Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2073-2083.doi: 10.3864/j.issn.0578-1752.2021.10.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance

KONG YaLi1(),ZHU ChunQuan1,CAO XiaoChuang1,ZHU LianFeng1,JIN QianYu1,HONG XiaoZhi2,ZHANG JunHua1()   

  1. 1China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 310006
    2Bengbu Yifeng Bio-Organic Fertilizer Co. Ltd., Bengbu 233000, Anhui
  • Received:2020-07-13 Accepted:2020-12-18 Online:2021-05-16 Published:2021-05-24
  • Contact: JunHua ZHANG E-mail:kongyali@caas.cn;zhangjunhua@caas.cn

Abstract:

Soil salinization has seriously hindered the sustainable agricultural production. Remediation of salt affected areas with efficient, low cost and adaptable method is a challenging goal for scientists. Soil microorganisms play important roles in regulating rhizosphere environment of plants, enhancing plant development and productivity. Adaptation of plants to stress driven by soil microbes has been attracted extensive attention. The identification and exploitation of soil microorganisms that interact with plants in alleviating salt stress provides a new strategy for the improvement of saline area, as well as new approaches to discover mechanisms involved in stress tolerance. Knowledge of the underlying physiological mechanisms by which diverse microbes mediate stress tolerance, is critical to the effective use of these microbes to assure sustained agricultural production. This paper reviewed the recent studies about the mechanisms of soil microorganisms mediated in plant salt stress tolerance from the aspects of plant nutrient absorption, osmosis balance, hormone levels and antioxidant function. The beneficial effects and lack of current researches related to soil microorganism in the regulation of plant salt tolerance were evaluated, and the directions of the future research were also proposed. At present, improving nutrient and water uptake efficiency to maintain plant ion homeostasis under salt stress, increasing auxin synthesis and reducing ethylene release to regulate plant hormone levels seem to be promising target processes for soil biota-improved plant salt tolerance. However, limited success has been obtained in application of microorganism to large-scale agricultural production, due to the competition of introduced single microbial strains with native soil microbial communities which resulted in many bacterial strains has little colonization efficiency. The researches related to microbial mediated plant salinity tolerance should break through the single microbial inoculation, further clarify the mechanism of plant-microbial interaction at the community level, and solve the key problems of microbial utilization in agricultural production.

Key words: salt stress, soil microorganisms, plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi, endophytes, synthetic community, plant salt-tolerance

[1] 李建国, 濮励杰, 朱明, 张润森. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012,67(9):1233-1245.
LI J G, PU L J, ZHU M, ZHANG R S. The present situation and hot issues in the salt-affected soil research. Acta Geographica Sinica, 2012,67(9):1233-1245. (in Chinese)
[2] CARILLO P, ANNUNZIATA M G, PONTECORVO G, FUGGI A, WOODROW P. Salinity stress and salt tolerance//SHANKER A, VENKATESWARLU B. Abiotic stress in plants-mechanisms and adaptations. Croatia: InTech, 2011: 21-38.
[3] MEENA M D, YADAV R K, NARJARY B, YADAV G, JAT H, SHEORAN P, MEENA M K, ANTIL R, MEENA B, SINGH H. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Management, 2018,84:38-53.
doi: 10.1016/j.wasman.2018.11.020
[4] 杨晓慧, 蒋卫杰, 魏珉, 余宏军. 提高植物抗盐能力的技术措施综述. 中国农学通报, 2006,22(1):88-91.
YANG X H, JIANG W J, WEI M, YU H J. The technial approaches of improving the plant salt-resistant ability. Chinese Agricultural Science Bulletin, 2006,22(1):88-91. (in Chinese)
[5] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012,17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001
[6] 陆雅海, 张福锁. 根际微生物研究进展. 土壤, 2006,38(2):113-121.
LU Y H, ZHANG F S. The advances in rhizosphere microbiology. Soils, 2006,38(2):113-121. (in Chinese)
[7] VERBON E H, LIBERMAN L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 2016,21(3):218-229.
doi: 10.1016/j.tplants.2016.01.013
[8] 龚江, 吕宁, 茹思博, 侯振安. 滴灌条件下盐分对棉花养分及盐离子吸收的影响. 植物营养与肥料学报, 2009,15(3):670-676.
GONG J, LÜ N, RU S B, HOU Z A. Effects of soil salinity on nutrients and ions uptake in cotton with drip irrigation under film. Journal of Plant Nutrition and Fertilizers, 2009,15(3):670-676. (in Chinese)
[9] CHANDRASEKARAN M, BOUGHATTAS S, HU S J, OH S H, SA T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 2014,24(8):611-625.
doi: 10.1007/s00572-014-0582-7
[10] 文佩, 陈小兵, 张乐乐, 李依霖, 齐铭君, 姜姝璇, 张立宾. 盐旱交叉胁迫对各施氮水平下小麦苗期的影响. 土壤, 2019,51(2):324-329.
WEN P, CHEN X B, ZHANG L L, LI Y L, QI M J, JIANG S X, ZHANG L B. Effects of salt and drought on winter wheat in seedling stage under different nitrogen rates. Soils, 2019,51(2):324-329. (in Chinese)
[11] AUGE R M, TOLER H D, SAXTON A M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: A meta-analysis. Frontiers in Plant Science, 2014,5:562.
[12] PAN J, PENG F, XUE X, YOU Q G, ZHANG W J, WANG T, HUANG C H. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: A meta-analysis. Sustainability, 2019,11(2):378.
doi: 10.3390/su11020378
[13] UPADHYAY S K, SINGH D P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 2015,17(1):288-293.
doi: 10.1111/plb.12173
[14] 贺忠群, 贺超兴. 盐渍条件下丛枝菌根真菌对番茄营养吸收及离子毒害的影响. 华北农学报, 2013,28(1):181-186.
HE Z Q, HE C X. Effect of arbuscular mycorrhizal fungi on nutrition absorbing and ion damage in tomato under salt stress. Acta Agriculturae Boreali-Sinica, 2013,28(1):181-186. (in Chinese)
[15] WANG Y H, WANG M Q, LI Y, WU A P, HUANG J Y. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE, 2018,13(4):e0196408.
doi: 10.1371/journal.pone.0196408
[16] ZHANG J H, HUSSAIN S, ZHAO F T, ZHU L F, CAO X C. Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere. Journal of Soil & Sediments, 2018,18(4):1453-1465.
[17] 王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望. 植物营养与肥料学报, 1998,4(2):107-116.
WANG Q R, LI J Y, LI Z S. Advance and prospect of insoluble phosphorus utilization efficient of plant. Journal of Plant Nutrition and Fertilizers, 1998,4(2):107-116. (in Chinese)
[18] 黄铖程, 刘景辉, 杨彦明. 生物菌肥对盐碱地燕麦生理特性及土壤速效养分的影响. 北方农业学报, 2018,46(5):57-61.
HUANG C C, LIU J H, YANG Y M. Effect of the compound microbial fertilizer on the physiological characteristics of oats and soil available nutrients in saline-alkali land. Journal of Northern Agriculture, 2018,46(5):57-61. (in Chinese)
[19] 冯固, 李晓林, 张福锁, 李生秀. 施磷和接种AM真菌对玉米耐盐性的影响. 植物资源与环境学报, 2000,9(2):22-26.
FENG G, LI X L, ZHANG F S, LI S X. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. Journal of Plant Resources and Environment, 2000,9(2):22-26. (in Chinese)
[20] 杨海霞, 刘希旻, 潘奕臣, 赵香林, 黄海东. 耐盐碱溶磷菌Y2R2的分离鉴定及溶磷特性. 生物技术通报, 2020,36(10):127-134.
YANG H X, LIU X M, PAN Y C, ZHAO X L, HUANG H D. Isolation, identification and characterization of salt-alkali-tolerant and phosphorus-dissolving Bacterium Y2R2. Biotechnology Bulletin, 2020,36(10):127-134. (in Chinese)
[21] 谭枝群. 非生物胁迫下暖季型草坪草内参基因筛选及铁离子调控耐盐性的机制研究[D]. 南京: 南京农业大学, 2015.
TAN Z Q. Stress and the iron regulatory salt-tolerance mechanism of warm season turfgrass. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[22] VERBON E H, TRAPET P L, STRINGLIS I A, KRUIJIS S, BAKKER P A, PIETERSE C M. Iron and immunity. Annual Review of Phytopathology, 2017,55(1):355-375.
doi: 10.1146/annurev-phyto-080516-035537
[23] 王丹, 赵亚光, 张凤华. 耐盐促生菌筛选、鉴定及对盐胁迫小麦的效应. 麦类作物学报, 2020,40(1):110-117.
WANG D, ZHAO Y G, ZHANG F H. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress. Journal of Triticeae Crops, 2020,40(1):110-117. (in Chinese)
[24] 许芳芳, 袁立敏, 邵玉芳, 范国花, 周心爱, 郑文玲, 李冬梅, 冯福应. 肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应. 微生物学通报, 2018,45(1):102-110.
XU F F, YUAN L M, SHAO Y F, FAN G H, ZHOU X A, ZHENG W L, LI D M, FENG F Y. Effect of Enterobacter sp. FYP1101 on wheat seedling growth under salt stress. Microbiology China, 2018,45(1):102-110. (in Chinese)
[25] 李彦, 张英鹏, 孙明, 高弼模. 盐分胁迫对植物的影响及植物耐盐机理研究进展. 中国农学通报, 2008,24(1):258-265.
LI Y, ZHANG Y P, SUN M, GAO B M. Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chinese Agricultural Science Bulletin, 2008,24(1):258-265. (in Chinese)
[26] SERRANO R, RODRIGUEZ-NAVARRO A. Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 2001,13(4):399-404.
doi: 10.1016/S0955-0674(00)00227-1
[27] GIRI B, KAPOOR R, MUKERJI K G. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 2007,54(4):753-760.
doi: 10.1007/s00248-007-9239-9
[28] LAURIE S, FEENEY K A, MAATHUIS F J M, HEARD P J, BROWN S J, LEIGH R A. A role for HKT1 in sodium uptake by wheat roots. The Plant Journal, 2002,32:139-149.
doi: 10.1046/j.1365-313X.2002.01410.x
[29] WANG Q, GUAN C, WANG P, LV M L, MA Q, WU G Q, BAO A K, ZHANG J L, WANG S M. AtHKT1; 1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regulation, 2015,75(3):615-623.
doi: 10.1007/s10725-014-9964-2
[30] ZHANG H M, KIM M S, SUN Y, DOWD S E, SHI H Z, PAR P W. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 2008,21(6):737-744.
doi: 10.1094/MPMI-21-6-0737
[31] CHEN L, LIU Y P, WU G W, NJERI K V, SHEN Q R, ZHANG N, ZHANG R F. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiologia Plantarum, 2016,158(1):34-44.
doi: 10.1111/ppl.2016.158.issue-1
[32] ASHRAF M, HASNAIN S, BERGE O, MAHMOOD T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 2004,40(3):157-162.
[33] ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007,59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006
[34] CHEN M Q, WEI H B, CAO J W, LIU R J, WANG Y L, ZHENG C Y. Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. Journal of Biochemistry and Molecular Biology, 2007,40(3):396-403.
[35] QURASHI A W, SABRI A N. Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pakistan Journal of Botany, 2013,45(3):1011-1016.
[36] SZIDERICS A H, RASCHE F, TROGNITZ F, SESSITSCH A, WILHELM E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology, 2007,53(11):1195-1202.
doi: 10.1139/W07-082
[37] 徐亚军, 赵龙飞, 邢鸿福, 罗云霄, 魏正欣. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响. 生态学报, 2020,40(11):3726-3737.
XU Y J, ZHAO L F, XING H F, LUO Y X, WEI Z X. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress. Acta Ecologica Sinica, 2020,40(11):3726-3737. (in Chinese)
[38] JHA Y, SUBRAMANIAN R B, PATEL S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum, 2011,33(3):797-802.
doi: 10.1007/s11738-010-0604-9
[39] 路静, 马齐军, 康慧, 李文浩, 刘亚静, 郝玉金, 由春香. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性. 园艺学报, 2019,46(3):433-443.
LU J, MA Q J, KANG H, LI W H, LIU Y J, HAO Y J, YOU C X. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance. Acta Horticulturae Sinica, 2019,46(3):433-443. (in Chinese)
[40] 张永志, 高文俊, 郭艳妮, 郝鲜俊. 丛枝菌根真菌对NaCl胁迫下紫花苜蓿的生理指标及光合参数的影响. 草原与草坪, 2018,38(4):26-34.
ZHANG Y Z, GAO W J, GUO Y N, HAO X J. The effects of arbuscular mycorrhizal fungi on physiological responses of Medicago sativa under NaCl stress. Grassland and Turf, 2018,38(4):26-34. (in Chinese)
[41] KIM K, JANG Y J, LEE S M, OH B T, CHAE J C, LEE K J. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells, 2014,37(2):109-117.
doi: 10.14348/molcells.2014.2239
[42] ZAWOZNIK M S, AMENEIROS M, BENAVIDES M P, V ZQUEZ S, GROPPA M D. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, 2011,90(4):1389-1397.
doi: 10.1007/s00253-011-3162-1
[43] GOND S K, TORRES M S, BERGEN M S, HELSEL Z, WHITE J F. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Letters in Applied Microbiology, 2015,60(4):392-399.
doi: 10.1111/lam.12385
[44] MARULANDA A, AZC N R, CHAUMONT F, RUIZ-LOZANO J M, AROCA R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta, 2010,232(2):533-543.
doi: 10.1007/s00425-010-1196-8
[45] MUHSIN T M, ZWIAZEK J J. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytologist, 2002,153:153-158.
doi: 10.1046/j.0028-646X.2001.00297.x
[46] 贺忠群, 贺超兴, 闫妍, 张志斌, 王怀松, 李焕秀, 汤浩茹. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控. 园艺学报, 2011,38(2):273-280.
HE Z Q, HE C X, YAN Y, ZHANG Z B, WANG H S, LI H X, TANG H R. Regulative effect of arbuscular mycorrhizal fungi on water absorption and expression of aquaporin genes in tomato under salt stress. Acta Horticulturae Sinica, 2011,38(2):273-280. (in Chinese)
[47] AROCA R, PORCEL R, RUIZ-LOZANO J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 2007,173(4):808-816.
doi: 10.1111/nph.2007.173.issue-4
[48] BROTMAN Y, LANDAU U, CUADROS-INOSTROZA Á, TAKAYUKI T, FERNIE A R, CHET L, VITERBO A, WILLMITZER L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 2013,9(3):e1003221.
doi: 10.1371/journal.ppat.1003221
[49] BHARTI N, PANDEY S S, BARNAWAL D, PATEL V K, KALRA A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 2016,6(1):34768.
doi: 10.1038/srep34768
[50] JHA Y, SUBRAMANIAN R B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, 2014,20(2):201-207.
doi: 10.1007/s12298-014-0224-8
[51] BALTRUSCHAT H, FODOR J, HARRACH B D, NIEMCZYK E, BARNA B, GULLNER G, JANECZKO A, KOGEL K H, SCH FER P, SCHWARCZINGER I. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 2008,180(2):501-510.
doi: 10.1111/nph.2008.180.issue-2
[52] WALLER F, ACHATZ B, BALTRUSCHAT H, FODOR J, BECKER K, FISCHER M, HEIER T, HUCKELHOVEN R, NEUMANN C, WETTSTEIN D V, FRANKEN P, KOGEL K H. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(38):13386.
[53] 陈小娟, 刘铠鸣, 宣明刚, 邵佳慧, 张瑞福. 增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果. 南京农业大学学报, 2020,43(3):452-459.
CHEN X J, LIU K M, XUAN M G, SHAO J H, ZHANG R F. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment. Journal of Nanjing Agricultural University, 2020,43(3):452-459. (in Chinese)
[54] EGAMBERDIEVA D, KUCHAROVA Z, DAVRANOV K, BERG G, MAKAROVA N, AZAROVA T, CHEBOTAR V, TIKHONOVICH I, KAMILOVA F, VALIDOV S Z, LUGTENBERG B. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 2011,47(2):197-205.
doi: 10.1007/s00374-010-0523-3
[55] EGAMBERDIEVA D, BERG G, LINDSTR M K, RASANEN L A. Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant and Soil, 2013,369(1):453-465.
doi: 10.1007/s11104-013-1586-3
[56] HASHEM A, ABD ALLAH E F, ALQARAWI A A , AL-HUQAIL A A, WIRTH S, EGAMBERDIEVA D. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology, 2016,7:1089.
[57] BIANCO C, DEFEZ R. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Journal of Experimental Botany, 2009,60(11):3097-3107.
doi: 10.1093/jxb/erp140
[58] LIU S F, HAO H T, LU X, ZHAO X, WANG Y, ZHANG Y B, XIE Z K, WANG R Y. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Scientific Reports, 2017,7(1):10795.
doi: 10.1038/s41598-017-11308-8
[59] EGAMBERDIEVA D, WIRTH S, ABD ALLAH E F. Plant hormones as key regulators in plant-microbe interactions under salt stress //ARORA N, EGAMBERDIEVA D, AHMAD P. Plant Microbiome: Stress Response. Singapore: Springer, 2018: 165-182.
[60] 高永生, 王锁民, 张承烈. 植物盐适应性调节机制的研究进展. 草业学报, 2003,12(2):1-6.
GAO Y S, WANG S M, ZHANG C L. Plant adaptive and regulatory mechanism under salt stress. Acta Prataculturae Sinica, 2003,12(2):1-6. (in Chinese)
[61] KANG S M, KHAN A L, WAQAS M, YOU Y H, KIM J H, KIM J G, HAMAYUN M, LEE I J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 2014,9(1):673-682.
doi: 10.1080/17429145.2014.894587
[62] SHAHZAD R, KHAN A L, BILAL S, WAQAS M, KANG S M, LEE I J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 2017,136:68-77.
doi: 10.1016/j.envexpbot.2017.01.010
[63] YAO L X, WU Z S, ZHENG Y Y, KALEEM I, LI C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 2010,46(1):49-54.
doi: 10.1016/j.ejsobi.2009.11.002
[64] KAZAN K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015,20(4):219-229.
doi: 10.1016/j.tplants.2015.02.001
[65] RAVANBAKHSH M, SASIDHARAN R, VOESENEK L A, KOWALCHUK G A, JOUSSET A. Microbial modulation of plant ethylene signaling: Ecological and evolutionary consequences. Microbiome, 2018,6(1):52.
doi: 10.1186/s40168-018-0436-1
[66] SMITH A, COOK R J. Implications of ethylene production by bacteria for biological balance of soil. Nature, 1974,252(5485):703-705.
[67] RAVANBAKHSH M, KOWALCHUK G A, JOUSSET A. Root- associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff. The ISME Journal, 2019,13(12):3093-3101.
doi: 10.1038/s41396-019-0501-1
[68] GLICK B R, CHENG Z, CZARNY J, DUAN J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 2007,119(3):329-339.
doi: 10.1007/s10658-007-9162-4
[69] SUGAWARA M, OKAZAKI S, NUKUI N, EZURA H, MITSUI H, MINAMISAWA K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnology Advances, 2006,24(4):382-388.
doi: 10.1016/j.biotechadv.2006.01.004
[70] PENROSE D M, MOFFATT B A, GLICK B R. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology, 2001,47(1):77-80.
doi: 10.1139/w00-128
[71] PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003,118(1):10-15.
doi: 10.1034/j.1399-3054.2003.00086.x
[72] BLAHA D, PRIGENT-COMBARET C, MIRZA M S, MOENNE- LOCCOZ Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology, 2006,56(3):455-470.
doi: 10.1111/fem.2006.56.issue-3
[73] GLICK B R, CHENG Z, CZARNY J, DUAN J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 2007,119(3):329-339.
doi: 10.1007/s10658-007-9162-4
[74] HARDOIM P R, VAN OVERBEEK L S, ELSAS J D V. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 2008,16(10):463-471.
doi: 10.1016/j.tim.2008.07.008
[75] LIU X M, ZHANG H. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Frontiers in Plant Science, 2015,6:774.
[76] LEDGER T, ROJAS S, TIMMERMANN T, PINEDO I, POUPIN M J, GARRIDO T, RICHTER P, TAMAYO J, DONOSO R. Volatile- mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Frontiers in Microbiology, 2016,7:1838.
[77] VAISHNAV A, KUMARI S, JAIN S, VARMA A, CHOUDHARY D K. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Microbiology, 2015,119(2):539-551.
doi: 10.1111/jam.12866
[78] BHATTACHARYYA D, YU S M, LEE Y H. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regulation, 2015,75(1):297-306.
doi: 10.1007/s10725-014-9953-5
[79] KWON Y S, RYU C M, LEE S, PARK H B, HAN K S, LEE J H, LEE K, CHUNG W S, JEONG M J, KIM H K, BAE D W. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta, 2010,232(6):1355-1370.
doi: 10.1007/s00425-010-1259-x
[80] ZHENG Y, LIANG J, ZHAO D L, MENG C, ZHANG C S. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils. Microorganisms, 2020,8(2):207.
doi: 10.3390/microorganisms8020207
[81] KWAK M J, KONG H G, CHOI K, KWON S K, SONG J Y, LEE J, LEE P A, CHOI S Y, SEO M, LEE H J, JUNG E J, PARK H, ROY N, KIM H, LEE M M, RUBIN E M, LEE S W, KIM J F. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018,36(11):1100-1109.
doi: 10.1038/nbt.4232
[82] ROY K D, MARZORATI M, ABBEELE P V D, WIELE T V D, BOON N. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environmental Microbiology, 2014,16(6):1472-1481.
doi: 10.1111/emi.2014.16.issue-6
[83] NIU B, PAULSON J N, ZHENG X Q, KOLTER R. Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(12):E2450-E2459.
[84] ZHANG J Y, LIU Y X, ZHANG N, HU B, JIN T, XU H R, QIN Y, YAN P X, ZHANG X N, GUO X X, HUI J, CAO S Y, WANG X, WANG C, WANG H, QU B Y, FAN G, YUAN L X, GARRIDO- OTER R, CHU C C, BAI Y. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019,37(6):676-684.
doi: 10.1038/s41587-019-0104-4
[1] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[2] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[3] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[4] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[5] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[6] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[7] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[8] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[9] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[10] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[11] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[12] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[13] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[14] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[15] ChunHua PANG,Yuan ZHANG,YaNi LI. Effects of Soaking Seeds with Lanthanum Nitrate on Seed Germination and Seedling Growth of Quinoa Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(24): 4484-4492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!