酯S-Methyl 3-methylbutanethioate 0.346

Fig. 4

R. microspores treated with 3-methyl-butanoic acid (A) and 5-methyl-2-hexanone (B) The control is treated with sterile water"

[1] GOLDFORD J E, LU N, BAJIĆ D, ESTRELA S, TIKHONOV M, SANCHEZ-GOROSTIAGA A, SEGRÈ1 D, MEHTA1 P, SANCHEZ A . Emergent simplicity in microbial community assembly. Science, 2018,361(6401):469-474.
doi: 10.1126/science.aat1168
[2] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY N K, BHATNAGAR S, EISEN J A, SUNDARESAN V . Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(8):E911-E920.
[3] ZHALNINA K, LOUIE K B, HAO Z, MANSOORI N, DA ROCHA U N, SHI S, CHO H, KARAOZ U, LOQUÉ D, BOWEN B P, FIRESTONE M K, NORTHEN T R, BRODIE E L . Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018,3:470-480.
doi: 10.1038/s41564-018-0129-3
[4] ZHANG J, LIU Y X, ZHANG N, HU B, JIN T, XU H, QIN Y, YAN P, ZHANG X, GUO X, HUI J, CAO S, WANG X, WANG C, WANG H, QU B, FAN G, YUAN L, GARRIDO-OTER R, CHU C, BAI Y . NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019,37:676-684.
doi: 10.1038/s41587-019-0104-4
[5] CARRIÓN V J, CORDOVEZ V, TYC O, ETALO D W, DE BRUIJN I, DE JAGER V C L, MEDEMA M H, EBERL L, RAAIJMAKERS J M . Involvement of Burkholderiaceae and sulfurous volatiles in diseasesuppressive soils. The ISME Journal, 2018,12:2307-2321.
doi: 10.1038/s41396-018-0186-x
[6] AUDRAIN B, FARAG M A, RYU C M, GHIGO J M . Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 2015,39(2):222-233.
doi: 10.1093/femsre/fuu013
[7] 张清华, 黄丽丽, 连鑫坤, 詹振亮, 冯丽贞 . 微生物源挥发性物质及其生物防治作用研究进展. 生态学杂志, 2017,36(7):2036-2044.
ZHANG Q H, HUANG L L, LIAN X K, ZHAN Z L, FENG L Z . Research advances in microbial volatiles and their biocontrol potential. Chinese Journal of Ecology, 2017,36(7):2036-2044. (in Chinese)
[8] MORATH S U, HUNG R, BENNETT J W . Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 2012,26(2/3):73-83.
doi: 10.1016/j.fbr.2012.07.001
[9] LEMFACK M C, NICKEL J, DUNKEL M, PREISSNER R, PIECHULLA B . mVOC: A database of microbial volatiles. Nucleic Acids Research, 2014,42(Database issue):D744-D748.
doi: 10.1093/nar/gkt1250
[10] ASARI S, MATZEN S, PETERSEN M A, BEJAI S, MEIJER J . Multiple effects of Bacillus amyloliquefaciens volatile compounds: Plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology, 2016, 92(6): fiw070.
doi: 10.1093/femsec/fiw070
[11] WANG Y, LI Y, YANG J, RUAN J, SUN C . Microbial volatile organic compounds and their application in microorganism identification in foodstuff. Trends in Analytical Chemistry, 2016,78:1-16.
doi: 10.1016/j.trac.2015.08.010
[12] KANCHISWAMY C N, MALNOY M, MAFFEI M E . Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 2015,20(4):206-211.
doi: 10.1016/j.tplants.2015.01.004
[13] LIU H, BRETTELL L E . Plant defense by VOC-induced microbial priming. Trends in Plant Science, 2019,24(3):187-189.
doi: 10.1016/j.tplants.2019.01.008
[14] VAN AGTMAAL M, STRAATHOF A L, TERMORSHUIZEN A, LIEVENS B, HOFFLAND E, DE BOER W . Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biology and Biochemistry, 2018,117:164-174.
doi: 10.1016/j.soilbio.2017.11.015
[15] LEE S, YAP M, BEHRINGER G, HUNG R, BENNETT J W . Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology, 2016,3:7.
doi: 10.1186/s40694-016-0025-7
[16] CHOUDOIR M, ROSSABI S, GEBERT M, HELMIG D, FIERERA N . A phylogenetic and functional perspective on volatile organic compound production by Actinobacteria. mSystems, 2019,4(2):e00295-18.
[17] XU C, MO M, ZHANG L, ZHANG K . Soil volatile fungistasis and volatile fungistatic compounds. Soil Biology and Biochemistry, 2004,36(12):1997-2004.
doi: 10.1016/j.soilbio.2004.07.020
[18] CORDOVEZ V, CARRION V J, ETALO D W, MUMM R, ZHU H, VAN WEZEL G P, RAAIJMAKERS J M . Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 2015, 6: Article 1081.
[19] EFFAH E, HOLOPAINEN J K, MCCORMICK A C . Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics, 2019,38:58-63.
doi: 10.1016/j.ppees.2019.04.003
[20] GUEVARA-AVENDANO E, BEJARANO-BOLIVAR A A, KIEL-MARTINEZ A L, RAMIREZ-VAZQUEZ M, MENDEZ-BRAVO A, VON WOBESER E A, SANCHEZ-RANGEL D, GUERRERO-ANALCO J A, ESKALEN A, REVERCHON F . Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiology Research, 2019,219:74-83.
[21] MACKIE A E, WHEATLEY R E . Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biology and Biochemistry, 1999,31:375-385.
doi: 10.1016/S0038-0717(98)00140-0
[22] PARLAPANI F F, MALLOUCHOS A, HAROUTOUNIAN S A, BOZIARIS I S . Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT-Food Science and Technology, 2017,78:54-62.
doi: 10.1016/j.lwt.2016.12.020
[23] RAZA W, WANG J, WU Y, LING N, WEI Z, HUANG Q, SHEN Q . Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Applied Microbiology and Biotechnology, 2016,100(17):7639-7650.
doi: 10.1007/s00253-016-7584-7
[24] 王静, 曹建敏, 陈德鑫, 邱军, 王晓强, 冯超, 王文静 . 短小芽孢杆菌AR03挥发性有机物的抑菌活性及其组分分析. 中国农业科学, 2018,51(10):1908-1919.
doi: 10.3864/j.issn.0578-1752.2018.10.010
WANG J, CAO J M, CHEN D X, QIU J, WANG X Q, FENG C, WANG W J . Antimicrobial effect and components analysis of volatile organic compounds from Bacillus pumilus AR03. Scientia Agricultura Sinica, 2018,51(10):1908-1919. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.10.010
[25] LI X Y, MAO Z C, WU Y X, HO H H, HE Y Q . Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Science and Technology, 2015,25(2):132-143.
doi: 10.1080/09583157.2014.960809
[26] POPOVA A A, KOKSHAROVA O A, LIPASOVA V A, ZAITSEVA J V, KATKOVA-ZHUKOTSKAYA O A, EREMINA S, MIRONOV A S, CHERNIN L S, KHMEL I A, . Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. Biomed Research International, 2014,2014:125704.
[27] EZRA D, STROBEL G A . Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Science, 2003,165(6):1229-1238.
doi: 10.1016/S0168-9452(03)00330-3
[28] YANG M, LU L, PANG J, HU Y, GUO Q, LI Z, WU S, LIU H, WANG C . Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production. Journal of Microbiology, 2019,57(5):396-404.
doi: 10.1007/s12275-019-8517-9
[29] WANG C, WANG Z, QIAO X, LI Z, LI F, CHEN M, WANG Y, HUANG Y, CUI H . Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiology Letters, 2013,341(1):45-51.
doi: 10.1111/1574-6968.12088
[30] FERNANDO W G D, RAMARATHNAM R, KRISHNAMOORTHY A S, SAVCHUK S C . Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 2005,37(5):955-964.
doi: 10.1016/j.soilbio.2004.10.021
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] WANG YuTai,XU ZhiFan,LIU Jie,ZHONG GuoHua. Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres [J]. Scientia Agricultura Sinica, 2022, 55(5): 920-931.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[5] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[6] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[7] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[8] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[9] LIU YuQing,YAN GaoWei,ZHANG Tong,LAN JinPing,GUO YaLu,LI LiYun,LIU GuoZhen,DOU ShiJuan. Overexpression of OsPR1A Enhanced Xa21-Mediated Resistance to Rice Bacterial Blight [J]. Scientia Agricultura Sinica, 2021, 54(23): 4933-4942.
[10] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[11] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[12] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[13] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[14] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[15] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!