Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 1971-1985.doi: 10.3864/j.issn.0578-1752.2020.10.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Benefits and Marginal Effect of Dry Matter Accumulation and Yield in Maize and Soybean Intercropping Patterns

ZHAO DeQiang,LI Tong,HOU YuTing,YUAN JinChuan,LIAO YunCheng()   

  1. College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi
  • Received:2019-09-11 Accepted:2019-10-17 Online:2020-05-16 Published:2020-05-22
  • Contact: YunCheng LIAO E-mail:yunchengliao@163.com

Abstract:

【Objective】The study was carried to explore the intensity and extent of marginal effect in the maize-soybean intercropping system and the effect on two crops, and to investigate the aggressivity between two crops and the marginal effects of each line, so as to provide a base for the mechanism of maize-soybean intercropping in the increase of land productive on dry matter accumulation and land equivalent ratio (LER). 【Method】 Field experiment consisted of maize-soybean intercropping system (6M6S, 6M3S, 3M6S, and 3M3S), sole maize (CKM) and sole soybean (CKS), and each row (marked I, II and III) of 4 intercropping treatments has been sampled. The dry matter accumulation and the composite of biomass and yield were measured, and the marginal effects of each crop lines were also calculated. 【Result】A two-year experiment showed that the maize dry matter accumulation of intercropping treatments including 6M6S, 6M3S, 3M6S, and 3M3S was higher than that of CKM, and the soybean dry matter accumulation of 6M6S and 3M6S was higher than that of CKS. Compared with the monoculture treatment, intercropping treatment increased the dry matter accumulation rates of the whole growth period of maize and the early-branching, late branching, filling and maturity stage of soybean. During these two years, the yield of maize under 6M6S, 6M3S, 3M6S and 3M3S accounted for 73.9%, 88.7%, 52.8% and 65.5% of CKM and the yield of soybean accounted for 26.1%, 11.3%, 47.2% and 34.5% of CKS, respectively; The LERYMS of them were 1.31, 1.23, 1.33 and 1.13, and the aggressivity of maize relative to soybean were 0.44, 0.47, 0.45 and 0.46 in average, respectively. The I, II, and III rows in intercropped maize and the II and III rows in intercropped soybean produced more dry matter accumulation and rate than the respective monoculture of maize and soybean, but the intercropping treatment decreased the dry matter accumulation and rate of I row soybean. During these two years, the per plant yield of maize in I, II, and III rows were 151.43%, 138.51% and 130.83% of CKM, respectively, and the per plant yield of soybean in I, II, and III rows were 90.22%,104.16% and 109.03% of CKS, respectively. The stem and leaf dry matter of crops reached the maximum at silking stage (flowering stage) in two years experiment, the remobilization of maize leaf, maize stem, and soybean stem and leaf were 15.70 g/plant, 27.64 g/plant and 7.43 g/plant, and the efficiency rates of them were 22.80%, 44.23%, 19.61%, and the conversion rates were 14.99%, 26.28%, and 27.79%, respectively. 【Conclusion】The intercropping of maize and soybean increased the dry matter accumulation and yield of crops, the remobilization of leaf and stem, and increased LER, in which maize contributed more than soybean. The marginal effect of intercropping was affected by different row ratios. The dry matter accumulation and yield of I, II, and III rows in intercropped maize were decreasing, and it was increasing in intercropped soybean. In this experiment, the 3M6S intercrop pattern was the most lucrative system, and it had the highest LER and marginal advantage.

Key words: maize and soybean intercropping, marginal effect, dry matter remobilization, yield, land equivalent ratio

Fig. 1

Schematic diagram of intercropping planting"

Fig. 2

The per plant dry matter accumulation rate and amount under different planting patterns Different small letters mean significantly different at P<0.05. The number on the column indicates the rate of dry matter accumulation between the growth period and the previous growth period. V3, V4, V6, V12, R1, R3 and R7 of maize correspond to the three-leaf,four-leaf stage, jointing, big flare, silking, filling, and maturity stage, V3, V4, V5, R2, R5 and R7 of soybean correspond to the seedling, early branching, late branching, flowering, filling, and maturity stage. The same as below"

Fig. 3

The biomass and yield under different planting patterns"

Fig. 4

The per plant dry matter accumulation of I, II, and III row at maturity under different planting patterns"

Fig. 5

The marginal per plant dry matter accumulation rate and amount under different planting patterns"

Fig. 6

The per plant yield at maturity under different planting patterns"

Fig. 7

The marginal per plant yield under different planting patterns"

Table 1

The dynamic of LER and AMS under maize/soybean intercropping with different row ratios"

年份
Year
处理
Treatment
产量土地当量比LERYMS 产量种间相对竞争力AYMS 生物量土地当量比LERBMS 生物量种间相对竞争力ABMS
玉米
Maize
大豆
Soybean
LERYMS 玉米
Maize
大豆
Soybean
AYMS 玉米
Maize
大豆
Soybean
LERBMS 玉米
Maize
大豆
Soybean
ABMS
2017 6M6S 0.77 0.56 1.33b 1.43 1.04 0.39c 0.73 0.53 1.26a 1.47 1.05 0.42c
6M3S 1.02 0.27 1.30c 1.42 0.76 0.66a 0.93 0.26 1.20b 1.40 0.79 0.61a
3M6S 0.55 0.81 1.36a 1.53 1.14 0.39c 0.51 0.76 1.27a 1.53 1.14 0.38c
3M3S 0.72 0.46 1.18d 1.34 0.86 0.48b 0.67 0.42 1.09c 1.34 0.84 0.50b
2018 6M6S 0.76 0.52 1.28ab 1.53 1.04 0.49ab 0.72 0.53 1.25a 1.44 1.07 0.38a
6M3S 0.83 0.32 1.15b 1.24 0.97 0.28c 0.84 0.26 1.10b 1.26 1.06 0.20b
3M6S 0.55 0.75 1.30a 1.64 1.13 0.51a 0.51 0.76 1.27a 1.52 1.13 0.39a
3M3S 0.64 0.43 1.07c 1.28 0.85 0.43b 0.67 0.42 1.09b 1.33 0.89 0.44a

Table 2

The dynamic in dry matter accumulation and remobilization of maize leaves between different planting patterns"

行号
Number
处理
Treatment
2017 2018
V4 R1 R7 输出量
Remobilization amount (g/plant)
输出率
Remobilization efficiency (%)
贡献率
Conversion rate (%)
V3 V6 V12 R1 R3 R7 输出量
Remobilization amount (g/plant)
输出率
Remobilization efficiency (%)
贡献率
Conversion rate (%)
I 6M6S 19.11 77.67 58.18 19.49 25.1 16.5 1.04 15.31 59.93 76.45 81.44 64.15 17.29 21.2 15.0
6M3S 21.19 69.96 50.89 19.06 27.3 15.7 1.10 17.81 56.65 78.55 77.17 60.72 16.45 21.3 15.0
3M6S 18.55 73.51 57.65 15.87 21.6 12.8 1.07 19.74 46.95 88.17 87.82 67.93 19.89 22.7 16.9
3M3S 16.55 68.32 55.44 12.88 18.9 11.8 1.30 14.66 48.41 67.41 65.63 49.05 16.58 25.3 15.1
均值Mean 18.85 72.37 55.54 16.83 23.3 14.2 1.13 16.88 52.98 77.64 78.01 60.46 17.55 22.5 15.5
II 6M6S 17.86 64.55 52.13 12.42 19.2 10.9 0.97 15.25 55.72 69.62 70.42 59.53 10.88 15.5 10.1
6M3S 20.85 57.13 45.88 11.25 19.7 10.7 1.26 16.23 48.77 68.05 66.93 51.98 14.95 22.3 17.2
3M6S 20.48 70.89 51.39 19.50 27.5 16.5 1.18 18.44 42.43 81.97 83.64 62.99 20.65 24.7 19.3
3M3S 15.54 61.05 45.39 15.65 25.6 15.1 0.81 15.49 45.27 69.17 70.21 49.53 20.67 29.4 22.1
均值Mean 18.68 63.40 48.70 14.71 23.2 13.3 1.05 16.35 48.05 72.20 72.80 56.01 16.79 23.1 17.0
III 6M6S 15.36 60.57 49.23 11.34 18.7 10.5 1.01 14.75 55.95 66.19 64.77 50.59 14.18 21.9 14.9
6M3S 17.14 59.00 48.05 10.95 18.6 9.8 0.84 21.79 45.62 60.01 66.37 49.33 17.04 25.7 20.0
均值Mean 16.68 61.00 47.84 13.16 21.6 12.0 0.93 17.09 48.72 66.89 68.54 51.37 17.17 25.1 19.1
CKM CKM 16.23 52.66 41.82 10.84 20.6 13.6 1.04 15.49 40.23 56.29 57.96 42.40 15.56 26.8 19.1

Table 3

The dynamic in dry matter accumulation and remobilization of maize stems between different planting patterns"

行号
Number
处理
Treatment
2017 2018
R1 R7 输出量Remobilization amount (g/plant) 输出率Remobilization efficiency (%) 贡献率Conversion rate (%) V12 R1 R3 R7 输出量Remobilization amount (g/plant) 输出率Remobilization efficiency (%) 贡献率
Conversion rate (%)
I 6M6S 72.05 39.71 32.34 44.9 27.3 25.77 75.14 50.82 41.62 33.52 44.6 29.1
6M3S 61.59 35.31 26.28 42.7 21.7 24.36 67.01 45.05 35.35 31.66 47.3 28.9
3M6S 66.10 32.40 33.70 51.0 27.1 20.19 70.98 54.59 32.97 38.01 53.5 32.3
3M3S 56.75 34.82 21.93 38.6 20.1 20.82 57.59 39.17 35.88 21.70 37.7 19.8
均值Mean 64.12 35.56 28.56 44.5 24.2 22.78 67.68 47.40 36.45 31.22 46.2 27.6
II 6M6S 67.42 37.60 29.82 44.2 26.1 23.96 65.28 39.24 37.07 28.20 43.2 26.3
6M3S 55.59 24.45 31.14 56.0 29.6 20.97 59.01 31.03 21.86 37.15 63.0 42.7
3M6S 65.27 36.91 28.36 43.5 23.9 18.24 72.28 47.49 38.69 33.58 46.5 31.4
3M3S 55.82 37.05 18.77 33.6 18.1 19.47 55.75 40.81 38.19 17.56 31.5 18.8
均值Mean 61.03 34.00 27.02 44.3 24.5 20.66 63.08 39.64 33.95 29.12 46.2 29.5
III 6M6S 62.14 37.17 24.97 40.2 23.1 24.06 65.86 40.03 36.97 28.89 43.9 30.4
6M3S 59.96 35.45 24.51 40.9 22.0 19.62 54.25 35.31 31.14 23.10 42.6 27.2
均值Mean 59.74 35.92 23.82 39.9 21.7 21.84 59.73 38.95 35.06 24.67 41.3 27.4
CKM CKM 52.51 30.90 21.62 41.2 27.2 17.30 50.17 38.78 27.29 22.88 45.6 28.1

Table 4

The dynamic in dry matter accumulation and remobilization of soybean stems and leaves between different planting pattern"

行号
Number
处理
Treatment
2017 2018
V4 R2 R7 输出量Remobilization amount (g/plant) 输出率Remobilization efficiency (%) 贡献率Conversion rate (%) V3 V4 V5 R2 R5 R7 输出量
Remobilization amount (g/plant)
输出率
Remobilization efficiency (%)
贡献率
Conversion rate (%)
I 6M6S 9.18 29.23 22.95 6.28 21.5 28.1 1.02 9.11 17.46 28.42 32.92 25.80 7.12 21.6 29.2
6M3S 8.43 26.23 21.78 4.45 17.0 22.8 1.11 9.47 20.78 23.33 33.59 26.58 7.01 20.9 24.3
3M6S 8.17 40.39 31.19 9.20 22.8 32.9 0.99 8.57 27.98 37.23 41.81 35.89 5.92 14.2 16.3
3M3S 7.07 23.35 20.07 3.28 14.1 18.2 0.97 8.82 19.52 25.07 30.88 26.03 4.85 15.7 16.9
均值Mean 8.21 29.80 24.00 5.80 19.5 26.4 1.02 8.99 21.44 28.51 34.80 28.58 6.22 17.9 21.1
II 6M6S 9.63 48.38 38.66 9.72 20.1 35.4 0.88 8.34 21.28 32.33 47.83 37.59 10.24 21.4 29.1
6M3S 10.07 51.25 38.16 13.10 25.6 66.6 1.14 9.28 21.80 27.21 46.23 33.78 12.45 26.9 34.2
3M6S 11.07 45.35 36.90 8.45 18.6 31.1 1.10 8.02 24.73 32.39 42.25 37.32 4.93 11.7 13.1
3M3S 7.92 30.00 25.18 4.82 16.1 21.3 1.09 9.95 21.47 24.23 32.38 24.58 7.80 24.1 29.5
均值Mean 9.67 43.75 34.72 9.02 20.6 37.3 1.05 8.90 22.32 29.04 42.17 33.32 8.85 21.0 26.1
III 6M6S 10.40 44.20 35.89 8.30 18.8 34.1 1.07 9.21 20.94 31.71 42.71 33.09 9.62 22.5 29.5
3M6S 8.96 31.14 24.08 7.07 22.7 27.4 1.26 9.33 19.28 21.56 33.05 27.47 5.58 16.9 22.5
均值Mean 9.24 37.27 29.97 7.30 19.6 29.1 1.12 9.35 21.00 26.64 37.58 29.61 7.96 21.2 27.7
CKS CKS 8.37 35.02 27.94 7.08 20.2 29.8 1.01 8.95 20.38 28.62 34.41 28.87 5.54 16.1 18.3
[1] 王小春 . 玉/豆和玉/薯模式下玉米养分吸收利用特性及氮肥调控机理研究[D]. 温江: 四川农业大学, 2013.
WANG X C . Research on nutrient uptake and use efficiency, mechanism of nitrogen regulating on maize under maize/soybean and maize/sweet potato relay intercropping systems[D]. Wenjiang: Sichuan Agricultural University, 2013. (in Chinese)
[2] 李永刚, 王丽艳, 张思奇, 孙丽萍, 赵同雪, 徐澜坤 . 玉米连作障碍主要因子对苗期玉米生长影响的初步分析. 东北农业科学, 2017,42(2):27-31.
LI Y G, WANG L Y, ZHANG S Q, SUN L P, ZHAO T X, XU L K . A preliminary analysis of main influencing factors on maize seedling growth under long term continuous maize cropping obstacle. Journal of Northeast Agricultural Sciences, 2017,42(2):27-31. (in Chinese)
[3] 董艳, 董坤, 杨智仙, 郑毅, 汤利 . 间作减轻蚕豆枯萎病的微生物和生理机制. 应用生态学报, 2016,27(6):1984-1992.
DONG Y, DONG K, YANG Z X, ZHENG Y, TANG L . Microbial and physiological mechanisms for alleviating fusarium wilt of faba bean in intercropping system. Chinese Journal of Applied Ecology, 2016,27(6):1984-1992. (in Chinese)
[4] 张亦涛 . 华北典型城郊夏玉米大豆间作模式经济与环境效应研究[D]. 北京: 中国农业科学院, 2012.
ZHANG Y T . Economic and environmental effects of summer maize intercropping soybeans in typical surburb area in north China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[5] 中华人民共和国国务院办公厅. 国务院关于建立粮食生产功能区和重要农产品生产保护区的指导意见.(2017-03-31)[2019-05-25]. http://www.gov.cn/zhengce/content/2017-4/10/content_5184613.htm
General Office of the State Council of the People's Republic of China. Guiding opinions of the state council on establishing functional areas for grain production and protected areas for important agricultural products production. (2017-03-31)[2019-05-25]. http://www.gov.cn/zhengce/content/2017-4/10/content_5184613.htm.(in Chinese)
[6] IQBAL N, HUSSAIN S, AHMED Z, YANG F, WANG X, LIU W, YONG T, DU J, SHU K, YANG W, LIU J . Comparative analysis of maize-soybean strip intercropping systems: A review. Plant Production Science, 2019,22(2):131-142.
[7] 高阳, 段爱旺, 刘祖贵, 申孝军, 刘战东, 陈金平 . 单作和间作对玉米和大豆群体辐射利用率及产量的影响. 中国生态农业学报, 2009,17(1):7-12.
GAO Y, DUAN A W, LIU Z G, SHEN X J, LIU Z D, CHEN J P . Effect of monoculture and intercropping on radiation use efficiency and yield of maize and soybean. Chinese Journal of Eco-Agriculture, 2009,17(1):7-12. (in Chinese)
[8] 刘均霞 . 玉米/大豆间作条件下作物根际养分高效利用机理研究[D]. 贵阳: 贵州大学, 2008.
LIU J X . Study on the mechanism of high efficient utilization of crop rhizosphere nutrients under maize/soybean intercropping[D]. Guiyang: Guizhou University, 2008. (in Chinese)
[9] 曹鹏鹏, 田艺心, 高凤菊, 华方静, 王乐政 . 玉米-大豆间作不同带距和行距对两作物生长及产量的影响. 山东农业科学, 2018,50(7):78-81, 87.
CAO P P, TIAN Y X, GAO F J, HUA F J, WANG L Z . Effects of different band and row spacing on growth and yield of intercropping maize and soybean. Shandong Agricultural Sciences, 2018,50(7):78-81, 87. (in Chinese)
[10] 刘洋, 孙占祥, 白伟, 郑家明, 侯志研, 张莹, 文凤 . 玉米大豆间作对辽西地区作物生长和产量的影响. 大豆科学, 2011,30(2):224-228.
LIU Y, SUN Z X, BAI W, ZHENG J M, HOU Z Y, ZHANG Y, WEN F . Effect of maize and soybean interplanting on crops growth and yield in western Liaoning province. Soybean Science, 2011,30(2):224-228. (in Chinese)
[11] 张晓娜, 陈平, 庞婷, 杜青, 付智丹, 周颖, 任建锐, 杨文钰, 雍太文 . 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响. 四川农业大学学报, 2017,35(4):484-490.
ZHANG X N, CHEN P, PANG T, DU Q, FU Z D, ZHOU Y, REN J R, YANG W Y, YONG T W . The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system. Journal of Sichuan Agricultural University, 2017,35(4):484-490. (in Chinese)
[12] 崔亮, 杨文钰, 黄妮, 刘江, 王艳玲, 王晓慧, 刘洋, 颜寿 . 玉米-大豆带状套作下玉米株型对大豆干物质积累和产量形成的影响. 应用生态学报, 2015,26(8):2414-2420.
CUI L, YANG W Y, HUANG N, LIU J, WANG Y L, WANG X H, LIU Y, YAN S . Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems. Chinese Journal of Applied Ecology, 2015,26(8):2414-2420. (in Chinese)
[13] TRENBATH B R. Resource Use by Intercrops: In Multiple Cropping Systems. New York: Macmillan Publishing Company, 1986: 57-81.
[14] YANG F, LIAO D P, WU X L, GAO R C, FAN Y F, RAZA M A, WANG X C, YONG T W, LIU W G, LIU J, DU J B, SHU K, YANG W Y . Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017,203:16-23.
[15] LI L, SUN J H, ZHANG F S, LI X L, YANG S C, RENGEL Z . Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 2001,71(2):123-137.
doi: 10.1016/S0378-4290(01)00156-3
[16] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶 . 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016,42(5):751-757.
doi: 10.3724/SP.J.1006.2016.00751
YIN W, FENG F X, ZHAO C, YU A Z, CHAI Q, HU F L, GUO Y . Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agronomica Sinica, 2016,42(5):751-757. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00751
[17] PRASAD R B, BROOK R M . Effect of warying maize densities on intercropped maize and soybean in Nepal. Experimental Agriculture, 2005,41(3):365-382.
[18] CARRUTHERS K, PRITHIVIRAJ B, FE Q, CLOUTIER D, MARTIN R C, SMITH D L . Intercropping corn with soybean, lupin and forages: Yield component responses. European Journal of Agronomy, 2000,12(2):103-115.
[19] 王竹, 杨文钰 . 玉米株型和幅宽对套作大豆碳氮代谢及产量的影响. 中国油料作物学报, 2014,36(2):206-212.
WANG Z, YANG W Y . Effects of plant-types of maize and planting width on carbon-nitrogen metabolism and yield of relay-cropping soybean. Chinese Journal of Oil Crop Sciences, 2014,36(2):206-212. (in Chinese)
[20] LESOING G W, FRANCIS C A . Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean. Agronomy Journal, 1999,91(5):807-813.
[21] GAO Y, DUAN A W, QIU X Q, LIU Z G, SUN J S, ZHANG J P, WANG H Z . Distribution of roots and root length density in a maize/ soybean strip intercropping system. Agricultural Water Management, 2010,98(1):199-212.
[22] HAUGGAARD-NIELSEN H, JENSEN E S . Facilitative root interactions in intercrops. Plant and Soil, 2005,274(1/2):237-250.
doi: 10.1007/s11104-004-1305-1
[23] HE H M, YANG L, ZHAO L H, WU H, FAN L M, XIE Y, ZHU Y Y, LI C Y . The temporal-spatial distribution of light intensity in maize and soybean intercropping systems. Journal of Resources and Ecology, 2012,3(2):169-173.
doi: 10.5814/j.issn.1674-764x.2012.02.009
[24] REN Y Y, LIU J J, WANG Z L, ZHANG S Q . Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. European Journal of Agronomy, 2016,72:70-79.
doi: 10.1016/j.eja.2015.10.001
[25] 范元芳, 刘沁林, 王锐, 蒋晓蓉, 杜维维, 杨文钰, 杨峰 . 玉米-大豆带状间作对大豆生长、光合荧光特性及产量的影响. 核农学报, 2017,31(5):972-978.
FAN Y F, LIU Q L, WANG R, JIANG X R, DU W W, YANG W Y, YANG F . Effects of shading on growth, photosynthetic fluorescence characteristics and yield of soybean in maize-soybean intercropping systems. Journal of Nuclear Agricultural Sciences, 2017,31(5):972-978. (in Chinese)
[26] 王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮 . 不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学 2016,49(11):2072-2081.
doi: 10.3864/j.issn.0578-1752.2016.11.004
WANG Y, ZHANG X, YANG W Y, SUN X, SU B Y, CUI L . Effect of shading on soybean leaf photosynthesis and chlorophyⅡ fluorescence characteristics at different growth stages. Scientia Agricultura Sinica, 2016,49(11):2072-2081. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.004
[27] 高阳, 段爱旺, 刘战东, 王和洲, 陈金平, 刘安能 . 玉米/大豆间作条件下的作物根系生长及水分吸收. 应用生态学报, 2009,20(2):307-313.
GAO Y, DUAN A W, LIU Z D, WANG H Z, CHEN J P, LIU A N . Crop root growth and water uptake in maize/soybean strip intercropping. Chinese Journal of Applied Ecology, 2009,20(2):307-313. (in Chinese)
[28] HAUGGAARD-NIELSEN H, GOODING M, AMBUS P, CORRE- HELLOU G, CROZAT Y, DAHLMANN C, DIBET A, von FRAGSTEIN P, PRISTERI A, MONTI M, JENSEN E S . Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009,113(1):64-71.
[29] van KESSEL C, ROSKOSKI J P . Row spacing effects on N₂-fixation, N-yield and soil N uptake of intercropped cowpea and maize. Plant and Soil, 1988,111(1):17-23.
[30] 隋鹏祥, 有德宝, 安俊朋, 张文可, 田平, 梅楠, 王美佳, 王沣, 苏思慧, 齐华 . 秸秆还田方式与施氮量对春玉米产量及干物质和氮素积累、转运的影响. 植物营养与肥料学报, 2018,24(2):316-324.
SUI P X, YOU D B, AN J P, ZHANG W K, TIAN P, MEI N, WANG M J, WANG F, SU S H, QI H . Effects of straw management and nitrogen application on spring maize yield, dry matter and nitrogen accumulation and transfer. Journal of Plant Nutrition and Fertilizers, 2018,24(2):316-324. (in Chinese)
[31] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁 . 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018,44(3):414-422.
XU T J, LÜ T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G . Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinina, 2018,44(3):414-422. (in Chinese)
[32] 唐江华, 苏丽丽, 罗家祥, 李亚杰, 徐文修, 彭姜龙 . 不同耕作方式对夏大豆干物质积累及转运特性的影响. 核农学报, 2015,29(10):2026-2032.
doi: 10.11869/j.issn.100-8551.2015.10.2026
TANG J H, SU L L, LUO J X, LI Y J, XU W X, PENG J L . Effects of different tillage methods on dry matter accumulation and transfer characteristics of summer soybean. Journal of Nuclear Agricultural Sciences, 2015,29(10):2026-2032. (in Chinese)
doi: 10.11869/j.issn.100-8551.2015.10.2026
[33] 齐文增, 陈晓璐, 刘鹏, 刘惠惠, 李耕, 邵立杰, 王飞飞, 董树亭, 张吉旺, 赵斌 . 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013,19(1):26-36.
QI W Z, CHEN X L, LIU P, LIU H H, LI G, SHAO L J, WANG F F, DONG S T, ZHANG J W, ZHAO B . Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2013,19(1):26-36. (in Chinese)
[34] 闫艳红, 陈忠群, 王小春, 雍太文, 刘卫国, 杨文钰 . 钼肥对套作大豆干物质积累与分配及产量的影响. 中国油料作物学报, 2015,37(1):72-76.
YAN Y H, CHEN Z Q, WANG X C, YONG T W, LIU W G, YANG W Y . Effects of molybdenum fertilizer on dry matter accumulation, distribution and yield of relay strip intercropping soybean. Chinese Journal of Oil Crop Sciences, 2015,37(1):72-76. (in Chinese)
[35] 丁梦秋, 闻诗文, 陆卫平, 陆大雷 . 结实期弱光胁迫对甜玉米籽粒灌浆和叶片衰老的影响. 核农学报, 2017,31(5):964-971.
DING M Q, WEN S W, LU W P, LU D D . Effects of weak-light stress after pollination on grain filling and leaf senescence in sweet maize. Journal of Nuclear Agricultural Sciences, 2017,31(5):964-971. (in Chinese)
[36] INAL A, GUNES A, ZHANG F, CAKMAK I . Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry, 2007,45(5):350-356.
doi: 10.1016/j.plaphy.2007.03.016
[37] 张琳琳, 孙仕军, 陈志君, 姜浩, 张旭东, 迟道才 . 不同颜色地膜与种植密度对春玉米干物质积累和产量的影响. 应用生态学报, 2018,29(1):113-124.
ZHANG L L, SUN S J, CHEN Z J, JIANG H, ZHANG X D, CHI D C . Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize. Chinese Journal of Applied Ecology, 2018,29(1):113-124. (in Chinese)
[38] PLAUT Z, BUTOW B J, BLUMENTHAL C S, WRIGLEY C W . Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 2004,86(2/3):185-198.
[39] 高阳, 段爱旺, 刘祖贵, 孙景生, 陈金平, 王和洲 . 间作种植模式对玉米和大豆干物质积累与产量组成的影响. 中国农学通报, 2009,25(2):214-221.
GAO Y, DUAN A W, LIU Z G, SUN J S, CHEN J P, WANG H Z . Effect of intercropping patterns on dry matter accumulation and yield components of maize and soybean. Chinese Agricultural Science Bulletin, 2009,25(2):214-221. (in Chinese)
[40] YANG S H, QIU J X, XU Z S, LI H J, TANG R Y, WANG S G, LI Q . Effects of intercropping patterns on dry matter accumulation and transportation of maize (Zea mays L.) and soybean [Glycine max (L.) Merrill]. Agricultural Science & Technology, 2013,14(11):1545-1549.
[41] LEMCOFF J H, LOOMIS R S . Nitrogen and density influences on silk emergence, endosperm development, and grain yield in maize ( Zea mays L.). Field Crops Research, 1994,38(2):63-72.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!