Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 275-286.doi: 10.3864/j.issn.0578-1752.2023.02.006

• PLANT PROTECTION • Previous Articles     Next Articles

Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function

WANG XuanDong(),SONG Zhen,LAN HeTing,JIANG YingZi,QI WenJie,LIU XiaoYang,JIANG DongHua()   

  1. College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang
  • Received:2022-09-02 Accepted:2022-10-17 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】The objective of this study is to isolate and screen the dominant actinomycetes from plant roots and rhizosphere soils in waxberry orchards, explore the seasonal characteristics of the number and distribution of actinomycete populations, and to analyze its application potential in biological control and plant growth promotion. 【Method】Samples of plant roots and rhizosphere soils were collected in different seasons from waxberry orchards, and the dominant actinomycetes were isolated and purified by the dilution plate method. Selective media were used to analyze the plant growth-promoting rhizobacteria (PGPR) characteristics of dominant actinomycetes such as nitrogen fixation, phosphorus solubilization, and potassium solubilization. The CAS plate assay was used to detect siderophore production capacity. The Salkowski assay was used to detect IAA production capacity. The colorimetric method was used to detect ACC deaminase activity. The strains with excellent growth-promoting characteristics were identified by test tubes for pro-biogenesis, and their antibacterial activity was analyzed by the flat-confrontation method and the Oxford cup method. Finally, the taxonomic status of the strain with good characteristics was identified by morphological observation, physiological and biochemical tests, and 16S rDNA sequence analysis. 【Result】A total of 127 strains of dominant actinomycetes were isolated from two waxberry orchards at different altitudes, including 32 from plant roots and 95 from rhizosphere soils. Compared with those isolated in spring and summer, the actinomycetes isolated in autumn and winter had greater quantity and variety, stronger inhibition and promotion ability. The number of dominant actinomycetes isolated at higher altitudes was significantly higher than at lower altitudes in spring and summer, while in autumn and winter the number of actinomycetes isolated at lower altitudes exceeded that of higher altitudes and far exceeded the total number of actinomycetes isolated in spring and summer in that area. Finally, 46 strains of different species of actinomycetes were obtained, and through the analysis of PGPR characteristics, 35 strains of actinomycetes had obvious growth-promoting characteristics. Among them, strain Sz-11 had 6 growth-promoting characteristics, including nitrogen fixation, inorganic phosphorus solubilization, organic phosphorus solubilization, siderophore production, IAA production and ACC deaminase production, and the test tube identification results showed that it could effectively promote the growth and development of rice seedlings. The seedlings inoculated with strain Sz-11 increased by 36.08% and 22.70% in plant height and root length, respectively. Meanwhile, strain Sz-11 showed good antagonistic activity against various plant pathogenic bacteria, with significant and stable antagonistic effects against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xooc). It was tentatively identified as Streptomyces zaomyceticus by observations, and experiments combined with sequencing analysis. 【Conclusion】The number and distribution of dominant actinomycetes in waxberry orchard soil are influenced by season and altitude, and the proportion of growth-promoting strains among culturable actinomycetes is high. S. zaomyceticus has good disease prevention and growth-promoting function, which is expected to be developed into biofertilizer and biocontrol agent for rice production.

Key words: waxberry (Myrica rubra), actinomycetes, plant growth-promoting rhizobacteria (PGPR), biocontrol agent, biofertilizer

Table 1

Distribution of 127 isolates of actinomycetes"

分离株的定殖分布
Colonization distribution of isolates
春季Spring 夏季Summer 秋季Autumn 冬季Winter
采样地1
Sampling site 1
采样地2
Sampling site 2
采样地1
Sampling site 1
采样地2
Sampling site 2
采样地1
Sampling site 1
采样地2
Sampling site 2
采样地1
Sampling site 1
采样地2
Sampling site 2
根系分离株数量
Number of isolates colonized in root
3 5 1 3 3 6 5 6
根际分离株数量
Number of isolates colonized in rhizosphere
9 11 4 8 20 12 17 14
总量Total 12 16 5 11 23 18 22 20

Table 2

Growth promotion characteristics of 35 representative actinomycetes"

菌株编号
Strain number
固氮
Nitrogen fixation
溶磷Phosphorus solubilization 解钾
Potassium solubilization
产铁载体Siderophore
production
产吲哚乙酸
IAA production
产ACC脱氨酶
ACC deaminase production
无机磷
Inorganic phosphorus
有机磷
Organic phosphorus
St-2 + - - - + + -
St-9-1 - ++ + - - + -
St-11 ++ - - - + - +
St-12 + - - - - + -
Sl-6 - - - + + + -
Sl-8 + + + - - - -
Sl-4-2 + - - - - + +
Sp-1 + - - - - + -
Sp-3 - + - - - + -
Sp-8 + + + - ++ - -
Sp-11 ++ - - - + + +
Sp-12 - - - - - + -
Sp-16 - - - + - - -
Sp-18-2 ++ - - + + + -
Sp-19 + - - - - - -
Sp-22 +++ + + - + + ++
Sz-6-2 - - - - - + -
Sz-8 - - - - - + -
Sz-9 - - - - - + -
Sz-11 +++ ++ + - ++ + ++
Sz-13 + - - - - - -
Sz-18 + + - - - + -
Sq-21 - - - - - + -
Sq-14 - + - - - - -
Sq-8-3 + + + - - + +
Sw-2-3 - - - + ++ + -
Sw-3 ++ - - - + + -
Sw-6 + + + - - + +
Sm-3-3 - + - + - + -
Sm-5 ++ - - + ++ - +
Sm-11-2 - + - - - + -
Sk-11 - + - - + - -
Sk-19-3 + - - - - + -
Sf-1-2 - + + + ++ - -
Sf-14 ++ - - + - + +

Fig. 1

Test of growth promotion of excellent PGPR strains in vitro Different letters on the column indicated significant difference among treatments in the same period (P<0.05)"

Table 3

Antagonistic activity of 21 actinomycetes against 6 pathogens"

菌株编号
Strain number
抑制水稻白叶枯病菌Inhibition against Xoo 抑制水稻细菌性
条斑病菌
Inhibition against Xooc
抑制大豆斑疹病菌Inhibition against Xag 抑制菜豆疫病菌
Inhibition against Xap
抑制大豆斑点病菌Inhibition against Psg 抑制烟草青枯病菌
Inhibition against R. solanacearum
St-2 + - - - - -
St-9-1 - - +++ + + -
St-11 +++ + - - + -
Sl-6 + - - - - +
Sl-8 ++ - - - - -
Sl-4-2 - - - - - -
Sp-8 ++ + - - + -
Sp-11 - - ++ ++ + -
Sp-18-2 - - + - ++ -
Sp-22 ++++ +++ + - - -
Sz-11 ++++ ++++ ++ ++ + -
Sz-18 ++ - + - - -
Sq-8-3 + + - - + +
Sw-2-3 - - - - - -
Sw-3 + - + + - +++
Sw-6 +++ + - - ++ ++
Sm-3-3 - - ++ + ++ -
Sm-5 + - - - - +
Sk-19-3 - - - + - ++
Sf-1-2 - - ++ ++ - -
Sf-14 +++ - + + - -

Fig. 2

Analysis of antibacterial activity of strain Sz-11"

Fig. 3

Morphological observation (A), physiological and biochemical analysis (B) and species identification (C) of strain Sz-11"

Table 4

Utilization of different carbon and nitrogen sources by strain Sz-11"

碳源 Carbon source 试验结果 Test result 氮源 Nitrogen source 试验结果 Test result
葡萄糖Glucose +++ 蛋白胨Peptone +++
α-乳糖α-Lactose +++ 硝酸钾KNO3 ++
壳聚糖Chitosan ++ 硫酸铵(NH4)2SO4 ++
D-木糖D-Xylose ++ 谷氨酸Glutamate ++
蔗糖Sucrose +++ 甲硫氨酸Methionine ++
D-麦芽糖D-Maltose +++ 赖氨酸Lysine ++
果糖Fructose + 亮氨酸Leucine ++
L-阿拉伯糖L-Arabinose + 组氨酸Histidine +++
[1] 何新华, 陈力耕, 陈怡, 郭长禄. 中国杨梅资源及利用研究评述. 果树学报, 2004, 21(5): 467-471. doi: 10.13925/j.cnki.gsxb.2004.05.017.
doi: 10.13925/j.cnki.gsxb.2004.05.017
HE X H, CHEN L G, CHEN Y, GUO C L. Review on germplasm resources of Myrica and their exploitation in China. Journal of Fruit Science, 2004, 21(5): 467-471. doi: 10.13925/j.cnki.gsxb.2004.05.017. (in Chinese)
doi: 10.13925/j.cnki.gsxb.2004.05.017
[2] 冯健玲, 何新华, 李一伟, 李峰, 秦荣耀. 广西杨梅根瘤Frankia菌的分离和培养特性研究. 西南农业学报, 2012, 25(1): 236-239. doi: 10.16213/j.cnki.scjas.2012.01.059.
doi: 10.16213/j.cnki.scjas.2012.01.059
FENG J L, HE X H, LI Y W, LI F, QIN R Y. Isolation and cultural features of Frankia on root nodule of red bayberry in Guangxi. Southwest China Journal of Agricultural Sciences, 2012, 25(1): 236-239. doi: 10.16213/j.cnki.scjas.2012.01.059. (in Chinese)
doi: 10.16213/j.cnki.scjas.2012.01.059
[3] 张勇, 刘海英, 吕爱华, 吴翠蓉, 吴家森, 傅伟军, 王晓晓, 蒋仲龙. 杨梅根系和土壤微生物量碳、氮、磷生态化学计量随林龄的变化. 生态科学, 2022, 41(1): 84-90. doi: 10.14108/j.cnki.1008-8873.2022.01.010.
doi: 10.14108/j.cnki.1008-8873.2022.01.010
ZHANG Y, LIU H Y, LÜ A H, WU C R, WU J S, FU W J, WANG X X, JIANG Z L. The variation of ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in root system of Myrica rubra and its soil microbial biomass with different stand ages. Ecological Science, 2022, 41(1): 84-90. doi: 10.14108/j.cnki.1008-8873.2022.01.010. (in Chinese)
doi: 10.14108/j.cnki.1008-8873.2022.01.010
[4] PEREZ-MONTANO F, ALIAS-VILLEGAS C, BELLOGIN R A, DEL CERRO P, ESPUNY M R, JIMENEZ-GUERRERO I, LOPEZ- BAENA F J, OLLERO F J, CUBO T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 2014, 169(5/6): 325-336. doi: 10.1016/j.micres.2013.09.011.
doi: 10.1016/j.micres.2013.09.011
[5] NGALIMAT M S, MOHD HATA E, ZULPERI D, ISMAIL S I, ISMAIL M R, MOHD ZAINUDIN N A I, SAIDI N B, YUSOF M T. Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms, 2021, 9(4): 682. doi: 10.3390/microorganisms9040682.
doi: 10.3390/microorganisms9040682
[6] 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展. 生命科学, 2022, 34(2): 118-127. doi: 10.13376/j.cbls/2022014.
doi: 10.13376/j.cbls/2022014
MU W Q, KANG S M, LI P L. Advances in rhizosphere growth- promoting bacteria function on plant growth facilitation and their mechanisms. Chinese Bulletin of Life Sciences, 2022, 34(2): 118-127. doi: 10.13376/j.cbls/2022014. (in Chinese)
doi: 10.13376/j.cbls/2022014
[7] LIU H, CHEN G H, SUN J J, CHEN S, FANG Y, REN J H. Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants. Frontiers in Microbiology, 2022, 13: 792876. doi: 10.3389/fmicb.2022.792876.
doi: 10.3389/fmicb.2022.792876
[8] MEENA M, SWAPNIL P, DIVYANSHU K, KUMAR S, HARISH, TRIPATHI Y N, ZEHRA A, MARWAL A, UPADHYAY R S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 2020, 60(10): 828-861. doi: 10.1002/jobm.202000370.
doi: 10.1002/jobm.202000370
[9] 周亚男, 韩小斌, 魏可可, 芶剑渝, 王先勃, 张成省, 郑艳芬. 烟草根际可培养微生物多样性及防病促生菌的筛选. 微生物学通报, 2021, 48(12): 4649-4663. doi: 10.13344/j.microbiol.china.210398.
doi: 10.13344/j.microbiol.china.210398
ZHOU Y N, HAN X B, WEI K K, GOU J Y, WANG X B, ZHANG C S, ZHENG Y F. The culturable microbial diversity in tobacco rhizosphere and their plant growth-promoting and biocontrol properties. Microbiology China, 2021, 48(12): 4649-4663. doi: 10.13344/j.microbiol.china.210398. (in Chinese)
doi: 10.13344/j.microbiol.china.210398
[10] 许世洋, 范雨轩, 汪学苗, 张怡忻, 柴继宽, 李建军, 李敏权, 漆永红, 李雪萍. 辣椒镰孢根腐病防病促生细菌的筛选及其效应. 微生物学报, 2022, 62(7): 2735-2750. doi: 10.13343/j.cnki.wsxb.20210693.
doi: 10.13343/j.cnki.wsxb.20210693
XU S Y, FAN Y X, WANG X M, ZHANG Y X, CHAI J K, LI J J, LI M Q, QI Y H, LI X P. The Fusarium root rot-controlling effect and growth-promoting effect of the bacteria in the rhizosphere of Capsicum annuum. Acta Microbiologica Sinica, 2022, 62(7): 2735-2750. doi: 10.13343/j.cnki.wsxb.20210693. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20210693
[11] 刘灵芝, 秦嗣军, 吕德国, 王冰营. 樱桃园土壤优势放线菌的分离及其促长功能研究. 中国农业科学, 2013, 46(6): 1221-1229. doi: 10.3864/j.issn.0578-1752.2013.06.016.
doi: 10.3864/j.issn.0578-1752.2013.06.016
LIU L Z, QIN S J, LÜ D G, WANG B Y. Isolation of dominant actinomycetes from cherry orchard soil and their functions in bio-control and plant promotion. Scientia Agricultura Sinica, 2013, 46(6): 1221-1229. doi: 10.3864/j.issn.0578-1752.2013.06.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.06.016
[12] WANG H, LIU R, YOU M P, BARBETTI M J, CHEN Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 2021, 9(9): 1988. doi: 10.3390/microorganisms9091988.
doi: 10.3390/microorganisms9091988
[13] BOWYA T, BALACHANDAR D. Harnessing PGPR inoculation through exogenous foliar application of salicylic acid and microbial extracts for improving rice growth. Journal of Basic Microbiology, 2020, 60(11/12): 950-961. doi: 10.1002/jobm.202000405.
doi: 10.1002/jobm.202000405
[14] PEREIRA S I A, ABRUE D, MOREIRA H, VEGA A, CASTRO P M L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 2020, 6(10): e05106. doi: 10.1016/j.heliyon.2020.e05106.
doi: 10.1016/j.heliyon.2020.e05106
[15] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究. 作物学报, 2022, 48(6): 1546-1557. doi: 10.3724/sp.j.1006.2022.14108.
doi: 10.3724/SP.J.1006.2022.14108
WANG X D, YANG S Y Y, GAO R J, YU J J, ZHENG D P, NI F, JIANG D H. Screening Streptomyces against Xanthomonas axonopodis pv. glycines and study of growth-promoting and biocontrol effect. Acta Agronomica Sinica, 2022, 48(6): 1546-1557. doi: 10.3724/sp.j.1006.2022.14108. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14108
[16] 宁楚涵, 李文彬, 张晨, 刘润进. 定殖植物根内和根围放线菌的分离鉴定及其体外抑菌促生效应. 微生物学报, 2019, 59(10): 2024-2037. doi: 10.13343/j.cnki.wsxb.20180558.
doi: 10.13343/j.cnki.wsxb.20180558
NING C H, LI W B, ZHANG C, LIU R J. Isolation and identification of antagonizing and growth-promoting actinobacteria colonized in plant roots and rhizosphere. Acta Microbiologica Sinica, 2019, 59(10): 2024-2037. doi: 10.13343/j.cnki.wsxb.20180558. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20180558
[17] 刘泽平, 王志刚, 徐伟慧, 陈文晶, 吕智航, 王春龙, 史一然. 水稻根际促生菌的筛选鉴定及促生能力分析. 农业资源与环境学报, 2018, 35(2): 119-125. doi: 10.13254/j.jare.2017.0251.
doi: 10.13254/j.jare.2017.0251
LIU Z P, WANG Z G, XU W H, CHEN W J, LÜ Z H, WANG C L, SHI Y R. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria. Journal of Agricultural Resources and Environment, 2018, 35(2): 119-125. doi: 10.13254/j.jare.2017.0251. (in Chinese)
doi: 10.13254/j.jare.2017.0251
[18] PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118(1): 10-15. doi: 10.1034/j.1399-3054.2003.00086.x.
doi: 10.1034/j.1399-3054.2003.00086.x
[19] 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究. 草业学报, 2021, 30(1): 59-71. doi: 10.11686/cyxb2020321.
doi: 10.11686/cyxb2020321
MAN J, TANG B, DENG B, LI J H, HE Y J, ZHANG J L. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis. Acta Prataculturae Sinica, 2021, 30(1): 59-71. doi: 10.11686/cyxb2020321. (in Chinese)
doi: 10.11686/cyxb2020321
[20] SCHWYN B, NEILANDS J B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1): 47-56. doi: 10.1016/0003-2697(87)90612-9.
doi: 10.1016/0003-2697(87)90612-9
[21] 阮继生, 黄英. 放线菌快速鉴定与系统分类. 北京: 科学出版社, 2011: 52-98.
RUAN J S, HUANG Y. Rapid Identification and Systematics of Actinobacteria. Beijing: Science Press, 2011: 52-98. (in Chinese)
[22] HOZZEIN W N, ABUELSOUD W, WADAAN M A M, SHUIKAN A M, SELIM S, AL JAOUNI S, ABDELGAWAD H. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. The Science of the Total Environment, 2019, 651(2): 2787-2798. doi: 10.1016/j.scitotenv.2018.10.048.
doi: 10.1016/j.scitotenv.2018.10.048
[23] VAN DER MEIJ A, WORSLEY S F, HUTCHINGS M I, VAN WEZEL G P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 2017, 41(3): 392-416. doi: 10.1093/femsre/fux005.
doi: 10.1093/femsre/fux005 pmid: 28521336
[24] OLANREWAJU O S, BABALOLA O O. Streptomyces: Implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology, 2019, 103(3): 1179-1188. doi: 10.1007/s00253-018-09577-y.
doi: 10.1007/s00253-018-09577-y pmid: 30594952
[25] 王岳, 丁国栋, 刘梦婕, 高广磊, 于明含, 李旭. 榆林沙区典型林地不同植被类型对土壤微生物群落结构的影响. 土壤通报, 2022, 53(4): 907-918. doi: 10.19336/j.cnki.trtb.2021120502.
doi: 10.19336/j.cnki.trtb.2021120502
WANG Y, DING G D, LIU M J, GAO G L, YU M H, LI X. Influence of different vegetation types on soil microbial characteristics of typical forest land in Yulin sandy area. Chinese Journal of Soil Science, 2022, 53(4): 907-918. doi: 10.19336/j.cnki.trtb.2021120502. (in Chinese)
doi: 10.19336/j.cnki.trtb.2021120502
[26] 刘敏, 车文学, 边伟杰, 甘禧霖, 赵怀宝. 八门湾红树林土壤放线菌多样性及抗病原菌活性分析. 海洋与湖沼, 2022, 53(2): 352-363. doi: 10.11693/hyhz.20210800176.
doi: 10.11693/hyhz.20210800176
LIU M, CHE W X, BIAN W J, GAN X L, ZHAO H B. Diversity and antimicrobial activity of actinobacteria in the soil of the Bamenwan mangrove in Hainan, China. Oceanologia et Limnologia Sinica, 2022, 53(2): 352-363. doi: 10.11693/hyhz.20210800176. (in Chinese)
doi: 10.11693/hyhz.20210800176
[27] 项鹏, 郝建国, 张武, 李宝华, 鹿文成, 李红鹏, 张崎峰, 陈井生, 刘大伟. 大豆胞囊线虫生防放线菌的田间防效评估及其鉴定. 中国油料作物学报, 2017, 39(2): 234-238. doi: 10.7505/j.issn.1007-9084.2017.02.014.
doi: 10.7505/j.issn.1007-9084.2017.02.014
XIANG P, HAO J G, ZHANG W, LI B H, LU W C, LI H P, ZHANG Q F, CHEN J S, LIU D W. Identification and field control efficacy of biocontrol actinomycetes against Heterodera glycines. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 234-238. doi: 10.7505/j.issn.1007-9084.2017.02.014. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2017.02.014
[28] HASSAN S E, FOUDA A, RADWAN A A, SALEM S S, BARGHOTH M G, AWAD M A, ABDO A M, EL-GAMAL M S. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 2019, 24(3): 377-393. doi: 10.1007/s00775-019-01654-5.
doi: 10.1007/s00775-019-01654-5
[29] FOUDA A, HASSAN S E, ABDO A M, EL-GAMAL M S. Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp.. Biological Trace Element Research, 2020, 195(2): 707-724. doi: 10.1007/s12011-019-01883-4.
doi: 10.1007/s12011-019-01883-4
[30] KEIKHA N, AYATOLLAHI MOUSAVI S A, NAKHAEI A R, YADEGARI M H, SHAHIDI BONJAR G H, AMIRI S. In vitro evaluation of enzymatic and antifungal activities of soil-actinomycetes isolates and their molecular identification by PCR. Jundishapur Journal of Microbiology, 2015, 8(5): e14874. doi: 10.5812/jjm.8(5)2015.14874.
doi: 10.5812/jjm.8(5)2015.14874
[1] LIU Ling-Zhi, QIN Si-Jun, LU De-Guo , WANG Bing-Ying. Isolation of Dominant Actinomycetes from Cherry Orchard Soil and Their Functions in Bio-Control and Plant Promotion [J]. Scientia Agricultura Sinica, 2013, 46(6): 1221-1229.
[2] YIN You-Ping, HUANG Shan, SONG Zhang-Yong, WANG Zhong-Kang. Microsclerotia Artificial Inductions of Nomuraea rileyi CQNr01 [J]. Scientia Agricultura Sinica, 2012, 45(23): 4801-4807.
[3] WANG Jing, HUANG Yun, YAO Jia, LIN Shan, LI Xiao-Lan, QIN Yun. Identification and Control Effects of Two Antagonistic Actinomycetes Against Clubroot [J]. Scientia Agricultura Sinica, 2011, 44(13): 2692-2700 .
[4] ZHU Wei-jie,WANG Nan,YU Xue-ping,WANG Wei . Effects of the Biocontrol Agent Pseudomonas fluorescens 2P24 on Microbial Community Diversity in the Melon Rhizosphere
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1389-1396 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!